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Abstract. This paper presents a registration-free method based on
geometry spectrum for mapping two shapes. Our method can quan-
tify and visualize the surface deformation by the variation of Laplace-
Beltrami spectrum of the object. In order to examine our method, we
employ synthetic data that has non-isometric deformation. We have also
applied our method to quantifying the shape variation between the left
and right hippocampus in epileptic human brains. The results on both
synthetic and real patient data demonstrate the effectiveness and accu-
racy of our method.
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1 Introduction

Morphometric analysis is very important in many biomedical applications and
clinical diagnoses. In general, there are two types of methods for mapping two
shapes: spatial registration methods and spectral methods. Spatial registration
methods usually require landmarks to map two shapes [1,2] which are often
labor-intensive for users to define those large number of landmarks. It becomes
even more challenging when the landmarks are difficult to define complicated
shapes, such as hippocampus [3], heart, etc. Spectral methods, on the other
hand, do not need any landmarks. Shape spectrum is a method inspired by
Fourier transform in signal processing. From the computational geometry aspect,
the shape geometry can be described with the differentiable manifold. Along this
direction, Reuter et al. [4] and Levy [5] defined shape spectrum, using the shape
spectrum approach, as the eigenvalues of the Laplace-Beltrami operator on a
manifold and employed the eigenvalues and eigenfunctions as a global shape
descriptor [6,7]. Konukoglu et al. [8] measured shape differences by using the
weighted spectral distance. There are some great advantages for shape analysis
using shape spectrum as it is invariant to isometric deformation [9], different
triangulations and meshing [4]. It carries the intrinsic geometry of manifold. As
the shape geometry changes, the shape spectrum will change as well. Therefore,
the similarity and difference among shapes can be described using this method.
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However, through the direct use of the decomposed eigenvalues and eigenfunc-
tions [10], these spectral methods can only describe the global difference between
shapes. They are neither able to localize the shape difference nor sensitive to
small deformations. The variation of shape spectrum is less studied in the liter-
ature. A recent study shows that the shape spectrum can be controlled using a
function on the Riemann metric [11] but shape difference defined by eigenvalue
variations is never explored.

In this paper we focus on spectrum alignment of general shapes using the
eigenvalue variation and present a spectral geometry method for localizing and
quantifying non-isometric deformations between surface shapes. In our approach,
shapes are automatically registered by calculating the metric scaling on both
shapes. Our method allows to define the surface shape deformation by the vari-
ation of Laplace-Beltrami spectrum of the shapes. Compared to the traditional
approaches, it can detect and localize small deformations in addition to global
difference of the shapes. Our method is registration-free in nature. It does not
need landmarks for mapping two manifolds and the spectrum only depends on
the intrinsic geometry of the shape and invariant to spacial translation, rotation,
scaling and isometric deformation. This method is computationally affordable
and suitable to map surface shapes for non-isometric deformation analysis.

2 Method

In this paper, we use Laplace-Beltrami operator to compute the geometric spec-
trum of a manifold. Let f ∈ C2 be a real function defined on a Riemannian man-
ifold M . The Laplace-Beltrami operator � is defined as, �f = � · (�f), where
�f is te gradient of f and �· is the divergence on the Manifold M . In this paper,
we compute the eigenvalue of the Laplacian equation defined as �f = −λf using
discrete differential operator. In this equation, the family solution {λi} is a real
nonnegative scalar and will result in the corresponding real family functions of
{fi} for i = 0, 1, 2, .... In this framework, a 2D manifold data is discretized to tri-
angle meshes. Assuming the neighborhood of a vertex is approximated with the
area of its Voronoi region, a discrete Laplace-Beltrami operator can be defined
with the average value over the area of the Voronoi region as following:

Lij =

⎧
⎪⎨

⎪⎩

− cotαij+cot βij

2Ai
if i, j are adjacent,

∑
k

cotαik+cot βik

2Ai
if i = j,

0 otherwise,
(1)

where αij and βij are the two angles opposite to the sharing edge ij of two tri-
angles, and Ai is the area of Voronoi region at vertex i. k is the index of triangles
within 1-ring neighborhood of the vertex i. This equation is solved numerically
by constructing a sparse matrix W and a diagonal matrix S in which Sii = Ai

and Wi,j = Li,j ×Sii. Therefore, the generalized eigenvalue problem can be pre-
sented as Wv = λSv where v is the eigenvector and λ is the eigenvalue of the
matrix L. When the deformations are mostly non-isometric, the eigenvalue and
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eigenfunction of the shape dramatically change. On a compact closed manifold
M with Riemannian metric g (such as organ dilation and shrink with scaling
information), we define deformation as a time variant positive scale function
ω(t) : M → R+ such that gω

ij = ωgij and dσω = ωdσ, where ω(t) is nonnegative
and continuously differentiable. By definition, the weighted Laplace-Beltrami
operator becomes Δgω

= 1
ω Δg. Consider the ith solution of the weighted eigen

problem, this equation can be rewritten as Δgfi = −λiωfi. Using these equations
we have proved the theorem as follows.

Theorem 1. λi is piecewise analytic and, at any regular point, the t-derivative
of λi is given by:

λ̇i = −λivi
T Ω̇Svi, (2)

in which Ω is a nonnegative, continuously differentiable, and diagonal matrix.

Our theorem shows that the spectrum is smooth and analytical to non-isometric
local scale deformation. It supports the variation of eigenvalues for the align-
ment of non-isometrically deformed shapes, hence a registration free method
for deformation analysis. In this paper, for aligning two shapes we use first k
eigenvalues. The number of k may be different depending on the total number
of the manifold nodes. Also by increasing k, some high frequency deformation
may be detected. Consider two closed manifolds, M and N , represented with
discrete triangle meshes. In order to align the first k eigenvalues of N to those
of M , a scale diagonal matrix Ω(t) is applied on N . Ω is an n by n matrix,
where n is number of vertices on N . The element Ωii at the diagonal is a scale
factor defined on each vertex on N . According to Theorem1, the derivative of
each eigenvalue is expressed by those of Ωii analytically. Thus, the scale matrix
Ω will introduce an alignment from N to M on eigenvalues. The following will
explain the details how to calculate the diagonal matrix Ω numerically.

We assume that the eigenvalues of N vary linearly towards those of M . This
linear interpolation is represented as:

λi(t) = (1 − t)λNi
+ tλMi

, t ∈ [0, 1] ⇒ λ̇i(t) = λMi
− λNi

, t ∈ [0, 1]. (3)

At the beginning, t = 0, and λi(0) starts as λNi
, while t reaches 1, λi(1) aligned

to λMi
. Combining Eqs. 3 and 2, the derivative of each λi(t) leads to an equation

of Ω as −λi(t)vi(t)
T Ω̇Svi(t) = λMi

− λNi
, t ∈ [0, 1]. Each diagonal element Ωii

represents a scale factor at vertex i on manifold N . Although the time derivative
of Ω can be calculated in Eq. 3 but solving this equation is not straightforward.
We need to transform the individual integration equation into a linear system.
We achieve this by extracting the diagonals as vectors vΩ and vS and then
employing Hadamard production [12]. Finally, by combining the Eqs. 2 and 3,
and using Hadamard production theory, we can obtain a linear form as:

(vS ◦ vi ◦ vi)T · vΩ̇ =
λNi

− λMi

λi(t)
, t ∈ [0, 1]. (4)

Considering that practically k is much less than the number of nodes in the mesh,
the system is undetermined and has no unique solution. Thus, more constrains
are necessary to provide an optimized solution for the linear system.
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In our paper, we focus on the global smoothness of scale factors distributed
on N . Consider a scalar function f ∈ C2 is define on the continuous manifold
< Nc, g >. The gradient of f describes the local change of f . For example,
if f is a constant function, which is considered as the smoothest distribution,
the gradient ∇f is zero everywhere. A smoothness energy of f is defined with
total square magnitude of the gradient ∇f on Nc as E =

∫

Nc
‖∇f‖2dσ. On the

discrete triangle mesh N , the scale function is a vector vΩ, which is the diagonal
of matrix Ω. The integral is a matrix product which can be determined as:

E =< vΩ + vΩ̇, L · (vΩ + vΩ̇) >S ⇒ Eq = vT
Ω̇

· W · vΩ̇ + 2cT · vΩ̇, (5)

where c = W · vΩ. Assume that vΩ is known at each time t and vΩ̇ is to be
solved in Eq. 4. vΩ̇ is going to minimize the quadratic smooth energy Eq at
any time. In order to preserve the physical availability, vΩ must be bounded.
The scale factor cannot be zero or negative. Furthermore, any point cannot be
infinity either. We denote a lower bound and an upper bound with hl,hu > 0,
where hl and hu are n dimensional constant vector. vΩ̇ must satisfy:

hl ≤ vΩ + vΩ̇ ≤ hu. (6)

The linear system (Eq. 4), smoothness constraint (Eq. 5) and constant bound
(Eq. 6) introduce a quadratic programming problem at each time t. This inte-
gration is discretely approximated with an iteration. We divide the time interval
[0, 1] into K steps which we index them as j. Assume the eigenvalues and eigen-
vectors are known at each time j, the derivative of the scale matrix Ω̇ is the
solution of such quadratic programming. The result Ω̇(j) can be used to calcu-

late Ω(j + 1) using Ω(j + 1) = Ω(j) +
1

K − j
Ω̇(j). After K steps, the desire

Ω(K) is achieved and manifold M will be aligned to manifold N .

