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Abstract. Image-guided neurosurgery involves the display of MRI-
based preoperative plans in an intraoperative reference frame. Interven-
tional MRI (iMRI) can serve as a reference for non-rigid registration
based propagation of preoperative MRI. Structural MRI images exhibit
spatially varying intensity relationships, which can be captured by a local
similarity measure such as the local normalized correlation coefficient
(LNCC). However, LNCC weights local neighborhoods using a static spa-
tial kernel and includes voxels from beyond a tissue or resection boundary
in a neighborhood centered inside the boundary. We modify LNCC to
use locally adaptive weighting inspired by bilateral filtering and evalu-
ate it extensively in a numerical phantom study, a clinical iMRI study
and a segmentation propagation study. The modified measure enables
increased registration accuracy near tissue and resection boundaries.
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1 Introduction

Image-guided neurosurgery involves the display of preoperative anatomy and sur-
gical plans in intraoperative reference frame to increase the accuracy of patho-
logical tissue resection and to reduce damage to the surrounding structures.
Preoperative MRI can reveal information such as nerve fiber tracts and brain
activation areas. Interventional MRI (iMRI) can image intraoperative deforma-
tions due to cerebrospinal fluid (CSF) drainage, gravity and edema (collectively,
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brain shift) [9]. Non-rigid registration of preoperative MRI to intraoperative
iMRI enables surgical guidance using propagated preoperative plans [2].

Correspondences missing due to resection present a challenge to the regis-
tration. Daga et al. [2] estimated brain shift intraoperatively by masking out
voxels lying outside a brain mask. However, automated brain extraction such
as using FSL-BET [11] can be inaccurate near the resection cavity due to fluid
accumulation and surgical gauze in the cavity. Another challenge to registration
arises from contrast changes due to CSF drainage, bleeding, edema, MRI bias
field and low signal to noise ratio (SNR) of iMRI.

We consider registration of a T1-weighted (T1w) image pair. The local nor-
malized correlation coefficient (LNCC, [1]) captures a local affine intensity rela-
tionship. LNCC involves smoothing based on convolution with a Gaussian kernel,
which includes voxels located outside a tissue or resection boundary in the sta-
tistics of a local neighborhood centered inside the boundary. This potentially
reduces the matching specificity near the resection margin.

The bilateral filter was introduced for edge-preserving image smoothing and
weights the voxels in the local neighborhood based on their spatial distance and
intensity difference from the central voxel [13]. Bilateral filtering was used for
locally adaptive patch-based similarity cost evaluation in a stereo reconstruction
problem [14]: as pixels on a surface tended to have similar colors, the estimated
disparity map became more accurate. In a T1w image pair, the voxels from
the same tissue tend to have similar intensities and we suggest that bilateral
weighting can lead to more accurate brain shift estimation.

We propose to introduce adaptive bilateral weighting into LNCC calculation
as illustrated in Fig. 1. We evaluated the modified measure in registration exper-
iments on three datasets and found an improvement in registration accuracy.

2 Methods

2.1 Bilateral Adaptively Weighted LNCC Similarity

LNCC was first used in the context of image registration by [1]. Let R be the
reference image and F the floating image in the same coordinate space, then
LNCC for the local neighborhood of a point v is defined as

LNCCv (R,F )2 =
〈R,F 〉v 2

〈R,R〉v · 〈F, F 〉v , (1)

where the 〈R,R〉v and 〈F, F 〉v are the local variances and 〈R,F 〉v is the local
covariance. The latter is defined as 〈R,F 〉v = R · F v − Rv · F v , where Rv and
F v are the respective local means. The local variances are defined analogously.
The local mean for R is defined as Rv = 1

N

∑
x R(v − x )wv (x ), where N is the

number of voxels in the neighborhood of v , x is the offset relative to v and
wv (x ) are the weights, here given by a generic term that depends on v . The
local mean for F is defined analogously.
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LNCC uses a Gaussian kernel for the local weights, wv (x ) = Gβ(x ) =
1√
2πβ

exp
(
− |x |2

2β2

)
, where β controls the neighborhood’s size (negligible for |x | >

3β). Since Gβ(x ) does not depend on v , the local mean can be implemented
using convolution Iv = (Gβ ∗ I) (v).

