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Abstract. The generation of a patient-specific finite element (FE)
model of organs is important for preoperative surgical simulations.
Although methods for generating a mesh from a 3D geometric model of
organs are well established, the reproduction of complex structures, such
as holes, branches, and jaggy boundaries, remains difficult. To approxi-
mate the deformation of complex structures, an approach for embedding
a fine geometry in a coarse volumetric mesh can be used. In this paper,
we introduce a volume embedding method that preserves the topology of
a complicated structure on the basis of segmented medical images. Our
evaluation shows that the generated FE model precisely reproduces the
topology of a human brain according to a segmented medical image.

1 Introduction

The progress in modeling and simulation techniques of soft-tissue deformation
has enabled the prediction of the mechanical behaviors of organs before actual
surgery in the operation room. One of the problems in applying these techniques
to clinical use is the generation of patient-specific biomechanical models includ-
ing volumetric meshes. In general, the geometry of a patient’s organs is obtained
using medical imaging and segmentation techniques. To obtain patient-specific
volumetric meshes, meshing methods that use segmented medical images as the
input have been developed [2,8]. However, preserving the fine geometry in a
coarse mesh resolution is still difficult. The left side of Fig. 1 illustrates examples
of Delaunay-based meshing of a segmented volume. As shown in this figure, the
meshing with feature preservation provides a good volume mesh with bound-
ary conformity. However, the number of vertices tends to become large when
the feature constraints are applied. Finer mesh resolutions limit the range of
applications becuase of their high computational costs.

In the community of computer graphics, embedding is a popular approach for
approximating the deformations of fine geometry. By embedding a fine geometry
in a coarse volumetric mesh, the deformation of the fine geometry is interpolated
by the deformation of the volumetric mesh. Usually, coarse volumetric meshes
are simple grid meshes, and thus, do not meet the boundary conformity. Instead
of being limited by the inaccurate boundary conformity, it is easy to reduce
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Fig. 1. Comparison between Delaunay-
based meshing [2,8] and our volume
embedding.
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Fig. 2. Algorithm overview.

the computational cost of mechanical simulations by changing the resolution of
the grid. The right side of Fig. 1 illustrates examples of the volume embedding
approach. They are able to reduce the number of vertices down as far as 24
vertices in this example. One known issue is that a simple grid mesh cannot
separate disconnected parts if proximate parts are included in the same cell.
Nesme et al. [7] solved this problem by the separation and superposition of
elements, but their method was intended for embedding a polygon surface model
in a finite element (FE) mesh. In order to apply the method to volume data
(medical images), they need to be converted into a surface polygon, which results
in loss of volume information. Additionally, the method proposed in [7] did
not consider the separation of a completely attached boundary that should be
separated.

To solve these problems, we propose an embedding method that directly
handles the volume data. Furthermore, we introduce a method of separating
completely attached areas on the basis of user-defined segment pairs. The pro-
posed method is evaluated using a brain atlas, and the generated mesh is tested
whether it can be used for our interactive surgery simulator [9], which aims to
plan the approaching process to the affected area on the insula. The simula-
tor requires a mesh of which the Sylvian fissure is separated, and the fissure is
generally completely attached in MR images.

2 Method

2.1 Overview

The proposed method uses superimposed nodes and cells to preserve the topology
of the structure. As illustrated in Fig. 2, the degrees of freedom of the deforma-
tion are added by superimposing nodes and cells. The topology, i.e., the connec-
tions and separations between the local volumetric areas, can be preserved using
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superimposed nodes and cells. Additionally, we consider the separation of the
connection between multiple segments. For example, the “Temporal lobe” seg-
ment and the “Parietal lobe” segment should be separated. Such separations are
realized by separation label pairs (SLPs), which are explicitly specified by the
user. The hexahedral mesh generation is processed according to the segmented
volume and SLPs. The definitions of the input and output are given below.

Segmented medical image. A segmented medical image constitutes volume
data that contain labels at aligned voxels. A label is an integer value associ-
ated with a segment, for example, 0 is empty space, 1 is white matter, and
so on. A label at a specific voxel coordinate is denoted by L(i) ∈ Z, where
i ∈ Z

3 is a voxel coordinate. Voxel coordinate i can be mapped to spatial
coordinate p ∈ R

3 using a vector of volume origin p0 ∈ R
3 and a vector

of spacing values s = [sx, sy, sz] ∈ R
3 as p = p0 + s � i, where � denotes

element-wise vector multiplication.
Mesh size. Mesh size H ∈ R is the approximate edge length of a hexahedral

cell. The actual edge lengths in the x, y, and z directions h = [hx, hy, hz]
are determined by multiples of the spacing value of a volume, e.g., hx =
ceil(H/sx)sx for the direction x, where ceil(H/sx) is the number of voxels
along the x axis.

SLPs. An SLP is a pair of labels {La, Lb}, where La and Lb are the labels of
segment a and b, respectively. The algorithm for generating a hexahedral
mesh is applied to separate the segments that are specified by SLPs. The
SLPs need to be generated by users.

Hexahedral mesh. A mesh is represented as nodes and cells. A node has a
corresponding position and a cell has references to nodes.

Superimposed nodes and cells. A superimposed node/cell is a node/cell that
coexists at the same position as another node/cell. There is no limit to the
number of superimposed nodes/cells that can exist at the same position.

2.2 Hexahedral Mesh Generation

First, initial nodes and cells are generated without considering superposition
(Fig. 2(a)). The bounding box of the volume is calculated, and an orthogonal
lattice is generated, the origin of which is on the corner of the bounding box;
the lattice bases are [hx, 0, 0]T , [0, hy, 0]T , [0, 0, hz]T .

Second, a cell that includes multiple regions is divided into multiple cells
such that each divided cell includes only one region (Fig. 2(b)). To do so, local
segmentation is executed by voxel-level region growing in each cell, as illustrated
in Fig. 3. For the region growing, first an initial seed point is arbitrarily selected
from voxels inside the cell. Then, it is determined whether the labels of the
neighbor are connected to one of the faces of the seed voxel. If the label of a
neighbor voxel is not “empty” and is not listed in the SLPs, the voxel is added
to the region. These procedures are iterated until no connected voxel is found.
After one region is extracted, the region growing procedure is iterated until all
non-empty voxels are added to a region. If more than one region is detected,
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the cell for each region is superimposed. At this time, all cells refer to the same
set of nodes. For the subsequent procedure, the set of voxels is stored on the
associated region for each superimposed cell. If no region is detected, e.g., all
the labels are “empty,” the cell is deleted.

Third, nodes shared by superimposed cells are also superimposed (see
Figs. 2(c) and 4 for details). At each node, cells that share the node are searched
and cell-level region growing is executed. The cell-level region growing is initi-
ated from a seed point (cell), evaluates connectivities with surrounding cells, and
finds connecting cells. To determine the cell connectivity, the pairs of neighbor
labels on the boundary of two cells are used. If a label pair does not include an
empty label and is not listed in the SLPs, the pair is recognized as a connected
pair. If at least one connected pair is detected, the two cells are determined to
be connected. If more than one region (connected cells) is detected, the node is
replicated for each region and the corresponding node references are changed in
the cells of the region to the superimposed node. If no region is detected, the
node is deleted.

Optionally, floating cells are deleted. In many cases, a segmented medical
image includes isolated small segments. Such segments may cause unmeaningful
small pieces in mechanical simulation. To avoid this, we count the number of cells
for each cell island (a set of connected cells). If the number is smaller than a
user-specified threshold, the cells are deleted. From our experience, an adequate
threshold is two cells.

2.3 Physics Simulation and Visualization

In this study, the generated meshes were validated by performing finite element
method (FEM) simulation based on a corotational formulation and implicit time
integration scheme for the calculation of dynamic soft-tissue deformation [6].
Each generated hexahedral cell is divided into five first-order tetrahedral ele-
ments and a linear elastic property is applied. The values related to material
properties are the same for all elements and we adopts the property of a soft
material: Young’s modulus 1000 Pa, Poisson’s ratio 0.4, density 1.0 g/cm3.
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Fig. 3. Superimposed cell generation using voxel-level region growing.
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2. Cell-level region growing (SLP = {2, 3}). 
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Fig. 5. Evaluation using a cylinder-shaped segmented volume. (Color figure online)

For graphics rendering, the surface polygons of segmented volumes are gen-
erated using the marching cubes method. As in [6,7], the polygons are deformed
according to the deformed FE mesh obtained by the FEM simulation. In this
method, each surface vertex is associated with a tetrahedral element in advance
and affine transformation is applied to the vertex to hold the initial barycentric
coordinate in the associated tetrahedron. The deformation of volume data is
realized by considering voxels as particles. The transformations of the particles
are performed in the same way as for surface polygon vertices.

3 Results and Discussions

The proposed method was evaluated using a cylinder-shaped segmented volume
and brain atlas dataset published in [4]. All numerical experiments were executed
by an implementation on a workstation with an Intel Core i7-3960X (6 cores,
overclocked to 4.5 GHz), 64 GB of RAM, and two GPUs, an NVIDIA K20c (2,496
CUDA cores) for the computing of FEM and an NVIDIA Quadro K5000 (1536
CUDA cores) for graphics processing. The proposed meshing algorithms were
parallelized using OpenMP.

Cylinder Model. Figure 5 shows the result of the evaluation using a cylinder-
shaped segmented volume. As shown in Fig. 5(a), the input volume has three
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H = 5 mm H = 10 mm H = 15 mm
(a) Input volume with
     surface rendering.

(c) Results of Delaunay-based meshing. (d) Stress visualization. (e) Limitation of the topological preservability.

(b) Results of volume embedding applied displacements to open the Sylvian fissure. 
      Green wireframe is FE mesh. Red spheres are position constraints.

