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Abstract. Biological age (BA) estimation from radiologic data is an
important topic in clinical medicine, e.g. in determining endocrinologi-
cal diseases or planning paediatric orthopaedic surgeries, while in legal
medicine it is employed to approximate chronological age. In this work,
we propose the use of deep convolutional neural networks (DCNN) for
automatic BA estimation from hand MRI volumes, inspired by the way
radiologists visually perform age estimation using established staging
schemes that follow physical maturation. In our results we outperform
the state of the art automatic BA estimation method, achieving a mean
error between estimated and ground truth BA of 0.36 ± 0.30 years, which
is in line with radiologists doing visual BA estimation.

1 Introduction

Estimation of the progress of physical maturation of individuals, which in liter-
ature is referred to as biological age (BA) estimation, is an important topic in
clinical medicine when determining endocrinological diseases in adolescents or
for optimally planning the time-point of paediatric orthopaedic surgery interven-
tions, e.g. for leg-length discrepancy correction [7]. Due to biological variation,
BA differs from chronological age (CA). Nevertheless, in legal medicine, BA is
used to approximate unknown chronological age (CA) when determining age in
cases of criminal investigations or for asylum seeking procedures, where identi-
fication documents of children or adolescents are missing [9].

Widely used radiological methods for BA estimation are based on visual
examination of ossification, i.e. epiphyseal plate fusion, of individual bones in
X-ray images of the hand. In these examinations, radiologists exploit the fact
that aging is not the same for all bones of the hand. Distal phalanges are the
first to finish ossification while in radius and ulna maturation can be followed
up to an age of around 19 years. Greulich-Pyle [3] (GP) is a preferred radiologic
age estimation method as it is easy to use and fast to apply: All hand bones are
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simultaneously compared to the best matching reference image from an atlas
of radiographs. However, radiologists have to visually extract and mentally fuse
information from different bones, which makes the GP method prone to intra-
and inter-rater variability. In the more complex Tanner-Whitehouse [10] (TW2)
method, which is considered to be more accurate than GP [9], visual examination
of 13 selected hand bones is simplified by separating their ossification process
into stages according to textual and visual descriptions. Individual bone age
estimates are then transferred to an ossification score and fused according to a
pre-defined nonlinear function. Both the ossification score and the fusion function
were derived from characteristics of a sample population.

Fig. 1. Our DCNN architecture. Each stage estimation (SE) block performs dimen-
sionality reduction and extracts age relevant features from cropped 3D bone volumes.
By feeding feature outputs into a fully connected layer, age estimation is performed.
Red arrows indicate weight sharing among SE blocks.

Automated image analysis methods for BA estimation have recently started
to appear. Most prominent, the BoneXpert [11] method uses Active Appearance
Models to automatically segment hand bones and employs principal component
analysis to reduce age relevant shape and appearance feature information. For
BA estimation, the fusion of individual estimations per bone is calibrated using
the same pre-defined nonlinear function as in TW2. A new trend in BA estima-
tion is the use of volumetric MRI, which may provide fundamentals for more
accurate and reliable estimation, without harmful ionizing radiation. Applied to
adolescents, the automatic MRI-based BA estimation method of [12] uses a ran-
dom forest (RF) to separately regress CA from image intensity based features
of 11 selected hand bones. There, a decision tree excluding metacarpal and pha-
lanx information from age estimation of older subjects serves as a heuristic fusion
strategy, making this method ad hoc and depending on parameter tuning. In our
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recently proposed method [13], we explore the capability of RFs for information
fusion by allowing it to internally decide from which bones to learn a subject’s
CA. Thus, aging is treated as a global developmental process without the need
for pre-defined nonlinear functions [10,11] or heuristic fusion schemes [12]. How-
ever, by introducing more bones into RF, the space from which hand-crafted
features are generated is increased making the discrimination task harder. Thus,
an image preprocessing step emphasizing epiphyseal plates by filtering artifacts
and intensity inhomogeneities had to be introduced to simplify discrimination.

Very recently, deep convolutional neural networks (DCNN) have shown to be
immensely successful in solving diverse machine learning and computer vision
problems [5,6], mainly due to their ability to automatically learn task-relevant
features from large training datasets. In this work we follow this novel direction
and explore the capability of DCNNs to automatically estimate a subject’s age
given 3D hand MRI volumes depicting ossification. We propose a novel DCNN
architecture inspired by the best performing, visual based TW2 method to com-
bine age information from individual bones in an automatic fashion by letting the
DCNN learn the features relevant for age estimation. Thus, our DCNN mimics a
radiologist performing age estimation, but with the goal to eliminate intra- and
inter-rater variability. By working directly on 3D input volumes, our proposed
DCNN outperforms the state of the art in 3D MRI BA estimation.

2 Method

Our deep neural network architecture for 3D MRI bone age estimation is pre-
sented in Fig. 1. Following the idea of the TW2 method, which estimates ossifi-
cation stages of hand bones separately, our proposed DCNN consists of identical
per-bone stage estimation (SE) blocks. They are designed to reduce dimension-
ality of appearance features in 3D bone volumes, thus capturing age relevant
features defined by the ossification process. To achieve a continuous BA pre-
diction, fusion of independent age scores from each bone is implemented in our
DCNN by connecting the outputs of all SE blocks in a fully connected layer.

2.1 Image Preprocessing

Based on a landmark localization algorithm such as [1] or [8], we automatically
localize, align and crop the 13 bones that are also used in the TW2 method [10]
(see Fig. 2a). To reduce image intensity variations, thus potentially simplifying
the learning task, we experiment with an image pre-processing step that enhances
the appearance of epiphyseal plates from its surrounding anatomical structures.
This pre-processing step utilizes planarity of epiphyseal plates by generating a
filtered image representation Ib

i for each cropped bone volume b = {1, . . . , NB}
of hand i = {1, . . . , N}. It is based on an eigenanalysis of the Hessian matrix
computed from the second image derivative, as inspired by [2]. Thus, to enhance
plate structures we compute
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where the left term exploits that in planar structures, response of Hessian eigen-
values is |λ1| � 0, |λ2,3| ≈ 0. With ζ1 = 40 and ζ2 = 5, it is possible to enhance
|λ1| inside the epiphyseal plate. The right term penalizes the deviation of Hessian
eigenvector v1, i.e. the plane normal, from the longitudinal axis of the aligned
bone nz, via their dot product, scaled by ζ3 = 0.25. In our experiments, we
compare original image intensities (II) to preprocessed 3D bone volumes (FI) as
an input to the evaluated algorithms, e.g. DCNN-II vs. DCNN-FI.

2.2 DCNN Architecture

We construct our SE blocks inspired by the LeNet architecture [6], due to its
excellent capabilities for dimensionality reduction and feature extraction, while
requiring only a small number of model parameters. Thus, as the first layer
of each 3D SE block (see Fig. 1), we use a convolutional layer (conv) with a
filter size of 5 × 5 × 5 pixels and 8 filter outputs followed by a Rectified Linear
Unit (ReLU ) as nonlinear activation function. After activation, outputs are sub-
sampled with a MAX pooling layer (pool) of size 2×2×2. The same convolution,
activation and pooling step is then repeated with 16 convolution filter outputs.
The last layer of an SE block is fully connected (fc) with 100 outputs, again
followed by a ReLU activation unit. To prevent overfitting, we include drop-
out regularization with a ratio of 0.5 into the fc layer. Thus, each SE block
reduces the dimensionality of the input bone volume by extracting a feature
vector of size 100. This feature vector captures the same single ossification score
that a rater performing BA estimation with the TW2 method would generate
for an individual bone. According to the TW2 staging scheme, the third and
fifth bones of the same finger group (i.e. metacarpals, proximal-, middle- and
distal phalanges), show the same physical maturation process, i.e. ossification
scores are identical for their ossification stages. For the bones of these groups,
we therefore emulate this concept by weight sharing (TW2ws) among different
layers of the DCNN’s SE blocks (indicated by red arrows in Fig. 1), leading to the
methods DCNN-TW2ws-II, DCNN-TW2ws-FI. The final age estimation output
is obtained after fully connecting the extracted per-bone feature vectors, with a
single continuous age prediction output.

