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Abstract. While Machine Learning algorithms are key to automating
organelle segmentation in large EM stacks, they require annotated data,
which is hard to come by in sufficient quantities. Furthermore, images
acquired from one part of the brain are not always representative of
another due to the variability in the acquisition and staining processes.
Therefore, a classifier trained on the first may perform poorly on the
second and additional annotations may be required. To remove this cum-
bersome requirement, we introduce an Unsupervised Domain Adaptation
approach that can leverage annotated data from one brain area to train
a classifier that applies to another for which no labeled data is available.
To this end, we establish noisy visual correspondences between the two
areas and develop a Multiple Instance Learning approach to exploiting
them. We demonstrate the benefits of our approach over several baselines
for the purpose of synapse and mitochondria segmentation in EM stacks
of different parts of mouse brains.

Keywords: Domain Adaptation · Multiple instance learning · Electron
microscopy · Synapse segmentation · Mitochondria segmentation

1 Introduction

Electron Microscopy (EM) can now deliver huge amounts of high-resolution data
that can be used to model brain organelles such as mitochondria and synapses.
Since doing this manually is immensely time-consuming, there has been increas-
ing interest in automating the process. Many state-of-the-art algorithms [2,12,14]
rely on Machine Learning to detect and segment organelles. They are effective but
require annotated data to train them. Unfortunately, organelles look different in
different parts of the brain as shown in Fig. 1. Also, since the EM data prepara-
tion processes are complicated and not easily repeatable, significant appearance
variations can even occur when imaging the same areas.

In other words, the classifiers usually need to be retrained after each new
image acquisition. This entails annotating sufficient amounts of new data, which
is cumbersome. Domain Adaptation (DA) [11] is a well-established Machine
Learning approach to mitigating this problem by leveraging information acquired
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Fig. 1. Slices from four 3D Electron Microscopy volumes acquired from different parts
of a mouse brain (annotated organelles overlaid in yellow). Note the large differences
in appearance, despite using the same microscope in all cases.

when training earlier models to reduce the labeling requirements when handling
new data. Previous DA methods for EM [3,17] have focused on the Supervised
DA setting, which involves acquiring sufficient amounts of labeled training data
from one specific image set, which we will refer to as the source domain, and
then using it in conjunction with a small amount of additional labeled training
data from any subsequent one, which we will refer to as the target domain, to
retrain the target domain classifier.

In this paper, we go one step further and show that we can achieve Unsu-
pervised Domain Adaptation, that is, Domain Adaptation without the need for
any labeled data in the target domain. This has the potential to greatly speed
up the process since the human expert will only have to annotate the source
domain once after the first acquisition and then never again.

Our approach is predicated on a very simple observation. As shown in Fig. 2,
even though the organelles in the source and target domain look different, it is
still possible to establish noisy visual correspondences between them using a very
simple metric, such as the Normalized Cross Correlation. By this, we mean that,
for each labeled source domain sample, we can find a set of likely target domain
locations of similar organelles. Not all these correspondences will be right, but
some will. To handle this uncertainty, we introduce a Multiple Instance Learning
approach to performing Domain Adaptation, which relies on boosted tree stumps
similar to those of [3]. In essence, we use the correspondences to replace manual
annotations and automatically handle the fact that some might be wrong.

In the remainder of this paper, we briefly review related methods in Sect. 2.
We then present our approach in more detail in Sect. 3 and show in Sect. 4 that
it outperforms other Unsupervised Domain Adaptation techniques.
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Fig. 2. Potential visual correspondences between an EM source stack (left) and a target
stack (right) found with NCC. Our algorithm can handle noisy correspondences and
discard incorrect matches.

2 Related Work

Domain Adaptation (DA) methods have proven valuable for many different pur-
poses [11]. They can be roughly grouped in the two classes described below.

Supervised DA methods rely on the existence of partial annotations in the
target domain. Such methods include adapting SVMs [5], projective alignment
methods [4,20], and metric learning approaches [16]. Supervised DA has been
applied to EM data to segment synapses and mitochondria [3], and to detect
immunogold particles [17]. While effective, these methods still require manual
user intervention and are therefore unsuitable for fully-automated processing.

Unsupervised DA methods, by contrast, do not require any target domain
annotation and therefore overcome the need for additional human interven-
tion beyond labeling the original source domain images. In this context, many
approaches [1,10,15] attempt to transform the data so as to make the source
and target distributions similar. Unfortunately, they either rely on very specific
assumptions about the data, or their computational complexity becomes pro-
hibitive for large datasets. By contrast, other methods rely on subspace-based
representations [7,9], and are much less expensive. Unfortunately, as will be
shown in the results section, the simple linear assumption on which they rely is
too restrictive for the kinds of domain shift we encounter.

Recently, Deep Learning has been investigated for supervised and unsuper-
vised DA [13,18]. These techniques have shown great potential for natural image
classification, but are more effective on 2D patches than 3D volumes because of
the immense amounts of memory required to run Convolutional Neural Nets
on them. They are therefore not ideal to leverage the 3D information that has
proven so crucial for effective segmentation [2]. By contrast, our approach oper-
ates directly in 3D, can leverage large amounts of data, and its computational
complexity is linear in the number of samples.
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3 Method

Our goal is to leverage annotated training samples from a source domain, in
which they are plentiful, to train a voxel classifier to operate in a target domain,
in which there are no labeled samples. Our approach is predicated on the fact
that we can establish noisy visual correspondences from the source to the target
domain, which we exploit to adapt a boosted decision stump classifier.

Formally, let fθs be a boosted decision stump classifier with parameters θs

trained on the source domain, where we have enough annotated data. In practice,
we rely on gradient boosting optimization and use the spatially extended features
of [2], which capture contextual information around voxels of interest. The score
of such a classifier can be expressed as fθs(xs) =

∑D
d=1 αs

d · sign (xs
d − τ s

d ), where
αs = {αs

1, . . . , α
s
D} are the learned stump weights, Γs = {τs

1 , . . . , τs
D} the learned

thresholds, and xs = {xs
1, . . . , x

s
D} the features selected during training. Given

the corresponding features xt extracted in the target domain, our challenge is to
learn the new thresholds Γt for the target domain classifier fθt={αs,Γt} without
any additional annotations.

To this end, we select a number of positive and negative samples from
the source training set Cs={cs

1, . . . , c
s
Nc

}. For each one, we establish multiple
correspondences by finding a set of k candidate locations in the target stack
Ct

i={ct
i,1, . . . , c

t
i,k} that visually resemble it, as depicted by Fig. 2.

In practice, correspondences tend to be unreliable, and we can never be sure
that any ct

i,j is a true match for sample cs
i . We therefore develop a Multiple

Instance Learning formulation to overcome this uncertainty and learn a useful
set of parameters Γt nevertheless.

3.1 Noisy Visual Correspondences

To establish correspondences between samples from both stacks, we rely on Nor-
malized Cross Correlation (NCC). It assigns high scores to regions of the target
domain with intensity values that locally correlate to a template 3D patch. We
take these templates to be small cubic regions centered around each selected
sample cs

i in the source stack. Since the organelles can appear in any orien-
tation, we precompute a set of 20 rotated versions of these patches. For each
template, we compute the NCC at each target location for all 20 rotations and
keep the highest one. This results in one score at every target location for each
source template, which we reduce to the scores of the k locations with the highest
NCC per source template via non-maximum suppression. Figure 3 shows some
examples of the resulting noisy matches.

The intuition behind establishing correspondences is that, since we are look-
ing for similar structures in both domains, they ought to have similar shapes
even if the gray levels have been affected by the domain change. In practice, the
behavior is the one depicted by Fig. 3. Among the candidates, we find some that
do indeed correspond to similarly shaped mitochondria or synapses and some
that are wrong. On average, however, there are more valid ones, which allows
the robust approach to parameter estimation described below to succeed.
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Fig. 3. Examples of visual correspondences and their contributions to the gradient of
the softmin function (Eq. 1) for synapses (top) and mitochondria (bottom).

3.2 Multiple Instance Learning

We aim to infer a target domain classifier given the source domain one and a few
potential target matches for each source sample. To handle noisy many-to-one
matches, we pose our problem as a Multiple Instance Learning (MIL) one.

Standard MIL techniques [19] group the training data into bags containing a
number of samples. They then minimize a loss function that is a weighted sum
of scores assigned to these bags. Here, the bags are the sets Ct

i of target samples
assigned to each source sample cs

i . We then express our loss function as

Γ̂t = arg min
Γt

1
|Cs|

∑

csi∈Cs

softmin [�i1, �i2, . . . , �ik] , (1)

where �ij = Lδ

(
fθs(cs

i ) − fθt(ct
i,j)

)
, Lδ is the Huber loss, and

softmin [�1, . . . , �k] = −1
r

ln
1
k

k∑

j=1

exp(−r�j) (2)

is the log-sum-exponential, with r = 100 and δ = 0.1 in our experiments. To find
the parameters Γ̂t that minimize the loss of Eq. 1, we rely on gradient boosting [8]
and learn the thresholds one at a time as boosting progresses.

To avoid overfitting when correspondences do not provide enough discrimina-
tive information, we estimate probability distributions for the source and target
thresholds τ∗

d . In particular, we assume that these thresholds follow a normal
distribution τ∗

d ∼ N (
μ∗

τd
, (σ∗

τd
)2

)
, and estimate its parameters by bootstrap

resampling [6]. For the source domain, we learn multiple values for each τs
d from

random subsamples of the training data, and then take the mean and variance
of these values. Similarly, for the target domain, we randomly sample subsets
of the source-target matches, and minimize Eq. 1 for each subset. From these
multiple estimates of τ t

d we can compute the required means and variances.
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Finally, we take τ̂ t
d = arg maxτ p(τs

d = τ)p(τ t
d = τ), where p(τs

d ) acts as a
prior over the target domain thresholds: if the target domain correspondences
produce high variance estimates, the distribution learned in the source domain
acts as a regularizer.

4 Experimental Results

We test our DA method for mitochondria and synapse segmentation in FIBSEM
stacks imaged from mouse brains, manually annotated (Fig. 1). We use source
domain labels for training purposes and target domain labels for evaluation only.

For mitochondria segmentation, we use a 853 × 506 × 496 stack from
the mouse striatum as source domain and a 1024 × 883 × 165 stack from the
hippocampus as target domain, both imaged at an isotropic 5 nm resolution.

For synapse segmentation, we use a 750×564×750 stack from the mouse
cerebellum as source domain, and a 1445 × 987 × 147 stack from the mouse
somatosensory cortex as target domain, both at an isotropic 6.8 nm resolution.

4.1 Baselines

No adaptation. We use the model trained on the source domain directly for
prediction on the target domain, to show the need for Domain Adaptation.

Histogram Matching. We change the gray levels in the target stack prior to
feature extraction to match the distribution of intensity values in the source
domain. We apply the classifier trained on the source domain on the modified
target stack, to rule out that a simple transformation of the images would suffice.

TD Only. For each source example, we assume that the best match found by
NCC is a true correspondence, which we annotate with the same label. A clas-
sifier is trained on these labeled target examples.

Subspace Alignment (SA). We test the method of [7]–one of the very few
state-of-the-art DA approaches directly applicable to our problem, as discussed
in Sect. 2. It first aligns the source and target PCA subspaces and then trains a
linear SVM classifier. We also tested a variant that uses an AdaBoost classifier
on the transformed source data to check if introducing non-linearity helps.

4.2 Results

For our quantitative evaluation, we report the Jaccard Index. Figure 4 shows
that our method is robust to the choice of number of potential correspondences
k; our approach yields good performance for k between 3 and 15. This confirms
the importance of MIL over simply choosing the highest ranked correspondence.
However, too large a k is detrimental, since the ratio of right to wrong candidates
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Fig. 4. Segmentation performance as a function of the number of candidate matches k
used for Multiple Instance Learning, for the synapses (left) and mitochondria (right)
datasets. Our approach is stable for a large range of values.

Table 1. Jaccard indices for our method and the baselines of Sect. 4.1.

No adaptation Histogram TD only SA [7] SA [7] Ours (k = 8)

matching + Lin. SVM + AdaBoost

Synapse 0.22 0.32 0.39 0.13 0.39 0.57

Mitochondria 0.50 0.39 0.57 0.24 0.59 0.62

Synapses Mitochondria

Fig. 5. Detected synapses and mitochondria overlaid on one slice of the target domain
stacks. In both cases, we display from left to right the results obtained without domain
adaptation, with domain adaptation, and the ground truth.

then becomes lower. In practice, we used k = 8 for both datasets. Table 1 com-
pares our approach to the above-mentioned baselines. Note that we significantly
outperform them in both cases. We conjecture that the inferior performance of
SA [7] is because our features are highly correlated, making PCA a suboptimal
representation to align both domains.

The training time for the baselines was around 30 min each. Our method
takes around 35 min for training. Finding correspondences for 10000 locations
takes around 24 h when parallelized over 10 cores, which corresponds to around
81 s per source domain patch. While our approach takes longer overall, it yields
significant performance improvement with no need for user supervision. All the
experiments were carried out on a 20-core Intel Xeon 2.8 GHz.

In Fig. 5, we provide qualitative results by overlaying on a single target
domain slice results with our domain adaptation and without. Note that our
approach improves in terms of both false positives and false negatives.
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5 Conclusion

We have introduced an Unsupervised Domain Adaptation method based on auto-
mated discovery of inter-domain visual correspondences and shown that its accu-
racy compares favorably to several baselines. Furthermore, its computational
complexity is low, which makes it suitable for handling large data volumes. A
limitation of our current approach is that it computes the visual correspondences
individually, thus disregarding the inherent structure of the matching problem.
Incorporating such structural information will be a topic for future research.
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