
A Deep Learning Approach for Semantic
Segmentation in Histology Tissue Images

Jiazhuo Wang1(B), John D. MacKenzie2,
Rageshree Ramachandran3, and Danny Z. Chen1

1 Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, USA

jwang12@nd.edu
2 Department of Radiology and Biomedical Imaging, UCSF, San Francisco, USA

3 Department of Pathology, UCSF, San Francisco, USA

Abstract. To make reliable diagnosis, pathologists often need to iden-
tify certain special regions in medical images. In inflammatory bowel
disease (IBD) diagnosis via histology tissue image examination, mus-
cle regions are known to have no immune cell infiltration, and thus are
ignored by pathologists. Also, messy regions (e.g., due to distortion and
poor staining) are low in diagnostic yield. Hence, excluding muscle and
messy regions to focus on vital regions is crucial for accurate diagnosis
of IBD. In this paper, we propose a novel deep neural network based
on fully convolutional networks (FCN) to identify muscle and messy
regions, in an end-to-end fashion. First, we address the challenge of hav-
ing limited medical training data, for training our deep neural network (a
common problem for medical image processing, which may impede the
application of the powerful deep learning method). Second, to deal with
target regions of largely different sizes and arbitrary shapes, our deep
neural network explores multi-scale information and structural informa-
tion. Experimental results on clinical images show that our approach
outperforms the state-of-the-art FCN for semantic segmentation of mus-
cle and messy regions. Our approach may be readily extended to identify
other types of regions in a variety of medical imaging applications.

1 Introduction

When pathologists analyze diseases by examining medical images, they often
need to first identify certain special regions. In histology tissue images for inflam-
matory bowel disease (IBD), muscle regions are ignored by pathologists when
they search for the presence of an inflammatory process, because immune cells
are unlikely to infiltrate in muscle regions. Also, the manual tissue slide prepara-
tion process may create messy regions in which biological structures (e.g., various
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types of immune cells) are usually not discernible or differentiable. Thus, exclud-
ing these unimportant/confusing regions may enhance computer-aided diagnosis
of IBD by focusing on the critical regions (for e.g., cells identification). This poses
a semantic segmentation problem (Fig. 1(a)): Assign to each pixel one of four
class labels, messy region, muscle region, messy + muscle region (some muscle
regions may appear to be messy; thus they are not exclusive), and background
(i.e., critical regions).

In this paper, we propose a deep learning approach based on the state-of-the-
art fully convolutional networks (FCN) [9] to solve this semantic segmentation
problem on histology tissue images in an end-to-end fashion. In order to do so,
we must overcome two major technical roadblocks.

(a) (b)

Fig. 1. (a) Left: An H&E stained histology tissue image; Right: ground truth for messy
regions (dark blue), muscle regions (light blue), messy + muscle regions (yellow), and
background (cyan). Note that finding the empty spaces does not require a sophisticated
method. (b) Some natural scene images from Pascal VOC 2012 [6].

The first roadblock is that training deep neural networks (including FCN)
usually requires a very large amount of data, in order to avoid/alleviate over-
fitting. However, it is quite common to have only limited training data in medical
imaging settings. U-Net [10] applied deformations to available training images to
generate more data. But, it is unclear what types of deformations are best suited
for each specific medical imaging modality. Further, training a model still takes
lots of time. In the general computer vision (CV) community, transfer learning
[4] is often applied to alleviate over-fitting and speed up training. But, medical
images (including our histology tissue images) seem to be substantially different
from the natural scene images used in general CV datasets (see Fig. 1(b)). Would
transfer learning still be helpful to medical image processing problems (including
ours)? Note that, if doing so, the source domain (working on natural scene
images) and target domain (working on medical images) would be very different.
Interestingly, we are able to provide an affirmative answer to this question!

