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Abstract. Due to recent progress in Convolutional Neural Networks
(CNNs), developing image-based CNN models for predictive diagnosis is
gaining enormous interest. However, to date, insufficient imaging samples
with truly pathological-proven labels impede the evaluation of CNN mod-
els at scale. In this paper, we formulate a domain-adaptation framework
that learns transferable deep features for patient-level lung cancer malig-
nancy prediction. The presented work learns CNN-based features from a
large discovery set (2272 lung nodules) with malignancy likelihood labels
involving multiple radiologists’ assessments, and then tests the transfer-
able predictability of these CNN-based features on a diagnosis-definite
set (115 cases) with true pathologically-proven lung cancer labels. We
evaluate our approach on the Lung Image Database Consortium and
Image Database Resource Initiative (LIDC-IDRI) dataset, where both
human expert labeling information on cancer malignancy likelihood and
a set of pathologically-proven malignancy labels were provided. Exper-
imental results demonstrate the superior predictive performance of the
transferable deep features on predicting true patient-level lung cancer
malignancy (Acc=70.69%, AUC=0.66), which outperforms a nodule-
level CNN model (Acc=65.38 %, AUC = 0.63) and is even comparable to
that of using the radiologists’ knowledge (Acc=72.41%, AUC =0.76).
The proposed model can largely reduce the demand for pathologically-
proven data, holding promise to empower cancer diagnosis by leveraging
multi-source CT imaging datasets.

1 Introduction

Lung cancer is one of the leading causes of cancer death with a dismal 5-year
survival rate at 15-18 % [9]. Computed Tomography (CT) sequences at varying
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stages of patients have been fast-evolving over past years. Therefore, develop-
ing image-based, data-driven models is of great clinical interest for identifying
predictive imaging biomarkers from multiple CT imaging sources.

Recently, Convolutional Neural Networks (CNNs) [3,11] emerge as a powerful
learning model that has gained increasing recognition for a variety of machine
learning problems. Approaches have been proposed for improving computer-
aided diagnosis with cascade CNN frameworks [6-8]. However, these studies are
limited at building CNN models for a single diagnostic data source, without
considering the relationship across various diagnostic CT data of the disease. To
verify the learned CNN model, a related but different diagnostic data can be
always served as a good benchmark. Therefore, we ask two specific questions:
Can CNN-based features generalize to other sets for image-based diagnosis? How
do these features transfer across different types of diagnostic datasets?

We address these questions with an application in lung cancer malignancy
prediction. More specifically, we define two malignancy-related sets: (1) Discov-
erySet (source domain): CT imaging with abundant labels from only radiolo-
gists’ assessments; (2) DiagnosedSet (target domain): CT imaging with definite,
follow-up diagnosis labels of lung cancer malignancy. It is reasonable to assume
that radiologists’ knowledge in assessing risk factors is a helpful resource, but
currently lacking a quantitative comparison with definite diagnostic information.
Bridging the disconnection between them would accelerate diagnostic knowledge
sharing to help radiologists refine follow-up diagnosis for patients. The challenge,
however, remains as how can we develop a transferable scheme to fuse the cross-
domain knowledge with growing availability of CT imaging arrays nowadays.

To overcome the obstacle, we propose a new, integrated framework to learn
transferable malignancy knowledge for patient-level lung cancer prediction. The
proposed model, called CNN-MIL, is composed of a convolutional neural network
(CNN) model and a multiple instance learning (MIL) model. They are respec-
tively trained on the DiscoverySet (2272 lung nodules) and the DiagnosedSet
(115 patients). We achieve the purpose of knowledge transfer by sharing the
learned weights between the built CNN and the instance networks (see Fig. 1).
The proposed approach draws inspiration from a recent study [5] suggesting
the feasibility of the CNN architecture in transfer learning. A difference between
such work and ours is that the knowledge adaptation is achieved via the instance
networks where the nodule-to-patient relationship is defined, and the layers of
target network is deeper than that in the source domain network.