H = 2 mm H = 6 mm

Input volume and
expected deformation

Embedded in
a coarse mesh

Embedded in
a coarser mesh

Fig. 6. Evaluation using a brain atlas [4].

segments labeled 1, 2, and 3. In the front-half part of the volume, there is a groove
between segments 2 and 3. The width of the groove is equal to the length of a
voxel. In the rear-half part, segments 2 and 3 are completely attached without
any gap. Figure 5(b) shows the two results of the proposed volume embedding:
the top part shows the result without SLP and the bottom part shows the
result with SLP {2, 3}. Both of the results were obtained using a mesh size of
H = 5 mm. The left part of Fig. 5(b) shows the generated cells. In the figure,
gray and red cells indicate normal and superimposed cells, respectively. The
right part of Fig. 5(b) shows the deformation examples of the meshes from two
different views. In this figure, it is clear that the groove was separated even
when the SLP was not used. However, without SLPs, the completely attached
boundary of segments 2 and 3 was not separated. In contrast, the separation
of the boundary was achieved using the SLP. This result shows that the use of
SLPs is effective for separating completely attached segments.

Brain Atlas. Figure 6 shows the results of the evaluation using a brain atlas [4].
Figure 6(b) shows the results of the proposed method. The input SLPs were man-
ually specified by the author to separate the Sylvian fissure in order to utilize
the generated mesh in our neurosurgery simulator [9]. The displacements to
open the Sylvian fissure was imposed after the FE mesh generation and cal-
culated the shape of the equilibrium. To compare the proposed method with
a well-established method, Delaunay-based meshing without feature preserva-
tion [8] implemented in CGAL library [1] was also conducted (Fig. 6(c)). The
quantitative results are described in Table 1. Note that the measurement of the
computational time of the FEM simulation (global matrix assembly and linear
system solving with 20 CG iterations [9]) is performed only for our embedding
method, and in the case of our method with H = 2.0, the simulation was not
executed because of out of GPU device memory due to too large mesh.
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Table 1. Quantitative results of the evaluation using the brain atlas (256 × 256 ×
256) [4]. Nvert and Ntet are the number of vertices and tetrahedra, Tmesh and Tfem are
the computational time taken for the mesh generation and a loop of FEM simulation,
respectively.

Method Mesh size (mm) Nvert Ntet Tmesh (s) Tfem (ms)

Pons, et al. [8] 2.0 149, 506 799, 165 22.23 –

Pons, et al. [8] 4.0 44, 421 95, 740 7.43 –

Pons, et al. [8] 6.0 6, 106 29, 144 1.28 –

Ours 2.0 227, 225 925, 360 5.78 –

Ours 5.0 22, 999 79, 650 0.57 133.3

Ours 10.0 4, 829 14, 130 0.19 30.8

Ours 15.0 2, 072 5, 530 0.16 11.9

Delaunay-based meshing with a resolution that is too low, as noted in [8],
produced a non-manifold mesh that included singular vertices for which the
thickness is zero, which leads to instability in FEM. Further, small or thin seg-
ments vanished in the resulting mesh. In contrast, the proposed method gener-
ated meshes that cover the entire body of the volume and FEM simulation was
conducted without instability. Figure 6(c) shows that the frontal and temporal
lobes are separated and the topology of the Sylvian fissure is correctly preserved.
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Figure 7 shows the parallel scalability of each
algorithm stage of the mesh generation by timing
the executions with different number of threads.
The algorithms for “superimposed cell genera-
tion” and “superimposed node generation” were
parallelized straightforwardly because they are
cell- and node-independent, and their good scal-
ability can be observed. Thanks to this perfor-
mance, hexahedral mesh generations were fin-
ished in several seconds, as shown in Table 1.
This enables us to find a balance between accu-
racy and performance by modifying the mesh size effectively. In our implemen-
tation of FEM, a mesh with 5,000 nodes can be calculated in real-time rate (30
fps). Therefore, we were able to determine that a mesh with H = 10.0 mm is
adequate for interactive simulation.

Figure 6(d) shows a postprocess application example using 3D Slicer [3] that
visualizes the stress field inside the brain. This was obtained by exporting a
deformed volume with mesh size 5 mm. This is valuable, for example, when
objectively assessing the damage of a retraction.

However, there is a limit on the topological preservability. When mesh size H
increases, small boundaries with lengths that are smaller than H were connected
(Fig. 6(e)). Thus, the mesh size needs to be determined considering the lengths
of boundaries that should be preserved.
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4 Conclusion and Future Work

In this paper, we proposed a volume embedding method that preserves the topol-
ogy of a structure according to a segmented medical image and user-defined
SLPs. The method was evaluated in terms of its ability to approximate deforma-
tions and computational time. The evaluation shows that the proposed method
can generate topology-preserved meshes fast and robustly.

There are some problems to address in future. The proposed method ignores
the boundary conformity of the FE mesh and decreases in the precision of the
mechanical simulations. These issues can be mitigated by modifying the stiffness
matrix according to the spatial distribution of labels inside each cell [7]. Fur-
thermore, contact handling can be addressed by placing collision proxy points
inside the volumetric mesh [5]. These treatments would enhance the quality of
the simulations.
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