The second roadblock is that our target regions can have largely varied sizes
and arbitrary shapes, which we handle with two ideas. (1) We incorporate multi-
scale information into our deep neural network. FCN [9] and DAG-CNN [12] used
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skips to propagate low/middle level information in early layers to later layers that
contain only high level information. But, a key limitation of such within-network
incorporation of multi-scale information is that the scales are constrained by
the size of the receptive field (RF) of the network. Therefore, we propose to
utilize separate networks each incorporating information of a specific scale. In
[5], a same input image was fed to separate networks with different RF sizes. We
achieve the same effect (but more efficiently) by first resizing the same image into
different scales, and then feeding the resized images to separate networks with
identical architecture (thus of the same RF size). Note that it might be tempting
to share weights among the corresponding layers of such separate networks, as
in [2]. Interestingly, we show that it is more beneficial by not sharing such
weights. (2) We incorporate structural information using conditional random
field (CRF). While it is known that CRF improves the performance of FCN
[1,13] which is essentially single-scale, we explore whether CRF can also boost
the performance when multi-scale information is incorporated, and show that
the outcome actually depends on whether weight sharing is utilized.

Experimental results on clinical data show that our approach outperforms
FCN for semantic segmentation of muscle and messy regions. The results also val-
idate our main ideas: (1) Transfer learning can help training in medical settings,
even when the source and target domains are very different; (2) incorporating
multi-scale information in a judicious manner boosts the performance of FCN.

2 Methodology

This section presents our multi-scale network based on FCN [9], training of
the multi-scale FCN, especially wrt. transfer learning and weight sharing, and
influence of CRF under the framework of multi-scale FCN.

We briefly review FCN. FCN improves over convolutional neural networks
(CNN) on attaining pixel-level classification. FCN converts the fully connected
layers of CNN to convolutional layers, to reduce the redundant computation
incurred by overlapping sliding windows. But, the size of the score map is still
smaller than input image. FCN further concatenates deconvolutional layers to
up-sample score map to the size of the input image. The FCN so far is known as
FCN-32s (its score map is at 32 stride), which cannot delineate object boundaries
very well, because it contains only coarse information. FCN-16s improves by
propagating finer scale information contained in the pool4 layer to later layers.
FCN-8s propagates even finer scale information in the pool3 layer, in addition
to the pool4 layer. Namely, FCN-16s and FCN-8s can be viewed as containing
certain, but limited (as illustrated below), multi-scale information.

2.1 Multi-scale Information

Motivations. One target class may be more easily identified on a certain scale
than other scales, and the best scales for different target classes may vary. Or, no
best scale is possible, thus one has to fuse information from various scales to make
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decisions. Although FCN-16s and FCN-8s already use within-network multi-scale
information, the size of the receptive field (RF) of the network actually imposes
some constraint. The fc7 layer of FCN (specifically, VGG-16) sees the widest
range in the image, and its RF is 404 × 404 pixels theoretically (the empirical
scale is actually much smaller [8]). That is, there is no way for FCN-16s or FCN-
8s to see a wider range than 404 × 404 pixels, even if it might be beneficial
by doing so. Hence, we propose to incorporate multi-scale information, by using
separate networks each covering a specific field of view (FOV) in the image.

Architecture of Multi-scale FCN. Our main idea (Fig. 2) is to first apply
various FCNs, each of which takes care of a different FOV in the input image.
Then, we fuse the score maps (SMs) produced by those FCNs. Finally, our fused
score maps will go through a soft-max function [7] to compute a cross entropy
classification loss [7]. Below, we discuss several key aspects in more detail.

Fig. 2. The architecture of our multi-scale FCN.

To make the fc7 layer of FCN see wider, one design choice [5] is to change the
hyper-parameters (e.g., the filters size), which increases too much computational
burden. Instead, we shrink input image (by bilinear interpolation) to smaller
sizes, and feed resized images to various FCNs with an identical structure. In
this way, although the fc7 layer of each FCN still has a fixed receptive field of 404
× 404 pixels in the shrunk images, it actually sees a wider range in the original
input image (before resizing). Using an identical structure for various FCNs also
makes apply transfer learning easily, using the pre-trained FCN [9].

Note that shrinking the input image to a smaller size version will make the
score maps of each FCN be of the same size as that resized image. Hence, we
need to add another deconvolutional layer after the original FCN structure to
up-sample the score maps thus obtained to the size of the original input image.

During the fusion step, we simply sum up the values at the corresponding
locations of the score maps from various FCNs. To make an end-to-end system,
we use a during-training fusion, as opposed to a post-training fusion. Specifically,
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during-training fusion allows the update of the parameters of each FCN to be
influenced by other FCNs. Namely, parameters of various FCNs are learned in a
correlated way, due to such mutual influence. One advantage of this is that one
FCN having a wider view could be viewed as a context that regulates another
FCN having a narrower view; an FCN having a narrower view improves the
ability of delineating finer boundaries for another FCN having a wider view.
Post-training fusion means that each FCN learns separately during training (by
computing a separate cross entropy loss for each FCN). That is, there is no
communication or mutual influence between FCNs having different view ranges.

2.2 Training

We apply a stochastic gradient decent (SGD) algorithm [7] to learn the parame-
ters in our network. We explore two key aspects for training, parameter initial-
ization (via transfer learning), and parameter update (via weight sharing).

Transfer Learning. It is common only limited training data is available in
medical image processing. But, deep networks normally require a very large
amount of training data, and the training process usually takes a long time even
on modern GPUs. Our main idea for this is to apply transfer learning (TL) [4].

The essential idea of TL is that learning a new task can be facilitated by trans-
ferring relevant knowledge from a related task that has already been learned. Two
networks are involved in TL, the source network (S-net) and target network (T-
net). The T-net is for the new task, trained on datasets that one currently has
(in our case, histology tissue images). The S-net has already been trained for a
related task on some other datasets (in our case, we use the pre-trained FCN
in [9]). The knowledge is transferred from S-net to T-net by initializing the
parameter values in T-net as the corresponding parameter values in S-net.

It is natural to think that there should be some domain similarity between the
new task and the related task, in order to make TL work well. Namely, images
for the related task should look similar enough to those for the new task. But,
histology tissue images are drastically different from natural scene images. An
immediate concern is whether TL still helps. The answer turns out to be “yes”.
Our intuition is: The difference between these two image domains is mainly at
the high semantic level; nevertheless, the two domains still share some common
properties at the low, middle level image cues (such common properties, like
edges, corners, and correlation between them, may not be easily observed by
human eyes, whereas high level features are more attractive to human eyes).

Weight Sharing. Weight sharing (WS) is commonly applied when one uses
multiple networks with identical structures. Namely, the corresponding parame-
ters (i.e., weights) in such networks share common values during the learning
process. For example, the Siamese network [3] applied WS to its two CNNs to
learn a similarity metric for a pair of input images. Recurrent neural networks
(RNN) [11] can be viewed as applying WS to networks for different time steps.

It might be tempting to apply WS to the multiple FCNs in our network, as in
[2]. However, doing so would make the learned shared parameters capture only
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scale-independent information, and lose some scale-specific information. On the
contrary, with no WS applied, each FCN would be specialized on a certain scale,
and together, the FCNs would collect all information from multiple scales. Our
experimental results empirically show semantic segmentation benefits more from
multi-scale information than from merely scale-independent information.

2.3 Structural Information

Conditional random field (CRF) was applied in [1] as a post-processing step after
FCN to incorporate structural information. Namely, CRF uses the probabilities
produced by FCN as its unary cost, and it also considers pairwise cost imposing
smoothness and consistency for label assignments. In [13], CRF was implemented
as an RNN (called CRF-RNN), so that CRF can be jointly trained with FCN.

We examine the influence of structural information in the context of multi-
scale FCN. We place CRF-RNN after the fusion step from various FCNs (i.e., the
fused score maps will be used as unary energy for CRF), and before the soft-max
function (see Fig. 2). Given that we have incorporated multi-scale information
(specifically, the one without weight sharing), we find CRF is not as helpful as
in the case for single-scale FCN. Our intuition for this is that since the FCNs
seeing wider regulate the FCNs seeing narrower, such regulation can be viewed
as similar smoothness constraint provided by pairwise energy of CRF. However,
if weight sharing is applied, then we find CRF can still improve the performance,
which indicates that weight sharing may make such regulation effect weaker.