Besides training our DCNN on CA, we experiment with regressing BA as
determined by a radiologist, since it has a smaller deviation from the “true”
biological age that we are aiming to estimate. Thus, each training sample
sn, n ∈ {1, . . . , Ns} is associated with an age yA

n , which is either BA or CA
with A ∈ {BA,CA} depending on the experiment. Using stochastic gradient
descent optimization, the DCNN φ with parameters w is trained to minimize
the L2 loss:

ŵ = arg min
w

1
2

Ns∑
n=1

||φ(sn;w) − yA
n ||2. (2)
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Fig. 2. (a) DCNN performs age regression on the same 13 bones as TW2. (b) Biological
and chronological age distributions of our N = 240 dataset. (c) BA estimation results
separately for age groups, comparing best performing RRF-FI and DCNN-FI methods.

Unlike clinical medicine applications where only BA estimation is required,
in legal medicine CA is approximated with BA, but additionally it is often
important to answer the question whether a person meets the legal criteria of
e.g. having reached the age of criminal responsibility or majority age. Thus,
we use the same DCNN architecture to discriminate between minors (m) from
adults (a) by separating all testing subjects into two classes defined by the legally
relevant chronological majority age threshold of 18 years. For this classification
task we use the softmax loss computed as multinomial logistic loss:

ŵ = arg min
w

Ns∑
n=1

∑
j∈{m,a}

−yA,j
n log

eφj(sn;w)

∑
k∈{m,a} eφk(sn;w)

. (3)

3 Experimental Setup and Results

Material: We use a dataset of N = 240 T1-weighted 3D gradient echo hand MRI
volumes (294×512×72 voxels at a resolution of 0.45×0.45×0.9mm3) acquired
from male Caucasian volunteers with known CA between 13 and 23 years. For
evaluation, we investigate the same NB = 13 bones as in TW2 (compare Fig. 2a).
CA of subjects is calculated as difference between birthday and date of the MRI
scan. BA is estimated based on the GP method [3] by consent of two radiologists,
since TW2 method is currently not used for radiological age estimation from MRI
data, because the scoring system and the nonlinear fusion function have not been
adapted. We assign an age of 19 years to all subjects with CA of 19 or above,
since due to finished physical development, all epiphyseal plates have vanished,
thus no age relevant features can be extracted.

Experimental Setup: The results of all experiments were computed in an
eight-fold cross validation. In each cross-validation round, 30 subjects are tested,
while the remaining 210 subjects are used to generate a training dataset of
Ns = 1050 samples filling up the distribution of training samples (see Fig. 2b)
to a uniform distribution over age. For increasing the training dataset, cropped
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Table 1. Errors in BA estimation when training on intensity (II) or filtered (FI) images
using BA or CA as regression target are given as mean (±standard deviation) absolute
differences between estimated and ground truth age in years.

Method BA → BA CA → BA

RRF-FI [13] 0.52 ± 0.60 0.62 ± 0.58

RRF-II [13] 0.61 ± 0.62 0.74 ± 0.62

DCNN-FI 0.36± 0.30 0.56± 0.44

DCNN-II 0.42 ± 0.36 0.60 ± 0.47

DCNN-TW2ws-FI 0.39 ± 0.30 0.60 ± 0.45

DCNN-TW2ws-II 0.43 ± 0.35 0.66 ± 0.52

Table 2. Classification error when determining majority age is given as true positive
(TPR), false positive (FPR), true negative (TNR) and false negative (FNR) rate.

Adulthood Method Trained age TPR FPR TNR FNR

BA > 18 DCNN-FI BA 100.0 0.0 100.0 0.0

CA > 18 Radiologist BA 98.7 28.6 71.4 1.3

DCNN-FI BA 98.7 28.6 71.4 1.3

DCNN-FI CA 98.7 3.6 96.4 1.3

volumes of each bone are slightly rotated and translated around the estimated
anatomical landmarks defining the bone. To reduce the number of parameters
optimized by the DCNN, the part of the bone volume that contains the epi-
physeal plate is used and all bone images are resized to 40 × 40 × 40 pixels.
Implemented in the Caffe framework [4], our DCNN was optimized with stochas-
tic gradient descent with a maximal number of iterations 104, momentum 0.9
and learning rate 10−4. For estimation of BA and classification to discriminate
between minors and adults, we experimented with training our DCNN on both
BA and CA. The results from training the DCNN on original intensity images
(II) and on the filtered images (FI) as explained in Sect. 2.1 are compared. As a
baseline method we use the age estimation based on random regression forests
(RRF) as proposed in [13], with the only difference that in this work we used an
increased number of training samples, the same as for the DCNN.