Our contributions of this paper can be summarized as follows: (i) We demon-
strate that the knowledge defined from radiologists can be effectively learned by a
CNN model and then transferred to the domain with definite diagnostic CT data.
(ii) We present experimental evidence that knowledge adaptation can improve
the accuracy of patient-level lung cancer prediction from a baseline model. (iii)
The proposed CNN-MIL largely reduces the demand for pathologically-proven
CT data by incorporating a referenced discovery set, holding promise to empower
lung cancer diagnosis by leveraging multi-source CT imaging datasets.
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Fig. 1. lllustration of the proposed framework. Upper part: a nodule-level CNN model
(CNNyodute) is firstly trained on the DiscoverySet to extract the radiologist’s knowledge
(Sect.2.1). It has three convolutional layers (Conv1-3) and the output layer has one
neuron that estimates the malignancy rating of the input nodule. The number of hidden
neurons in FC4 is 32. The network weights (Conv1-3) learned from DiscoverySet will be
directly applied into the DiagnosedSet. Lower part: Multiple Instance Learning (MIL)
models the nodule-to-patient relationship towards patient-level cancer prediction on
the DiagnosedSet. Notably, the dimension of Conv3 feature from the instance network
is reduced to 32 via Principal Component Analysis. The number of hidden neurons
in FC5 is 4. The output of the MIL model is the aggregated output of the instance
network, estimating true lung cancer malignancy (Sect.2.2).

Diagnosedset

2 Methods

2.1 Knowledge Extraction via the CNN Model

As seen in Fig. 1, we firstly build a nodule-level CNN model to learn the radi-
ologist’s knowledge in estimating nodule malignancy likelihood from the source
domain. The proposed CNN model is composed of three concatenated convolu-
tional layers (with each comes with a Rectified Linear Unit plus a max-pooling
layer). The followed two fully-connected layers (FC4 layer and regression layer) are
used to determine the malignancy rating distribution over nodules. The used layers
here follow the standard structure introduction in CNN structure, more details are
referred to [10]. The input of our CNN model is the raw nodule patches with size
64 x 64 x 64 voxels centering around the nodule shape. Each convolutional layer
has 64 convolutional kernels with size 3x 3. The pooling window size is 4 x 4 in the
first max-pooling layer and 2 X 2 in remained layers. The loss function is the L-2
norm loss between the predicted rating and the malignancy rating:
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1Y )
L= N;(Ri - P)”, (1)

where N is the number of nodule patches in the DiscoverySet. The R; and P,
are the 7th nodule rating from radiologists and our model. The loss function of
Eq. 1 is minimized via stochastic gradient descent.

Once the training is done, the knowledge of nodule malignancy estimation is
learned in terms of the retaining weights in the trained CNN model. Next, the
weights of the three convolutional layers are shared with instance networks for
knowledge transfer. The weights from the fully-connected layers are not consid-
ered for domain transfer as higher layers appear to be more domain-biased which
are less transferable [4]. Having learned feature representation for nodules, we
detail the patient-level prediction via a MIL model next.

2.2 The MIL Model for Patient-Level Lung Cancer Prediction

We formulate the patient-level cancer prediction as a MIL task shown in Fig. 1.
The input to the nodule level CNN is the nodule patch while the input to the
MIL network is all the nodule features within a patient case. MIL builds on the
concept of bags and instances, where the label of a bag is positive if it has at
least one positive containing instance; the label of the bag is negative if and only
if all its containing instances are negative. Thus, in the scenario of two-category
malignancy prediction, we similarly define each patient as a bag and each nodule
as an instance. Given a patient (O;), if all his/her nodules are non-malignant, the
patient is non-malignant; while if at least one nodule is malignant, the patient
is malignant.

Let the patient-level malignancy predictions of m patients be O = {O;]i =
1,2,3,...,m} and patients’ malignancy labels t = {t;|i = 1,2,3,...,m} € [0,1].
Given a patient with n nodules (1 < n < 15 in this study), we denote the output
from the jth nodule of the ith patient by 0; (i = 1,2,3...,m,j = 1,2,3...,n}. The
final output from the regression layer (lower part, Fig.1) is used to determine
the ith patient’s malignancy by aggregating nodule instance outputs o; ;:

O; = max(01, 02, 043, ..., 0in ), Where n € [1,15], (2)

The loss function is also the L-2 norm loss between the prediction O; and the
diagnostic label ¢;. As discussed, the weights of the convolutional layers are
shared between the instance networks and the nodule-level CNN networks. The
weights of the fully-connected layers (FC4 and FC5) will be continuously learned
as in [5]. Next, we report experimental results on the DiagnosedSet for patient-
level lung cancer prediction.

3 Experiments and Results

Dataset: We use the Lung Image Database Consortium and Image Database
Resource Initiative (LIDC-IDRI) dataset [2]. Nodule samples (>3 mm) are either



128 W. Shen et al.

included into the DiscoverySet or the DiagnosedSet based on absence or presence
of definite diagnosis. In DiscoverySet, the nodule malignancy likelihood was rated
by four experienced thoracic radiologists, estimating an increasing degree (i.e.,
Rrqq € [1,5]). The averaged rating report from four radiologists was chosen for
determining the final rating of each nodule as in [7]. Overall, there were 2272
nodules included. We further split the DiscoverySet into a training set containing
80 % (1817 nodules) samples and a validation set containing 20 % (455 nodules)
samples to observe the CNN model performance. For DiagnosedSet, there are 115
cases with true pathologically-proven diagnostic labels: non-malignant cases (30
cases), malignant cases (85 cases including 40 primary cancer and 45 malignant,
metastatic cancer cases).

Model Configuration: For the nodule-level CNN model, the learning rate
was 0.0001 and the number of training epochs (one epoch means that each
sample has been seen once in the training phase) was 50. For the MIL model,
the learning rate was 0.001. To evaluate the performance of the MIL model
under different settings, we investigated different number of hidden neurons ny,
(np, = [4,8,16]) in FC5 layer and the number of the MIL model training epochs
ne (ne = [5,10]) in Sect. 3.2, while the default values were n, = 4 and n, = 10
in Sect.3.3. We reported average results of the MIL model from 10 times five-
fold cross validation. During each round of cross-validation, there were 92 cases
(24 non-malignant and 68 malignant cases) in the training set and 23 cases (6
non-malignant and 17 malignant cases) in the test set. Since the number of
the non-malignant cases was much smaller than that of malignant cases in the
training set, we fed the non-malignant cases multiple times to our MIL model
to make a proximately balanced dataset.

3.1 Knowledge Extraction

Given the output value P, € [1,5]
made by the nodule-level CNN model
(CNN,oquie) and the Ry.q € [1,5]
given the radiologist’s rating on the
DiscoverySet. To verify that the radi-
ologist’s knowledge of malignancy is
properly extracted, the estimation
error defined as E = [P, — Rrqdl, €
[0,4] in Fig.2. We observed that the E S S S B

. 00 05 1.0 15 20
€ [0,1] already occupied 90.99 % of test Rating estimation error
nodules in the validation set from the
DiscoverySet, revealing the outputs of Fig. 2. The estimation error (E) distribu-
the CNN model approximated those of tion of CNNsquie on the DiscoverySet.
the radiologist’ inputs. Once the radi-
ologist’s knowledge of malignancy was
well preserved by the nodule-level CNN model, we further report its results on
patient-level cancer prediction on the DiagnosedSet.

The distribution of the error
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3.2 Patient-Level Lung Cancer Malignancy Prediction

We show the performance of our CNN-MIL model with respect to different con-
figuration values of nj, and n, on patient-level malignancy prediction. Prediction
accuracy (i.e. the ratio of the number of correctly classified patient malignancy
O; over the entire DiagnosedSet) and area under the curve (AUC) score were
used to measure the model performance. As shown in Table 1, the performance
of our model was insensitive to nj; and n.. It could be explained that shared
weights preserved much nodule information that allows discriminative features
fed into final fully-connected layers. We continue to verify the performance of
the proposed approach with competing methods next.

Table 1. Mean value and standard deviation of prediction accuracy and AUC score
(in parenthesis) of the CNN-MIL model with different ny and ne.

np = 4 np = 8 np = 16
ne =5 |68.8043.12%(0.65+0.03) | 70.5642.25 %(0.64+0.02) | 68.12+1.97 %(0.62-:0.02)
ne = 10 | 70.6942.34 %(0.66£0.03) | 68.9941.90 %(0.63+£0.02) | 68.98+2.10 %(0.62-:0.03)

3.3 Methods Comparison

We chose the nodule-level CNN,,pqule as a base- Table 2. Average prediction
line model and the reports from the radi- accuracy and AUC score of
ologists’ ratings (RR) as a reference model. patient-level  cancer ~prediction
For CNN,,quie and RR, all nodule malig- using different models.

nancy likelihoods within a patient were com- Accuracy AUC
bined according to Eq.2 as the patient-level DMIL [11] [59.40% 0.56
malignancy score. We also implemented a MI-SVM [1]/61.93% 0.55
MI-SVM model [1] and a deep MIL model CNNyogue 65.38% 0.63
without knowledge transfer (DMIL) [11]. The CNN-MIL |70.69 % |0.66
features fed to the MI-SVM were also the RR 72.41% 10.76
32-dimensional CNN features generated from

Conv3 (Fig.1) and the kernel function was the radial basis function. The best
parameters for MI-SVM were obtained via grid search and the parameter set-
tings of DMIL were identical with our CNN-MIL except that DMIL did not have
PCA operation inside.

As seen in Table2, with efficient knowledge transfer, our CNN-MIL out-
performed both DMIL and MI-SVM. When comparing the performance of our
CNN-MIL model to CNN,,,qu1e, our CNN-MIL model integrating transferable-
features through shared network weights could bring a boosted performance.
Surprisingly, the performance of our CNN-MIL model was only marginally lower
than that using the radiologists’ ratings, which demonstrated the effectiveness
of the proposed method in transferring human knowledge into unknown samples
prediction. On the other hand, despite knowing that radiologists’ ratings (i.e.
RR) may affect our model learning due to the potential mislabelled samples,
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Fig. 3. Illustration of our CNN-MIL for patient-level cancer prediction with a non-
malignant patient and a malignant patient. Our CNN-MIL model can make more
accurate patient-level prediction than CNNyoquie (ratings rescaled to [0,1]) by reas-
signing nodule malignancy probability (red boxes) from the nodule-level CNN model.

we demonstrate that experts’ knowledge, building upon consensus agreement
from multiple radiologists, can be captured by our CNN-MIL model to further
estimate true nodule malignancies in lung cancer.

As shown in Fig. 3, two patients using our CNN-MIL model and CNN,,,quie
illustrated that transfer learning on DiagnosedSet allowed us to optimize the
instance networks for improved patient-level cancer prediction, permitting an
error correction from the nodule-level CNN model. Using p=0.5 as a division
point (p<0.5 as non-malignant and p>=0.5 as malignant), CNN-MIL corrected
erroneous predictions (red boxes) from CNN,,,4ui. 0n both patients. The success
of our model could be attributed to the ability of the CNN to learn rich mid-level
image representations (e.g. features derived from the layer Conv3 in CNN) that
are proven to be transferable to related visual recognition task [3,5].

Overall, our purpose of this study is not to pursue precise diagnosis for malig-
nancy classification on a single diagnostic CT set, rather, we sought to infer
data-driven knowledge across different sets (with different diagnostic labels),
which holds promise to reduce the pressing demand of truly diagnosed, labelled
data that typically require invasive assessment of biopsy and lasting monitoring
of cancer progressions. We developed the domain transfer model based on the
fact that the DiscoverySet (with radiologist ratings) is relatively easy-accessed
at early stage of diagnosis with ubiquitous CT screening (2272 defined nodules
here). Meanwhile, it is not surprising that the DiagnosedSet (with definitive clin-
ical labels) is much difficult to scale due to invasive biopsy testing and surgery
for pathological verification with a controlled patient population (115 case here).

4 Conclusion

Multi-source data integration in medical imaging is a rising topic with growing
volumes of imaging data. Developing causal inference among different sets would
allow better understanding of imaging set-to-set relationships in computer-aided
diagnosis, thus enabling alternative biomarkers for improved cancer diagnosis.
In this paper, we demonstrate that the transfer learning model is able to learn
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transferable deep features for lung cancer malignancy prediction. The empirical
evidence supports a feasibility that data-driven CNN is useful for leveraging
multi-source CT data. In the future, we plan to expand to a large-scale, multi-
model image sets to improve predictive diagnostic performance.
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