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Abstract. There is a pressing need in the medical imaging community
to build large scale datasets that are annotated with semantic descrip-
tors. Given the cost of expert produced annotations, we propose an auto-
matic methodology to produce semantic descriptors for images. These
can then be used as weakly labeled instances or reviewed and corrected
by clinicians. Our solution is in the form of a neural network that maps a
given image to a new space formed by a large number of text paragraphs
written about similar, but different images, by a human expert. We then
extract semantic descriptors from the text paragraphs closest to the out-
put of the transform network to describe the input image. We used deep
learning to learn mappings between images/texts and their correspond-
ing fixed size spaces, but a shallow network as the transform between
the image and text spaces. This limits the complexity of the transform
model and reduces the amount of data, in the form of image and text
pairs, needed for training it. We report promising results for the pro-
posed model in automatic descriptor generation in the case of Doppler
images of cardiac valves and show that the system catches up to 91 % of
the disease instances and 77 % of disease severity modifiers.

1 Introduction

The availability of large datasets and today’s immense computational power
have resulted in the success of data driven methods in traditional application
areas of computer vision. In such applications, it is fairly inexpensive to label
images based on crowd sourcing methods and create datasets with millions of
categorized images or use the publicly available topical photo blogs. One hurdle
for fully utilizing the potential of big data in medical imaging is the expensive
process of annotating images. Crowd-sourcing in simple annotation tasks has
been reported in the past [7,10]. However, the expert requirements for certain
medical labeling and annotation tasks limit the applicability of crowd sourcing.
More importantly, privacy concerns and regulations prohibit the posting of some
medical records on crowd sourcing websites even in anonymized format.

Electronic medical records (EMR) are the natural sources of big data in our
field. One potential solution for establishing ground truth labels such as disease
type and severity for images within EMR is automatic concept extraction from
c© Springer International Publishing AG 2016
S. Ourselin et al. (Eds.): MICCAI 2016, Part II, LNCS 9901, pp. 300–307, 2016.
DOI: 10.1007/978-3-319-46723-8 35



A Cross-Modality Neural Network Transform 301

unstructured sources such as clinician reports stored with images. This is a very
active and mature area of work [13]. In many situations, however, the clinical
reports are not available. In other situations, a clinical record consists of many
images and only one report. In an echocardiography study of cardiac valves, for
example, there is usually many continuous wave (CW) Doppler images of four
different cardiac valves. Typically these are stored as short videos. Only some
patient records also include a cardiologist report (less than half in our dataset).
Even when the report is available, there is no matching between each image and
passages of the text. For low level algorithm development tasks, such as learning
to detect a specific disease from CW Doppler, we need individually annotated
images.

Our work here addresses a scenario in annotation of a set of medical images
where we also have access to a rather large set of text reports from clinical
records, written by clinicians based on images of the same modality from other
patients. This could be a text data dump from the EMR. We do not have access
to the images matched to these reports. In fact, the lack of a huge set of images
and text reports that are matched with each other separates our scenario from
some of the work in the machine learning community in the area of automatic
image captioning [4,5].

Our goal is to speed up the process of labeling images for semantic concepts
such as the imaged valve, disease type and severity by providing a fairly accurate
initial automatic annotation driven by the text reports of similar images written
by clinicians. To this end, we propose a learned transform between the image
and text spaces. We use a multilayer perceptron (MLP) neural network which
acts in the role of a universal function approximator, as opposed to a classifier.
This transform network receives a fixed length representation of an image and
outputs a vector in the space defined by fixed length representations of text
reports. The key to success is that we have separated the process of learning
the quantitative representation of images and texts from the process of learning
the mapping between the two. The former relies on rather large datasets and
deep learning, while the latter uses a small neural network and can be trained
by using a small set of paired images and text. We show the practical value of
this innovation on a clinical dataset of CW Doppler images. This methodology
can significantly speed up the process of creating labeled datasets for training
big data solutions in medical imaging.

