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Abstract. Graph-based Transductive Learning (GTL) is a powerful tool in
computer-assisted diagnosis, especially when the training data is not sufficient to
build reliable classifiers. Conventional GTL approaches first construct a fixed
subject-wise graph based on the similarities of observed features (i.e., extracted
from imaging data) in the feature domain, and then follow the established graph
to propagate the existing labels from training to testing data in the label domain.
However, such a graph is exclusively learned in the feature domain and may not
be necessarily optimal in the label domain. This may eventually undermine the
classification accuracy. To address this issue, we propose a progressive GTL
(pGTL) method to progressively find an intrinsic data representation. To achieve
this, our pGTL method iteratively (1) refines the subject-wise relationships
observed in the feature domain using the learned intrinsic data representation in
the label domain, (2) updates the intrinsic data representation from the refined
subject-wise relationships, and (3) verifies the intrinsic data representation on
the training data, in order to guarantee an optimal classification on the new
testing data. Furthermore, we extend our pGTL to incorporate multi-modal
imaging data, to improve the classification accuracy and robustness as
multi-modal imaging data can provide complementary information. Promising
classification results in identifying Alzheimer’s disease (AD), Mild Cognitive
Impairment (MCI), and Normal Control (NC) subjects are achieved using MRI
and PET data.

1 Introduction

Alzheimer’s disease (AD) is the most common neurological disorder in the older
population. There is overwhelming evidence in the literature that the morphological
patterns are observable by means of either structural and diffusion MRI or PET [1–3].
However, morphological abnormal patterns are often subtle, compared to high
inter-subject variations. Hence, sophisticated pattern recognition methods are of high
demand to accurately identify individuals at different stages of AD progression.
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Medical imaging applications often deal with high dimensional data and usually
less number of samples with ground-truth labels. Thus, it is very challenging to find a
general model that can work well for an entire set of data. Hence, GTL method has
been investigated with great success in medical imaging area [4, 5], since it can
overcome the above difficulties by taking advantage of the data representation on
unlabeled testing subjects. In current state-of-the-art methods, graph is used to repre-
sent the subject-wise relationship. Specifically, each subject, regardless of being
labeled or unlabeled, is treated as a graph node. Two subjects are connected by a graph
link (i.e., an edge) if they have similar morphological patterns. Using these connec-
tions, the labels can be propagated throughout the graph until all latent labels are
determined. Many current label propagation strategies have been proposed to determine
the latent labels of testing subjects based on subject-wise relationships encoded in the
graph [6].

The assumption of current methods is that the graph constructed in the observed
feature domain represents the real data distribution and can be transferred to guide label
propagation. However, this assumption usually does not hold since morphological
patterns are often highly complex and heterogeneous. Figure 1(a) shows the affinity
matrix of 51 AD and 52 NC subjects using the ROI-based features extracted from each
MR image, where red dot and blue dot denote high and low subject-wise similarities,
respectively. Since the clinical data (e.g., MMSE and CDR scores [1]) is more related
with clinical labels, we use these clinical scores to construct another affinity matrix, as
shown in Fig. 1(c). It is apparent that the data representations using structural image
features and clinical scores are completely different. Thus, there is no guarantee that the
learned graph from the affinity matrix in Fig. 1(a) can effectively guide the classifi-
cation of AD and NC subjects. More critically, the affinity matrix using observed image
features is not even necessarily optimal in the feature domain, due to possible imaging
noises and outlier subjects. Many studies take advantage of multi-modal information to
improve discrimination power of transductive learning. However, the graphs from
different modalities might be different too, as shown in the affinity matrices using
structural image features from MR images (Fig. 1(a)) and functional image features
from PET images (Fig. 1(b)). Graph diffusion [5] is recently proposed to find the
common graph. Unfortunately, as shown in Fig. 1, it is hard to find a combination for
the graphs in Fig. 1(a) and (b) that can lead to the graph in Fig. 1(c), which is more
related with final classification task.

Fig. 1. Affinity matrices using structural image features (a), functional image features (b), and
clinical scores (c).
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To solve these issues, we propose a pGTL method to learn the intrinsic data
representation, which could be eventually optimal for label propagation. Specifically,
the intrinsic data representation is required to be (a) close to subject-wise relationships
constructed by image features extracted from different modalities, and (b) verified on
the training data and guaranteed to be optimal for label classification. To that end, we
simultaneously (1) refine the data representation (subject-wise graph) in the feature
domain, (2) find the intrinsic data representation based on the constructed graphs on
multi-modal imaging data and also the clinical labels of entire subject set (including
known labels on training subjects and also the tentatively-determined labels on testing
subjects), and (3) propagate the clinical labels from training subjects to testing subjects,
following the latest learned intrinsic data representation. Promising classification
results have been achieved in classifying 93AD, 202 MCI, and 101NC subjects, each
with MR and PET images.

2 Methods

Suppose we have N subjects I1; . . .; IP; IPþ 1; . . .; INf g, which sequentially consist of P
training subjects and Q ¼ N � Pð Þ testing subjects. For P training subjects, the clinical
labels FP ¼ fp

� �
p¼1;...;P are known, where each fp 2 0; 1½ �C is a binary coding vector

indicating the clinical label from C classes. Our goal is to jointly determine the latent
labels for Q testing subjects based on a set of their continuous likelihood vectors
FQ ¼ fq

� �
q¼Pþ 1;...;N , where each element in vector fq indicates the likelihood of the

q-th subject belonging to one of C classes. For convenience, we concatenate FP and FQ

into a single label matrix FN�C ¼ ½FPFQ�.

2.1 Progressive Graph-Based Transductive Learning

Conventional Graph-Based Transductive Learning. For clarity, we first extract
single modality image features from each subject Ii ði ¼ 1; . . .;NÞ, denoted as xi. In
conventional GTL methods, the subject-wise relationships are computed based on
feature similarity, which is encoded in an N � N feature affinity matrix S. Each element
sij ð0� sij � 1; i; j ¼ 1; . . .;NÞ represents the feature affinity degree between xi and xj.
After constructing S (based on feature similarity), conventional methods determine the
latent label for each testing subject Iq by solving a classic graph learning problem:

F̂q ¼ argminFq

XN

i;j¼1
f i � f j

�� ��2
2sij: ð1Þ

As shown in Fig. 1, the affinity matrix S might not be strongly related with the intrinsic
data representation in the label domain. Therefore, it is necessary to further design a
graph based on the labels matrix, rather than solely using the graph constructed by the
features. However, the labels on testing subjects are not determined yet. In order to
solve this chicken-and-egg dilemma, we propose to construct a dynamic graph which
progressively reflects the intrinsic data representation in the label domain.
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Progressive Graph-Based Transductive Learning on Single Modality. We propose
three strategies to remedy the above issue. (1) We propose to gradually find an intrinsic
data representation T ¼ tij

� �
i;j¼1;...;N which is more relevant than S to guide the label

propagation in Eq. (1). (2) Since only the training images have their known clinical
labels, exclusively optimizing T in the label domain is an ill-posed problem. Thus, we
encourage the intrinsic data presentation T also respecting the affinity matrix S, where
image features are complete in the feature domain. (3) In order to suppress possible
noisy patterns and outlier subjects, we allow the intrinsic data representation T to
progressively refine the affinity matrix S in the feature domain. In this way, the esti-
mations of S and T are coupled, thus bringing a dynamic graph learning model with
the following objective function:

argminS;T;F
PN

i;j¼1 l f i � f j
�� ��2

2tij þ xi � xj
�� ��2

2sij þ k1s2ij þ k2 sij � tij
�� ��2

2

n o
s:t: 0� sij � 1; s

0
i1 ¼ 1; 0� tij � 1; t

0
i1 ¼ 1;F ¼ FPFQ½ �

ð2Þ

where l is the scalar balancing the data fitting terms from two different domains (i.e.,
the first and second terms in Eq. (2)). Suppose si 2 RN�1 and ti 2 RN�1 are vectors
with the j-th element as sij and tij separately. In order to avoid trivial solution, l2-norm is
used as the constraint on each element sij in affinity matrix S. k1 and k2 are two scalars
to control the strengths of the last two terms in Eq. (2).

Progressive Graph-Based Transductive Learning on Multiple Modalities. Sup-
pose we have M modalities. For each subject Ii, we can extract multi-modal image
features xmi ;m ¼ 1; . . .;M. For m-th modality, we optimize the affinity matrix Sm. As
shown in Fig. 1(a) and (b), the affinity matrices across modalities could be different.
Thus, we require the intrinsic data representation T to be close to all Sm;m ¼ 1; . . .;M.
It is straightforward to extend our above pGTL method to the multi-modal scenario:

argminSm;T;F
PN
i;j¼1

l f i � f j
�� ��2

2tij þ
PM
m¼1

xmi � xmj
��� ���2

2
smij þ k1 smij

� �2
þ k2 smij � tij

��� ���2
2

� �	 


s:t: 0� smij � 1; smi
� �0

1 ¼ 1; 0� tij � 1; t
0
i1 ¼ 1; F ¼ ½FPFQ�

ð3Þ

It is worth noting that, although the multi-modal information leads to multiple affinity
matrices in the feature domain, they share the same intrinsic data representation T.

2.2 Optimization

Since our proposed energy function in Eq. (3) is convex to each variables, i.e. S;T;F,
we present the following divide-and-conquer solution to optimize one set of variables

at a time by fixing other sets of variable. We initialize S ¼ expð� xi � xj
�� ��2

2=2r
2Þ, r is

an empirical parameter, T ¼ PM
m¼1 S

m=M,FQ ¼ 0f gQ�C.
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Estimation of Affinity Matrix Sm for Each Modality. Removing the unrelated terms
w.r.t. Sm in Eq. (3), the optimization of Sm falls to the following objective function:

argminSm
XN

i;j¼1
xmi � xmj

��� ���2
2
smij þ k1 smij

� �2
þ k2

XN

i;j¼1
smij � tij

��� ���2
2

ð4Þ

where ð0� sij � 1; ðsmi Þ
0
1 ¼ 1Þ. Since Eq. (4) is independent of variables i and j, we

further reformulate Eq. (4) in the vector form as below:

argminsmi smi þ di
2r1

����
����
2

2
ð5Þ

where smi is the i-th column vector of affinity matrix Sm; di ¼ dij
� �

j¼1;...;N is a vector

with each dij ¼ xmi � xmj
��� ���2�2k2tij, and r1 ¼ k1 þ k2. The problem in Eq. (5) is

equivalent to project onto a simplex, which has a closed-form solution in [7]. After we
solve each smi , we can obtain the affinity matrix Sm.

Estimate the Intrinsic Data Representation T. Fixing Sm and F, the objective
function w.r.t. T reduces to:

argminT
XN

i;j¼1
l f i � f j
�� ��2

2tij þ k2
XM

m¼1

XN

i;j¼1
smij � tij

��� ���2
2


 �
ð6Þ

Similarly, we can reformulate Eq. (6) by solving each ti at a time:

argminti ti þ hi
2r2

����
����
2

2
ð7Þ

where hi ¼ hij
� �

j¼1;...;N is a vector with each element hij ¼ l f i � f j
�� ��2

2�2k2
PM

m¼1 s
m
i ,

and r2 ¼ Mk2 is a scalar.

Update the Latent Labels FQ on Testing Subjects. Given both Sw and T, the
objective function for the latent label FQ can be derived from Eq. (3) as below:

argminF
XN

i;j¼1
f i � f j

�� ��2
2tij ) argminFTraceðF0LFÞ; ð8Þ

where Traceð:Þ denotes the matrix trace operator, L ¼ diag Tð Þ � T0 þTð Þ=2 is the
Laplacian matrix of T. By differentiating Eq. (8) w.r.t. F and letting the gradient

LF ¼ 0, we obtain the following equation:
LPP LPQ

LQP LQQ

� �
FP

FQ

� �
¼ 0; where LPP,

LPQ;LQP, and LQQ denote the top-left, top-right, bottom-left, and bottom-right blocks
of L. The solution for FQ can be obtained by F̂Q ¼ � LQQð Þ�1LQPFP.

Discussion. Taking MRI and PET modalities as example, