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Abstract. High-grade glioma (HGG) is a lethal cancer, which is characterized
by very poor prognosis. To help optimize treatment strategy, accurate preop-
erative prediction of HGG patient’s outcome (i.e., survival time) is of great
clinical value. However, there are huge individual variability of HGG, which
produces a large variation in survival time, thus making prognostic prediction
more challenging. Previous brain imaging-based outcome prediction studies
relied only on the imaging intensity inside or slightly around the tumor, while
ignoring any information that is located far away from the lesion (i.e., the
“normal appearing” brain tissue). Notably, in addition to altering MR image
intensity, we hypothesize that the HGG growth and its mass effect also change
both structural (can be modeled by diffusion tensor imaging (DTI)) and func-
tional brain connectivities (estimated by functional magnetic resonance imaging
(rs-fMRI)). Therefore, integrating connectomics information in outcome pre-
diction could improve prediction accuracy. To this end, we unprecedentedly
devise a machine learning-based HGG prediction framework that can effectively
extract valuable features from complex human brain connectome using network
analysis tools, followed by a novel multi-stage feature selection strategy to
single out good features while reducing feature redundancy. Ultimately, we use
support vector machine (SVM) to classify HGG outcome as either bad (survival
time � 650 days) or good (survival time >650 days). Our method achieved
75 % prediction accuracy. We also found that functional and structural networks
provide complementary information for the outcome prediction, thus leading to
increased prediction accuracy compared with the baseline method, which only
uses the basic clinical information (63.2 %).

1 Introduction

Gliomas account for around 45 % of primary brain tumors. The prognosis of gliomas
depends on multiple factors, such as age, histopathology, tumor size and location,
extent of resection, and type of treatment. Most deadly gliomas are classified by World
Health Organization (WHO) as Grade III (anaplastic astrocytoma, and anaplastic
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oligodendroglioma) and Grade IV (glioblastoma multiforme), according to the
histopathological subtypes. These are referred to as high-grade gliomas (HGG) with
fast growing rate and diffusive infiltration. More importantly, HGG are characterized
by a very poor prognosis but the outcome (i.e., the overall survival time) differs
significantly from case to case. This can be explained by a large variation in tumor
characteristics (e.g., location, and cancer cell type). Yet still challenging, pre-operative
prediction of HGG outcome is of great importance and is highly desired by clinicians.

Multimodal presurgical brain imaging has been gaining more solid ground in
surgical planning. In turn, this produces abundant multimodal neuroimaging infor-
mation for potential HGG outcome prediction. For instance, in [1], multiple features,
reflecting intensity distributions of various magnetic resonance imaging (MRI) se-
quences, were extracted to predict patient survival time and molecular subtype of
glioblastoma. In [2], morphologic features and hemodynamic parameters, along with
clinical and genomic biomarkers, were used to predict the outcome of glioblastoma
patients. In [3], data mining techniques based on image attributes from MRI produced
better HGG outcome prediction performance, than that solely using histopathologic
information. Although promising, all these studies shared a first key limitation: they
overlooked the relationship between brain connectivity and the outcome. In other
words, they mainly relied on extracting information from the tumor region (i.e., tumor
and necrotic tissue) or around it (e.g., edema region). This excludes the majority of the
“normal appearing” brain tissue — which most likely has been also affected by the
tumor. Based on all these information, our hypothesis is rooted in the fact that HGG
highly diffuses along white matter fiber tracts, thus altering the brain structural con-
nectivity. Consecutively, altered structural connectivity will lead to functional con-
nectivity. Moreover, the mass effect, edema and abnormal neovascularization may
further change brain functional and structural connectivities. Therefore, connectomics
data may present useful and complementary information to intensity-based survival
time prediction. A second key limitation of previous studies is that none of them
compared the prediction performance when using conventional clinical data versus
when using advanced connectomics data from multimodalities. We aimed to address
both of the limitations.

Conventional neuroimaging computing methods, such as graph-theory-based
complex network analysis, have demonstrated promising value in disease classifica-
tion and biomarker detection [4]. However, to our best knowledge, no previous study
has utilized brain connectome to predict the treatment outcome for HGG patients. In
this work, we hypothesize that gliomas have ‘diffusive effects’ to both structural and
functional connectivities, involving both white matter and grey matter, which could
alter the inherent brain connectome and lead to abnormalities in network attributes.
Hence, we devise an HGG outcome prediction framework, by integrating, extracting
and selecting the best set of advanced brain connectome features.