Results: Using either intensity (II) or filtered (FI) volumes for training, the
results of BA estimation trained BA and CA are given in Table 1. Detailed
results separately for each biological age group of the best performing DCNN-
FI compared with RRF-FI are presented in the box-whiskers plot in Fig. 2c.
The contingency table of classifying subjects as being minor or adult is given in
Table 2. All results are compared with the RRF age estimation method of [13].
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4 Discussion and Conclusion

Inspired by TW2 [10], which is considered the most accurate radiological hand
bone age estimation method due to its fusion of independent per-bone estimates,
we have designed our novel automatic age estimation DCNN using an architec-
ture mimicking the TW2 method. Limited by dataset size, our design choice
to use the LeNet architecture [6] as a building block for our method was moti-
vated by keeping the number of DCNN weights as low as possible. To further
reduce model complexity, we also experimented with sharing network weights
between SE blocks of bones that undergo the same physical maturation process,
an idea borrowed from the TW2 staging scheme. However, as shown in Table 1,
we experienced no performance gains, which might be due to our limited number
of training images but could also indicate subtle different physical maturation
processes in bones where the TW2 staging system assigns the same score. Com-
pared to the selection of hand-crafted features in RFs, DCNNs internally learn
to generate the features relevant for age estimation. This comes at the cost of
requiring a larger number of training data, therefore we obtain additional train-
ing data by augmentation with synthetic transformations. We found that when
using the pre-processed filtered images (FI) as input to our DCNN, a higher
estimation accuracy compared to raw intensity images could be achieved. Thus,
in accordance with [13], by suppressing image intensity variations and enhancing
the appearance of the ossifying epiphyseal plate from the surrounding anatomical
structures it was possible to simplify the learning task for the DCNN.

For discussing results presented in Tables 1 and 2, it is important to under-
stand that “true” BA, which we want to estimate, is the average stadium of
physical development for individuals of the same CA. Therefore, the estimation
of “true” BA would require a large dataset of subjects with given CA that statis-
tically represents biological variation. Since our limited dataset can only partly
cover biological variation in the target age range, we use BA as estimated by a
radiologist as ground truth for training and testing, although the deviation from
“true” BA that is introduced by the radiologist [9] can never be corrected by
an algorithm. Moreover, the reported inter-observer variation for radiographic
images varies in the range of 0.5 to 2 years, depending on the age, sex and origin
of the examined population [9]. In clinical medicine applications, when biological
age is required, training our DCNN-FI method on BA estimated by radiologists
shows higher accuracy (0.36 ± 0.30 y) compared to training on CA (0.56±0.44 y)
on our dataset. The higher error can be explained by biological variation in the
training dataset using CA. As shown in Table 1, our best performing DCNN-FI
method outperforms previous work when estimating BA. When interpreting the
detailed results in Fig. 2c, it has to be noted that the improvement of RRF-FI
upon our previous work [13] is due to a larger, synthetically enhanced training
dataset and the method being trained and evaluated on BA. Depending on the
used population, results of the prominent automatic BoneXpert age estimation
method [11] were reported between 0.65 and 0.72 years when compared to radi-
ologists GP ratings for X-ray images of male boys, but further comparison to
our method has to be taken with care due to the differences in datasets.
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In legal medicine applications, recent migration tendencies lead to challenges,
when asylum seekers without identification documents have to be discriminated
according to having reached majority age. As can be seen in Table 2, our DCNN-
FI classifier trained on BA is able to perfectly discriminate between subjects
below and above 18 years of BA in our dataset. Nevertheless such a perfectly
discriminating classifier trained on BA makes a larger error by classifying 28.6 %
of minors to be adults, the same error that radiologists make when approximat-
ing BA with CA using the GP method. Thus, better discrimination can not be
achieved by a classifier when using BA defined by radiologists for training. We
further retrained our classifier using CA for training and achieve significantly
better discrimination of legal majority age, misclassifying 3.6 % minors to be
adults. This observed behavior is in line with literature showing that BA esti-
mated with the GP method has the tendency to underestimate CA [9] due to
advanced physical maturation in nowadays population, while GP is based on
radiographs that were acquired in the 30s of the last century.

In conclusion, our proposed DCNN method has proven to be the best auto-
matic method for BA estimation from 3D MR images, although it has to be used
carefully in legal medicine applications due to the unavoidable misclassification
when discriminating minors from adults, which is caused by biological variation.
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