2 Method

The general methodology involves three networks: a transform network that
acts as a mapping function and requires a fixed length feature vector describ-
ing the image as input and outputs a fixed length text vector as output; and
two deep networks that act in the capacity of feature generators to map images
and text paragraphs to their corresponding fixed length spaces. We will describe
the proposed methodology in the context of fast annotation of CW Doppler
echocardiography images for the most common valvular diseases, namely regur-
gitation and stenosis, and the severity of these conditions. CW Doppler images
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Fig. 1. Examples of the CW Doppler images: left panel shows a full CW image from
the aortic valve. Right: region of interest CW images of aortic (top left), mitral (top
right), tricuspid (bottom left) and pulmonic (bottom right) valve.

are routinely used for the study of mitral, tricuspid, pulmonic, and the aortic
valves (Fig. 1). In the context of this specific problem, our solution also includes
a fourth neural network that acts as a classifier to label the CW images for
the valve. The motivation to separate this step is to limit the search space for
the closest text paragraph in the final stage to only those text paragraphs that
describe the relevant valve.

2.1 Learning a Fixed Length Vector Representation of Text
Paragraphs

The text data was from the EMR of a local hospital network and included
57,108 cardiac echocardiography reports. The first step in our text pipeline was
to isolate paragraphs focused on each of the four valve types. This was fairly
trivial as the echo reports routinely include paragraphs starting with “Aortic
valve:” and alike for mitral, pulmonic and tricuspid valves. With this simple
rule, we isolated 10,253 text paragraphs with a valve label.

Traditionally, text can be represented as a fixed-length feature vector, com-
posed of a variety of lexical, syntactic, semantic, and discourse features such as
words, word sequences, part-of-speech tags, grammatical relations, and seman-
tic roles. Despite the impressive performance of the aforementioned features in
many text analytics tasks, especially in text classification, vector representa-
tions generated through traditional feature engineering have their limits. Given
the complexity and flexibility within natural languages, features such as bag of
words or word sequences usually result in a high dimensional vector, which may
cause the data sparsity issues when the size of training data is incomparable
to the number of features. Moreover, in a traditional feature space, words such
as “narrowing”, “stenosis”, and “normal” are equally distant from each other,
regardless of meaning.

In this work, we used a neural network language model proposed in [6] to
generate distributed representations of texts in an unsupervised fashion, in the
absence of deliberate feature engineering. This network is often referred to as
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Doc2Vec in the literature1. The input of the neural network includes a sequence
of observed words (e.g. “aortic valve peak”), each represented by a fixed-length
vector, along with a text snippet token, also in the form of a dense vector and
corresponding to the sentence/document source for the sequence. The concate-
nation or average of the word and paragraph vectors was used to predict the next
word (e.g. “velocity”) in the snippet. The two types of vectors were trained on
the 10,253 paragraphs. Training was performed using stochastic gradient descent
via backpropagation. At the testing stage, given an unseen paragraph, we freeze
the word vectors from training time and just infer the paragraph vector.

The fixed length of the text feature vector m is a parameter in Doc2Vec
model. In our application, since the length of the paragraphs is typically only
two to three sentences, we prefer a short vector. This also helps with limiting the
complexity of the transform network as it defines the number of output nodes.
We report the results for m = 10.

2.2 Image Vectors

We rely on transfer deep learning to create a vector of learned features to repre-
sent each image. Pre-trained large deep learners such as the convolution network
designed by the Visual Geometry Group (VGG) of the University of Oxford [2]
have been widely used in the capacity of “feature generator” in both medical
[1,11] and non-medical [9] applications, as an alternative to computation and
selection of handcrafted features. We use the VGG implementation available
through the MatConvNet Matlab library. This network consists of 5 convolution
layers, two fully connected layers and a SoftMax layer with 1000 output nodes
for the categories of the ImageNet challenge [3]. We ignore this task-specific
SoftMax layer. Instead, we harvest a feature vector at the output of the fully
connected layer (FC7) of the network.