3 Experiments and Discussions

We collected clinical H&E stained histology tissue whole slides (originally
scanned at 40X magnification, then resized to 10X to save computational costs).
We cut whole slides into images of size 1000 × 1000 pixels, due to memory con-
straint of Caffe implementation [7]. We sampled from them nearly 200 images
to manually mark the ground truth data at the pixel level based on histology
criteria.

We use 2-fold cross validation to evaluate two standard metrics for seman-
tic segmentation: Pixel accuracy (pixel-acc) and region intersection over union
(IU), defined as follows. Let nc denote the number of target classes and nij

denote the number of pixels of class i predicted as class j. Then pixel-acc
=

∑
i nii/

∑
i

∑
j nij , and IU = (1/nc)

∑
i(nii/(

∑
j nij +

∑
j nji − nii)).

We use FCN-16s [9] as baseline for comparison, and as the basic component
for each scale of our network (we found both FCN-8s and FCN-32s decrease the
performance, compared to FCN-16s, on our data). We evaluate the key factors
(transfer learning (TL), multi-scale (MS) information, weight sharing (WS), and
CRF) in a controlled and structured manner as below. The quantitative results
and some visual results are shown respectively in Table 1 and Fig. 3.

Transfer Learning. First, we compare training from scratch to that applying
TL (i.e., initializing the parameter values of FCN-16s by the pre-trained network
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Table 1. Quantitative performance of different methods.

Method FCN TL+FCN TL+MS+WS TL+MS+WS+CRF TL+MS TL+MS+CRF

pixel-acc 0.73 0.82 0.85 0.88 0.90 0.90

IU 0.39 0.45 0.48 0.50 0.56 0.54

Fig. 3. Examples of visual results for different methods.

[9], and fine-tuning the model using our histology images). For training from
scratch (trained nearly 40000 iterations), its learning rate and momentum are set
respectively as 10−9 and 0.90; for TL (trained less than 2000 iterations), they are
respectively 10−11 and 0.99 (these values are used throughout the experiments
for other TL related methods). As shown in Table 1, FCN+TL improves the
performance of FCN significantly. This validates that TL can still be helpful
(i.e., learning a good model quickly), even if the domain difference is drastic.

Multi-scale Information. Second, we examine the influence of incorporating
multi-scale information by various FCNs. The relevant results shown in Table 1
are based on only two FCNs. The first FCN takes the original 1000 × 1000 size
image as input; the second takes a resized image of size 500 × 500.

Note that both TL+MS and TL+MS+WS (i.e., regardless of whether WS
is applied) outperform TL+FCN. We were curious whether the improvement is
due to multiple FCNs, or just the additional FCN (taking resized input). Thus,
we trained a slightly different version of TL+FCN, taking an input image of size
500 × 500, instead of 1000 × 1000. We found this new version performs a little
worse than previously. This suggests the improvement is due to multiple FCNs.

We also evaluated a three-FCN model, by adding a third FCN taking a resized
image of size 250 × 250. This improves only slightly over the two-FCN model,
probably because the third FCN contains information too abstract to be useful.

Weight Sharing. Third, we evaluate whether weight sharing should be applied.
As shown in Table 1, regardless of whether CRF is used, TL+MS+WS is worse
than its counterpart without weight sharing, TL+MS; also, TL+MS+WS+CRF
is worse than TL+MS+CRF. This implies that it is better off to let each
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individual FCN be specialized at a certain scale of information, as apposed to
extracting merely scale-independent information from all the FCNs using weight
sharing.

Structural Information. At last, we examine the effect of incorporating struc-
tural information, given that multi-scale information has been incorporated.
Table 1 shows that TL+MS+WS+CRF outperforms its counterpart without
structural information, TL+MS+WS; but, TL+MS+CRF performs similarly as
TL+MS. This suggests that as long as multi-scale information is incorporated
appropriately, the additional structural information may not be very useful. A
possible explanation for this is that the FCNs seeing wider impose on the FCNs
seeing narrower a similar consistency constraint as that from CRF.

4 Conclusions

In this paper, we propose a new deep learning approach for semantic segmenta-
tion of messy and muscle regions in histology tissue images. We show that (1)
transfer learning can help training effectively, even when the differences between
the source domain and target domain seem very large; (2) incorporating multi-
scale information in an appropriate way can greatly improve the performance.
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