3 Experiments and Results

The proposed algorithm is implemented using Python and C++ on a 64-bit
Linux platform. The experiments are conducted on a computer with an Intel
Core i7-3770 3.4 GHz CPU and 8 GB RAM. We apply our algorithm on 2D
manifold, represented with triangle meshes. In the experiments, we use hip-
pocampi extracted from brain MR images and the surface mesh has around
5000 vertices. Besides the vertex number, there are two constants, K iteration
and the first k nonzero eigenvalues to be aligned. According to the algorithm
described in Sect. 2, each iteration is an independent quadratic programming
problem. Thus the complexity is linear to the step number K. k determines how
many eigenvalues to be re-initialized at the beginning of each step. The algo-
rithm calculates the eigenvalues by iterations with the complexity of O(n2) to
the number of vertices and linear to k. The average computing time for around
5000 nodes, k = 100 and K = 10 is around 17 s. Note that, the larger the K
is, the more accurate the approximation is, in terms of the linear interpolation.
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In practice, we found K = 10 is sufficient to get the accurate result with a rea-
sonable computational time. Ideally, including more eigenvalues for alignment
can be more accurate as well. However, the numeric eigenvalue calculation is not
reliable on higher indexed eigenvalues, which will bring more unsuitability. It is
noted that the unstable eigenfunctions are introduced by the symmetry. This is
avoided by applying some preprocessing with existing symmetry analysis algo-
rithms. Our experiments show that the first 100 eigenfunctions carry sufficient
geometry information and are also quite reliable. The middle range frequencies
provide sufficient geometry information for the fine deformation. So we usually
choose k = 100 in our experiments.

3.1 Synthetic Data

In order to evaluate the efficacy of our method, we synthetically generate some
non-isometric deformations based on an initial shape. In this experiment, we use
a hippocampus segmented from 3D brain images. The surface is then deformed
using Blender to make non-isometric deformations. Our spectrum alignment
is applied on the first 100 nonzero eigenvalues. Note that, no correspondence
information is used in the experiments.

First, we generate a bump on the surface. Then we align the original object
to the bumped one to obtain the scale function. Figure 1a and b show original
and deformed objects, respectively. Figure 1c shows the result of mapping the
original shape to the deformed one. The spectrum variation can detect non-
isometric deformation clearly. The red color indicates the dilating area in order
to map the original manifold to the deformed one. Second, we shrink one part
of the original manifold using Blender. Then, we align the original shape to the
shrunk one. Figure 1a and d shows the original and deformed shapes. Figure 1e
shows the results of mapping. The field of Ω is the intrinsic component of the
full deformation, which is normalized in Fig. 1c and e. It is much more than
the isometric one. Although itself does not fully recover the deformation, it is
sufficient to represent the desired local deformations with the original spatial
meshes. As can be seen, the local deformation of shrunk region is detected using
our method. The blue color shows the contraction of the area. Finally, we scale
the manifold by a factor of 0.5 using blender and then align the original shape to
the scaled one. Figure 1f shows the comparison of the original and scaled objects.
Figure 1g shows the result of mapping the original shape to the scaled one. As
can be seen the whole surface is blue, which means it is globally shrunk. These
experiments clearly demonstrate that our method is able to detect and quantify
local deformations as well as global deformations.

We compare our method with non-rigid Iterative Closest Point (ICP) algo-
rithm [13] on the synthetic data and experiments demonstrate that our method
outperforms the non-rigid ICP method in these shapes with few landmarks and
features, as follows: average accuracy: 92 % (our method), 81 % (non-rigid ICP);
computational time: <20 s (our method), >60 s (non-rigid ICP). Furthermore,
our method is invariant to different triangulation methods, such as uniform and
non-uniform triangulations, by testing on the synthetic data.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 1. The results of mapping the original shape to the synthetically deformed ones. (a)
shows the original object. (b) is obtained by generating a bump on the original shape.
(c) shows the result of mapping the shape in (a) to the one in (b) where the expansion
is determined and located. (d) shows the synthetic data generated by shrinking one
part of the original shape. (e) shows the result of mapping the original shape in (a) to
the shrunk shape in (c) where shrinkage is localized. (f) shows the synthetically scaled
shape with the scale factor of 0.5. (f) shows the result of mapping the original shape to
the scaled one. The red color illustrates the expansion area and the blue color shows
the shrinkage area. (Color figure online)