(a) (b) (c) (d) (e)

Fig. 1. (a) T1-weighted reference image and (b) intensity-based weights for a point
(blue cross). (c) T1-weighted floating image and (d) intensity-based weights for the
point. (e) Final weights based on (b), (d) and distance from the point. (Color figure
online)

We introduce bilateral adaptive weighting and refer to the modified measure
as LNCC-AW. A bilateral filtered smoothing of an arbitrary image I is

I
bilat.

v =
1
N

∑

x

I(v − x ) · Gβ(x ) · Gα (I(v − x ) − I(v)), (2)

where Gα(d) is a range kernel i.e. a kernel for the intensity difference d = I(v −
x )− I(v). The edge-preserving property arises as the voxels beyond an intensity
rise/drop are excluded. Given images R and F to register, we guide the adaptive
weighting by both the images as in [14] by using the composite term

wv (x ) = Gβ(x ) · Gα (R(v − x ) − R(v)) · Gα (F (v − x ) − F (v)) (3)

as illustrated in Fig. 1. Since wv (x ) vary spatially, we can no longer implement
the local mean using convolution nor take advantage of kernel separability.

The low SNR of iMRI can potentially cause the weights of adjacent neigh-
borhoods in homogeneous areas to vary along with the varying intensity of the
central voxels. In order to reduce spatial inconsistencies in similarity values, we
replace the Gaussian range kernel, as used in [13,14], with a kernel shaped as
Student’s t-distribution, which down-weights rather than suppresses differing
intensities:

Gα(d) =
Γ(ν+1

2 )√
νπα2Γ(ν

2 )

(

1 +
d2

να2

)− ν+1
2

. (4)

We selected ν = 2 as it has a gradual drop-off and provides a trade-off between
boundary-preservation and robustness to noise. For α = ∞, the weighting
reduces to locally non-varying.
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2.2 Registration Using a Discrete Optimization Framework

The derivation of analytical gradient of the similarity measure, for instance with
respect to a voxel-based deformation field, for use in gradient-based non-rigid reg-
istration schemes becomes complicated when using adaptive weighting, because
the gradient depends on the local weights which in turn depend on the defor-
mation. However, [4] reformulated non-rigid registration as a discrete Markov
Random Field (MRF) optimization problem, for which the similarity measure
gradient is not needed. We employ the proposed measure in a related discrete
optimization scheme of [6]. A grid P of B-spline transformation control points
p ∈ P with positions cp is overlaid onto the reference image. The control point
displacements in the floating image are up = [up, vp, wp] with discrete valued
components. For efficiency, a minimum spanning tree N of the most relevant
edges (p, q) ∈ N is optimized rather than a full MRF. Displacements are sought
minimizing the energy

∑

p∈P

(
1 − ‖LNCCcp (R(ξ), F (ξ + up))‖)

+ α
∑

(p,q)∈N

‖up − uq‖2
‖xp − xq‖ . (5)

3 Experiments

3.1 Patch Matching on 2D Synthetic Phantom

We compare matching accuracy for two 2D synthetic phantoms. We place a fixed
patch representing a local neighborhood in the reference image and a moving
patch in the floating image to plot the similarity profile of LNCC and LNCC-
AW, respectively. We assess two phantoms. A contrast-enhanced lesion near a
resection phantom is shown in Fig. 2(a–d). The similarity profile for LNCC has
a mild maximum at the true zero displacement due to voxels included from the
resected area. The similarity profile for LNCC-AW has a clear maximum due
voxels down-weighted in the resected area. A phantom of the medial longitudinal
fissure is shown in Fig. 2(e–h). The reference and floating image are the same
axial slice from the BrainWeb database. The patch is centered next to the medial
longitudinal fissure that contains dark voxels in the CSF and the falx cerebri. The
similarity profile for LNCC has a band of false matches due to voxels included
in the fissure. The similarity profile for LNCC-AW has a unique maximum at
the true zero displacement due to these voxels being down-weighted.

3.2 Recovery of a 3D Synthetic Deformation

We perform a registration experiment on a BrainWeb dataset. The reference
image is made by inserting a synthetic resection cavity in the right temporal lobe.
The floating image is resampled using B-spline interpolation from the BrainWeb
image using a synthetic sinusoidal deforming field (period 100 mm in all direc-
tions, displacement amplitude 4 mm). The voxel intensities are normalized to
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. 2D numerical phantoms. (a–d) A contrast-enhanced lesion near a resection.
(e–h) Medial longitudinal fissure. (a, e) Reference image. The outline shows the fixed
patch. (b, f) Floating image. The inner and outer outline show the moving patch at
zero and maximum displacement, respectively. (c, g) Similarity profile of LNCC as a
function of displacement. (d, h) Same for LNCC-AW.

0–1 range. We use 5 discrete registration grid levels with grid spacing (7, 6, 5, 4
and 3 voxels), search radius (6, 5, 4, 3 and 2 control point grid spacings) and dis-
cretization step (5, 4, 3, 2 and 1 voxels). The floating image is updated between
levels using B-spline interpolation. We run the scheme for LNCC (β = 5mm)
and twice for LNCC-AW (β = 5mm, α = 0.30 and α = 0.10).

We quantify registration accuracy using landmarks found in the reference
using 3D-SIFT [12]. We include 43 landmarks from a 2 cm region from the
resection margin. We propagate the landmarks using the true and recovered
deformations. The target registration error (TRE) is shown in Fig. 3(c). TRE
for LNCC-AW is significantly lower (for both α = 0.30 and α = 0.10) than
for LNCC (paired t-tests, p < 0.001). The log of Jacobian determinant maps
for true and recovered deformations are shown in Fig. 3(d–g). The deformations
recovered using LNCC-AW follow the true deformation closer than using LNCC.

3.3 Evaluation on an iMRI Surgical Dataset

We validate the measure on 12 cases of anterior temporal lobe resection. The
dataset is described in [2]. We skull-strip the pre- and the intraoperative image,
normalize the 1st–99th intensity percentile linearly to the range 0–1, crop the
intraoperative image to only contain the brain, resample the intraoperative image
to a resolution 1.1 × 1.1 × 1.1 mm and register the preoperative image affinely
to the intraoperative reference [8]. We use the bilateral filter as per Eq. 2 on
the reference and floating image pair in order to generate a guidance image
pair using settings (β = 2.2 mm, α = 0.03) that we found to produce a mild
smoothing in homogeneous areas whilst preserving edges. We perform a non-
rigid registration for LNCC (β = 5.5mm) and two non-rigid registrations for
LNCC-AW (β = 5.5mm, α = 0.30 and α = 0.10), using the guidance image
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Fig. 3. Axial view of 3D BrainWeb based phantom. (a) Reference image (inserted
resection). (b) Floating image (synthetic deformation). (c) Target registration error.
(d) Map of log Jacobian determinant for ground truth deformation (forward field).
(e) Same map for fields recovered using LNCC, (f) LNCC-AW with α = 0.30 and (g)
LNCC-AW with α = 0.10.

pair to construct the weights in Eq. 3. The discrete optimization parameters
are identical as in Sect. 3.2 (in voxels). The registration takes approx. 10 h per
subject using 4 threads on a computing cluster node.