Specifically, we retrospectively divided the recruited HGG patients into short and
long survival time groups based on the follow-up of a large number of glioma patients.
Our method comprises the following key steps. First, we construct both functional and
structural brain networks. Second, we extract structural and functional connectomics
features using diverse network metrics. Third, we propose a novel framework to
effectively reduce the dimension of connectomics features by step-wisely selecting the
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most discriminative features in a gradual, three-stage strategy. Finally, we use support
vector machine (SVM) to predict the outcome.

2 Method

Figure 1 illustrates the proposed pipeline to automatically predict the survival time for
HGG patients in three steps. In Sect. 2.1, we introduce the construction of brain net-
works based on the resting-state functional MRI (rs-fMRI) and diffusion tensor imaging
(DTI). In Sect. 2.2, we describe how to calculate network properties based on graph
theory using a binary graph and a weighted graph. As we add up clinical information,
such as tumor location, size and histopathological types, we generate a long stacked
feature vector. In Sect. 2.3, we propose a three-stage feature selection algorithm to
remove redundant features. Finally, we apply an SVM on the selected features to
predict the treatment outcome.

2.1 Brain Network Construction

Subjects. A total of 147 HGG patients were originally included in this study. We
excluded patients lacking either rs-fMRI or DTI data. Patients with inadequate
follow-up time, or died due to other reasons (e.g., road accident) were also excluded.
Those with significant image artifacts and excessive head motion, as suggested by the
following data processing, were also removed. All the images were checked by three
experts to quantify the deformation of brain caused by tumor. Those with huge
deformation, for which all three experts reached an agreement, were removed too.
Finally, 34 patients who died within 650 days after surgery were labeled as “bad”
outcome group, and the remaining 34 patients who survived more than 650 days after
the surgery were classified into the “good” outcome group. The reason of using 650
days as a threshold is that the two-year survival rate for malignant glioma patients was

Fig. 1. Proposed pipeline of treatment outcome prediction for high-grade glioma patients.
(K: degree; L: shortest path length; C: clustering coefficient; B: betweenness centrality; Eg:
global efficiency; El: local efficiency; OS: overall survival. For details, please see Sect. 2.2).
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reported to be 51.7 % [5]. We slightly adjusted the threshold to balance the sample size
in the two groups.

Imaging. In addition to the conventional clinical imaging protocols, research-dedicated
whole-brain rs-fMRI and DTI data were also collected preoperatively. The rs-fMRI has
TR (repetition time) = 2 s, number of acquisitions = 240 (8 min), and a voxel
size = 3:4� 3:4� 4 mm3. The DTI has 20 directions, voxel size = 2� 2� 2 mm3,
and multiple acquisition = 2.

Clinical Treatment and Follow-up. All patients were treated according to clinical
guideline for HGGs, including a total or sub-total resection of tumor entity during
craniotomy and radio- and chemo-therapy after surgery. They were followed up in a
scheduled time, e.g., 3, 6, 12, 24, 36, 48 months after discharging. Any vital event,
such as death, was reported to us to let us calculate the overall survival time.

Image Processing. SPM8 and DPARSF [6] were used to preprocess rs-fMRI data and
build functional brain networks. FSL and PANDA [7] were used to process the DTI
data and build structural brain networks. Multimodal images were first co-registered
within subject and then registered to the standard space. All these processes are fol-
lowing the commonly accepted pipeline and thus not detailed here.

Network Construction. For each subject, two types of brain networks were con-
structed (see descriptions below). For each network, we calculated graph theory-based
properties from both binary and weighted graphs.

• Structural Brain Network. We parcellated each brain into 116 regions using
Automated Anatomical Labeling (AAL) atlas, by warping the AAL template to
each individual brain. The parcellated ROIs in each subject were used as graph
nodes. The weighted network Nw

s can be constructed by calculating the structural
connectivity strength ws i; jð Þ ¼ 2

Si þ Sj

P
i;jeN lðf Þ for the edge connecting nodes i and

j ði; j 2 N; i 6¼ jÞ, where N is the set of all 116 nodes in the network, l fð Þ represents
the number of fibers linking each pair of the ROIs, and Si denotes the cortical
surface area of node i. The sum Si þ Sj corrects the bias caused by different ROI
sizes. The binary structural network Nb

s can be generated by setting the weight of
the top 15 % edges to 1 after ranking the ws descending, and the others to 0 [8].