3.2 Epilepsy Imaging Study

We also apply our method to mesial temporal lobe (mTLE) epilepsy study.
mTLE is one of the most common types of focal epilepsy. Among mTLE struc-
tural abnormalities, hippocampus is one of the most frequent structures that can
be affected. As indicated in [14], epilepsy may cause shrinkage of the affected hip-
pocampus in comparison to the non-affected one. In this experiment, we have
applied our method on twenty TLE patients to quantify the shape variation
between left and right hippocampus. Half number of the patients are reported
to have left defected hippocampus and the other half have abnormality in the
right hippocampus. For generating the 3D hippocampus surfaces, right and left
hippocampi are segmented from 3D T1 images. Right hippocampi are then mir-
rored in order to have the same direction as the left ones. In Fig. 2a and b, column
1 and 2 show samples of left and right hippocampi. Column 3 shows the com-
puted scale function distributions on the left hippocampus surface when mapping
from the left one to the right. The colors denote the values of scale function in
each vertices of original surface. Red means dilating, blue means contraction,
and white means no distortion. According to the clinical record, Fig. 2a is for a
patient case that has left abnormal hippocampus, therefore, mapping from the
left hippocampus to the right displays more expansion (indicated in red), i.e., the
left hippocampus is shrunk (i.e., diseased) compared to the right, normal one.
Figure 2b depicts another patient case that has the right defected hippocampus.
When mapping from the left hippocampus to the right, the scale distribution dis-
played on the left hippocampus surface mainly shows the shrinkage (indicated in
blue) which indicates the right hippocampus is shrunk (diseased) in comparison
to the left hippocampus.

To see how eigenfunctions vary after changing eigenvalues, we select the 12th
eigenvalue and show the eigenfunctions corresponding to this eigenvalue on the
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(a) (b) (c)

Fig. 2. (a) and (b) show the results of mapping the left hippocampus to the right one for
two patient cases. (c) shows the 12th eigenfunction of the left hippocampus (column 1),
right hippocampus (column 2), and the left hippocampus after being mapped (column
3). The pattern of the eigenfunction for the left hippocampus shape has been changed
in order to map the right one. (Color figure online)

Table 1. The result of aligning eigenvalues of the left hippocampus to the right one
using the same case as in Fig. 2a.

Manifold λi/λ1, i ∈ [2, 8]

Left hippocampus 3.87, 7.76, 11.93, 14.22, 15.88, 18.49, 20.62

Right hippocampus 4.36, 7.75, 11.20, 12.62, 16.60, 18.35, 21.73

Left hippocampus (after being aligned
to the Right)

4.36, 7.75, 11.19, 12.62, 16.59, 18.34, 21.73

source manifold before and after mapping to the target manifold. Figure 2c shows
the 12th eigenfunction of left hippocampus (first column), right hippocampus
(second column), and the mapped hippocampus (third column). The eigenfunc-
tions are normalized between −1 and 1. The values of eigenfunction at each
vertex are expressed with color map, where red means larger value, blue means
smaller ones, and white means zero. Comparing the eigenfunction patterns before
and after alignment, great improvement is obtained and the pattern of the eigen-
function in source manifold has changed to well map into the target manifold.

In order to show the variation of eigenvalues of manifolds before and after
mapping, we list the 2nd to 8th eigenvalues of left hippocampus (before and
after mapping) and the right hippocampus in Table 1. The eigenvalues are nor-
malized by the first nonzero one to remove the scale factor. It can be seen that
after applying the spectrum alignment algorithm, the eigenvalues of the source
manifold have been changed in order to well align with the target ones.

4 Conclusion

In this paper, we present a registration-free method to quantify the deformation
between shapes. The result of spectral alignment of shape spectrum can provide
the scale function which defines the deformation of each vertex. This method can
be used for diagnosing the local deformation of hippocampus that is affected by
epilepsy. It can be applied to other morphometry analyses as well. The proposed
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method can handle complicated meshes with more than 5000 or 10,000 vertices
on regular desktops and laptops. The algorithm relies on the linear system, which
will be highly scalable on GPU or cloud computing. Furthermore, we will apply
our method on the brain and other surfaces in the future.
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