For each case, we annotate 50–60 landmarks pairs in the pre/intraoperative
image a few cm from the resection margin. We propagate the landmarks using
the recovered deformations. The mean TRE for all cases is shown in Fig. 4(a) and
is significantly lower for registrations based on LNCC-AW with α = 0.30 (paired
t-test, p = 0.0236) and LNCC-AW with α = 0.10 (p = 0.0054), respectively, than
for registrations based on LNCC. The effect size is below the image resolution,
potentially as few reliably identifiable landmark pairs exist near the resection
margin. We evaluate the smoothness of the recovered deformations and assess
the absolute log Jacobian determinant maps in a region of interest (ROI) in the
brain less than 2 cm from the base of the resection cavity (located in iMRI).
The means within the ROI are shown in Fig. 4(b) and are significantly lower for
LNCC-AW with α = 0.30 (paired t-test, p = 0.0133) and for LNCC-AW with
α = 0.10 (p < 0.001), respectively, than for LNCC.

3.4 Segmentation Propagation Experiment

We explore how the adaptive weighting affects registration accuracy for brain
structures. We use a database of 35 T1w scans with parcellations of 140 key struc-
tures provided by Neuromorphometrics for the MICCAI 2012 Grand Challenge
and Workshop on Multi-Atlas Labeling1. We normalize image intensities and use
each image as a reference image and the remaining images as floating images. For

1 https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Challenge Details.

https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Challenge_Details
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Fig. 4. Registration results for 12 iMRI cases. (a) Target registration error. (b) Mean
(in vicinity of the resection) of abs. log Jacobian determinant map.

each of the 1190 image pairs, we perform affine registration and non-rigid reg-
istrations using LNCC (β = 5mm) and LNCC-AW (β = 5mm, α = 0.10 only)
using discrete registration parameters as above. We propagate the floating image
segmentations using nearest-neighbor interpolation and calculate Dice score for
each label. The average Dice score for 1190 affine registration image pairs is
0.422 ± 0.00187, for LNCC based non-rigid registrations it is 0.517 ± 0.0101
and for LNCC-AW based registrations it is 0.526 ± 0.00947. Average Dice score
is significantly higher when using LNCC-AW than LNCC (p < 10−6).

4 Discussion and Conclusion

We introduced bilateral adaptive weighting into a local similarity measure
(LNCC). The modification facilitated a more accurate landmark localization
in several T1w registration experiments. In a study on clinical iMRI data, we
recovered a smoother deformation near the resection margin, which is biome-
chanically more plausible and potentially enables more accurate guidance near
the resection margin. The brain shift we assessed arose from CSF leakage and
postural drainage, but in principle our approach can improve accuracy near dis-
tinct intensity edges at margins of tumors, collapsed cysts or haematomas from
bleeding into the brain, which should be confirmed in a future study.

Unoptimized bilateral weighting introduces a time bottleneck that precludes
intraoperative application. We note that the discrete optimization steps col-
lectively take approx. one minute. However, powerful options are open toward
optimizing the bilateral weighting, such as guided image filtering [5]. The pro-
posed method could be extended to a multi-channel local similarity measure
such as LCCA [7]. A related approach to ours is to constrain the deforming field
using bilateral filtering [10] and a unified scheme should be investigated. The
analytical gradient could potentially be derived using the approach of [3].
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7. Heinrich, M.P., Papież, B.W., Schnabel, J.A., Handels, H.: Multispectral image
registration based on local canonical correlation analysis. In: Golland, P., Hata,
N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673,
pp. 202–209. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10404-1 26

8. Modat, M., Cash, D.M., Daga, P., Winston, G.P., Duncan, J.S., Ourselin, S.: Global
image registration using a symmetric block-matching approach. J. Med. Imaging
1(2), 024003–024003 (2014)

9. Nimsky, C., Ganslandt, O., Cerny, S., Hastreiter, P., Greiner, G., Fahlbusch, R.:
Quantification of, visualization of, and compensation for brain shift using intraop-
erative magnetic resonance imaging. Neurosurgery 47(5), 1070–1080 (2000)
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