• Functional Brain Network. Using the same parcellation, we extracted the mean
BOLD time series TSiði 2 NÞ of each brain region. Then, we defined the functional
connectivity strength wf i; jð Þ in the functional network by computing Pearson’s
correlations between two BOLD time series in each pair ði; jÞ of 116 brain regions:
wf i; jð Þ ¼ Corr TSi; TSj

� �ði; j 2 N; i 6¼ jÞ, thus generating a weighted functional
brain network Nw

f . The binary functional network Nb
f can be generated in the same

way as described above.

Outcome Prediction for Patient with High-Grade Gliomas 29



2.2 Feature Extraction

Graph theory-based complex network analysis is used to independently extract multiple
features from four networks (Nw

s , N
b
s , N

w
f , N

b
f ) for each subject. Since various graph

metrics can reflect different organizational properties of the networks, we calculated
four types of these metrics (i.e., degree, small-world properties, network efficiency
properties, and nodal centrality) [9], which are detailed below.

• Degree. In each binary network, Nb
s and Nb

f , the node i’s degree, ki, counts the
number of edges linked to it. In each of the weighted networks, Nw

s and Nw
f , the

node degree is defined by ki ¼
P

j2N;j6¼i
w�ði; jÞ, where � refers to s or f.

• Small-world property. This type of property is originally used to describe
small-world, and can also be separately calculated for each node, including the
clustering coefficient Ci (which measures local interconnectivity of the node i’s
neighbors) and the shortest path length Li (which measures overall communication
speed between node i and all other nodes). Specifically, in Nb

s and Nb
f , Ci is cal-

culated through dividing the number of edges connecting i’s neighbors by all
possible edges linking i’s neighbors (i.e., kiðki � 1Þ=2). On the other hand, in Nw

s
and Nw

f , Ci is calculated by a normalized sum of the mean weight of two partici-
pating edges in all triangles with node i as a vertex. Li is defined as the averaged
minimum number of edges from node i to all other nodes in Nb

s or Nb
f , and the

averaged minimum sum of weighted edges in Nw
s and Nw

f .
• Network efficiency. The efficiency property of a network measures how efficiently

information is exchanged within a network, which gives a precise quantitative
analysis of the networks’ information flow. The global efficiency, EglobalðiÞ, is
defined as the sum of the inverse of the shortest path length between node i and all
other nodes. The local efficiency, ElocalðiÞ, represents the global efficiency of a
subgraph, which consists of all node i’s neighbors. The binary and weighted ver-
sions of shortest path length can result in binary and weighted efficiency metrics.

• Nodal centrality. Nodal centrality, Bi, quantifies how important of node i is in the
network. A node with high Bi acts as a hub in the network. It is calculated as

Bi ¼
P

m 6¼n 6¼i2N
LmnðiÞ
Lmn

, where Lmn is the total number of shortest paths from node
m to node n, and LmnðiÞ is the number of these shortest paths passing through node
i. Since LmnðiÞ and Lmn have both binary and weighted versions, Bi is calculated for
each binary and weighted network.

These network metrics, which will be used as connectomics features, were com-
puted as part of features using GRETNA [8]. We also add to them 13 clinical features
(age, gender, tumor size, WHO grade, histopathological type, main location, epilepsy
or not, specific location in all lobes, and hemisphere of tumor tissue). Therefore, a total
of 2797 (6 metrics � 4 networks � 116regions þ 13 clinical features) features for each
subject were used. The number of features is much greater than that of samples (68
subjects). This is quite troublesome for machine learning-based methods because of the
overfitting problem and the interference from noise. Thus, we design a three-stage
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feature selection framework, as specified below, to select the most relevant features for
our classification (i.e., prediction) problem.

2.3 Three-Stage Feature Selection

To identify a small number of features that are optimal for treatment outcome pre-
diction, we propose a three-stage feature selection method to gradually select the most
relevant features.

• First stage. We roughly select features that significantly distinguish the two out-
come groups (i.e., “bad” and “good”) using two sample t-tests with p\0:05.

• Second stage. RELIEFF [10] is used to rank the remaining features X and compute
their weights. RELEFF is an algorithm, which estimates feature quality in classi-
fication. Many heuristic measures of feature quality usually suppose the indepen-
dence of features, while actually they may be dependent. RELIEFF can correctly
estimate the quality of each feature in classification problem with strong depen-
dency assumption among features. The main idea of RELIEFF is to estimate how
well each feature distinguishes itself from its neighbors that belong to other classes.
Given a randomly selected feature R from the feature set A, RELIEFF searches for
its k-nearest neighbors first. Basically, it defines a cohort of neighbors as belonging
to the same class of R (called nearest hit H), and also other neighbors as part of a
different class (called nearest miss M). Then, it computes and updates the quality
estimation WðAÞ for all features based on the distance from R to H and also
distance from R to M. Therefore, the features can be descendingly ranked in X
based on WðAÞ.

• Third stage. A sequential backward selection [11] strategy was applied to carefully
select a small group of significant features from X. Then, an inner SVM was
wrapped into the feature selection framework to evaluate the predictive accuracy for
candidate subset of features using a leave-one-out cross validation. The sequential
backward selection is a feature selection strategy that sequentially removes one
feature from back to front from X. The classification accuracy is recorded for the
remaining subset of X. When no feature is left, the selection process stops and a
subset of X with the highest classification accuracy is selected.

Next, the selected features are fed into an outer SVM with a leave-one-out cross
validation to build the prediction model. To test which features are more useful for
outcome prediction, we conducted five experiments, where different features were
combined in different ways for classification (see Sect. 3).

3 Results

The outcome prediction accuracy of our proposed prediction framework is displayed in
Table 1. Using only clinical features, the prediction accuracy only reaches 63.2 %.
Notably, when using only the features from functional networks, the accuracy increases
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to 72 %. As we combine structural network features with functional ones, the classi-
fication rate reaches its apex (75 %, better than when only using clinical features).
However, no improvement was noted when clinical features were further added, which
means that the information contained in clinical features is somehow represented
already in the brain functional and structural networks using graph theory. In order to
test the results that we learned were random or not, we also did 30 times permutation
test. The p-value of permutation test was 0.015 and the mean accuracy of 30 times
permutation test was 49.1 %, which means that our results can reflect the intrinsic
properties of the data to some degree. The most significant features shown in Table 2
(also drawn in Fig. 2) are those that were selected by our three-stage feature selection
strategy more than 60 times out of 68 trials.

Table 1. Prediction accuracy of using different sets of features.

Features Accuracy (%) Sensitivity (%) Specificity (%)

Clinical infomation 63.2 61.8 64.7
Structural network 69.1 64.7 73.5
Functional network 72.1 70.6 73.5
Functional + Structural networks 75 82.4 67.6
Functional + Structural + Clinical 75 82.4 67.6

Table 2. The most useful features for outcome prediction.

Network Metrics Predictive ROIs from fMRI Predictive ROIs from DTI

Clustering coefficient PAL Ra CUN R
Shortest path length PAL R IFGoper R
Global efficiency CER9 R MFG R, IFGoper R
Degree CER9 R, PAL R
Betweenness ACG R, PoCG R
aFor the full names of the brain regions, please see [4]. R: right side; L: left side.

Fig. 2. Discriminative ROIs with high predictive power in functional and structural brain
networks, respectively.
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As reported in many previous studies, the most useful regions for HGG outcome
prediction are highly correlated with movement, cognition, emotion, language and
memory functions. The deteriorated structural and functional connections to these
regions could influence the survival time. The most frequently selected ROIs from
functional network are those in the cerebellum, which have dense functional connec-
tivity to the neocortex and are closely associated with motor and cognitive functions.
However, the most frequently selected ROIs from structural network are mostly located
in the cortex and less overlapped with each other, which may indicate that the structural
network is easily affected by brain tumors.

4 Conclusion and Future Works

In this paper, we have showed that complex brain network analysis, which is based on
graph theory, is a powerful tool for treatment outcome prediction for high-glioma
patients. Our findings highlighted the relevance of integrating functional and structural
brain connectomics for HGG outcome prediction. Although the relationship between
structural and functional brain networks is still poorly understood, our prediction
framework remarkably benefitted from the use of brain connectomics for prognosis
evaluation. In future works, we will incorporate the global graph properties (e.g., the
averaged clustering coefficient, or network efficiency across all brain regions) as new
features. In such case, individual heterogeneity of tumor characteristics can be better
addressed. Also, more advanced graph metrics, e.g., assortativity, modularity, and
rich-club value, can be taken into account for a more comprehensive network mea-
surement. Moreover, intraoperatively derived features, e.g., extension of tumor resec-
tion, can also be integrated as important prognostic predictors.
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