The VGG network has several variations where FC7 layer has between 128
and 4096 nodes. We run each CW image through the pre-trained VGG networks
with both FC7 size of 128 and 4096. The former is used for the transform network
training, and the latter is used for valve type classification network. The choice
of the smaller feature vector size for the transform network is due to the fact
that it defines the size of the input layer. Given the small size of the dataset
used to train the transform network, we keep the size of the image vectors to
128 to minimize the number of weights. For the valve classifier network, we use
the 4096 dimensional representation of the images since the size of the dataset
is larger and the output layer is also only limited to the number of valve classes
which is four.

2.3 Valve Recognition Network

Since the text paragraphs are trivially separated based on the valve, we can
reduce the errors and limit the search space in the final stage of the pipeline by

1 Open source code: http://deeplearning4j.org/doc2vec.html.

http://deeplearning4j.org/doc2vec.html
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first accurately classifying the images for the depicted valve exclusively based
on the image features. In most cases, the text fields on the image (left side
of Fig. 1) include clues that reveal the valve type and can be discerned using
optical character recognition (OCR). In this work, however, we opt for a learning
method. The classifier used in this work is an MLP network that uses the 4096
dimensional feature vector from VGG FC7 as input, has a single hidden layer,
and four SoftMax output nodes each for one type of valve.

To train this valve classifier, we created an expert-reviewed dataset of 496
CW images, each labeled with one of the four valve types. The network was
optimized in terms of the number of nodes in the hidden layer using leave-one-
out cross-validation. The results are reported for a network with 128 nodes in
the hidden layer.

2.4 The Transform Network: Architecture and Training

Universal approximation theorem states that a feedforward neural network with
a hidden layer can theoretically act as a general function approximator, given
sufficient training data. The transform network used in our work is designed
based on this principle. This is the only network in our system that requires
images and clinical text paragraph pairs.

Since this network acts as a regressor as opposed to a classifier, the output
layer activation functions were set to linear as opposed to SoftMax. To optimize
the number of hidden nodes of this network and train the weights, we used a
dataset of 226 images and corresponding text reports, in a leave-one-out scheme.
We optimized the network with the objective of minimizing the mean Euclidean
distance between the output vector and the target text vector for the image.
The optimal architecture had four nodes in the hidden layer.

2.5 Deployment Stage and the Independent Test Data

Given an image, we first determine the valve type using the valve classifier net-
work. The remaining steps to arrive at the disease descriptors are depicted in
Fig. 2. The given image is first passed through the VGG network. The out-
put is fed to the transform network to obtain a vector in the text space. Then
we search for the closest matches to this vector in the text dataset. The clos-
est match, or top few, in terms of Euclidean distance are used for extraction
of semantic descriptors of the image. Note that the use of the valve classifier
reduces the cost of the search step by a factor of four as we only search the text
paragraphs written for the same type of valve. The extraction of the semantic
descriptors from the retrieved paragraphs is performed by a propriety concept
extractor that accurately identifies given descriptors in the text only when they
are mentioned in the positive sense [12].

The overall performance of the model is investigated on a holdout dataset
of CW images that has not been used in the training or cross validation of the
transform network or the valve classifier network. This consists of 48 CW images
with corresponding text reports which were used only to validate the semantic
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Fig. 2. The workflow of identifying a text segment as the source for semantic descriptors
for a given image. The valve classifier network is not depicted in this illustration.

labels extracted for the image using our model. This test set includes 14 CW
images of mitral, aortic, and tricuspid valves and six of the pulmonic valve.

3 Results

Result of classification for valve type: The optimized automatic valve clas-
sifier achieved an accuracy of 96 % on the test set, mis-classifying only two of
the 48 test samples, both in case of tricuspid valve. Note that the OCR can
potentially improve this by correct determination of the valve type without the
need for classification, when the information is recorded on the image.

Evaluation of the quality of identified semantic labels: Table 1 provides
examples of real text segments and retrieved text segments using our proposed
methodology for a number of images in the test set. It is notable that the
retrieved paragraphs often include anatomic information about the valve that
are not discernible from CW images. For example, the thickening of the valve is
visible in B-mode images. Since we use only CW images, we evaluate the results
only for descriptors related to these images. It should be noted that the system
is not designed as a diagnostic tool and the results here should be evaluated in
light of the intended application.

For the 34 test images of tricuspid, mitral, and pulmonic valves, the most
common finding is regurgitation, present in 24 of the images. In 22 cases (91 %) at
least one of the top retrieved reports also reported regurgitation. The modifiers
in this case included “trace”, “mild”, “moderate” and “severe”. If extracted only
from the top retrieved report, the modifier is under-estimated in 9 (41 %) of the
positive regurgitation findings. This drops to 5 (23 %) if the semantic descriptors
are extracted from the top three retrieved reports.
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Table 1. Examples of the text segments retrieved with CW images (right column) and
the text segment from the original clinical report for the image (middle column).

Valve imaged Corresponding report Retrieved text

Aortic “Aortic Valve: Aortic sclerosis
present with evidence of
stenosis. 55.1 mmHg, and the
mean gradient is 27.0 mmHg,
compatible with moderate
stenosis”

“Aortic Valve: Severe aortic
stenosis is present. The aortic
valve peak velocity is 4.07
m/s, the peak gradient is
66.3 mmHg, and the mean
gradient is 35.5 mmHg. The
aortic valve area is estimated
to be 0.61 cm2. Moderate
aortic valve insufficiency”

Mitral “Mitral Valve: There is marked
mitral annular calcification. The
mitral valve leaflets are calcified.
Mild mitral regurgitation is
present”

“Mitral Valve: Mild mitral
regurgitation is present”

In case of the aortic valve, the most critical finding is stenosis. Cardiologists
report aortic stenosis following the guidelines of the American Heart Associa-
tion (AHA) with “mild”, “moderate” or “severe” modifiers. In our set of 14
independent cases of aortic valve CW images in the final test set, the original
corresponding text paragraphs reported stenosis in five cases. In all five cases,
the combination of the top three retrieved paragraphs provided “stenosis” as a
descriptor. In one case, there was a finding of stenosis in the top retrieved para-
graph, but not in the original report. Although further examination revealed that
the case was positive based on one measure of stenosis (maximum jet velocity)
and negative based on another measure (mean pressure gradient). For modifiers,
in four cases the original modifier was “mild” and the true modifier was also
either moderate or mild. In one case, the clinician had not reported a modifier
and the retrieved paragraph reported “severe”.

4 Conclusion

We proposed a methodology for generating annotations, in form of semantic dis-
ease related labels, for medical images based on a learned transform that maps
the image to a space formed by a large number of text segments written by clini-
cians for images of the same type. Note that we used a pre-trained convolutional
neural network. Handcrafted feature sets such as histogram of gradients can be
studied as alternative image descriptors in this framework. However, the CNN
based features proved more powerful in our previous work [8] and also here.

While quantitative analysis reported here is limited to stenosis and regurgi-
tation, there is no such limitation in our implementation. Our evidence from over
10,000 text reports show that we can cover a wide range of labels. For example,
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we can accurately pick up labels related to deficiencies such as valve thickening,
calcification and decreased excursion. As examples in Table 1 show, in many cases
the retrieved reports also include values of relevant measured clinical features.
As a future step we will explore the idea of expanding the list of top matches
and averaging the values to obtain a rough estimate of the measurements for
the image of interest. Also, inclusion of B-mode images can improve the value of
the retrieved paragraphs that often include features only visible in such images.
Finally, a larger user study is under way to understand the practical benefits of
the system in terms of cost saving.
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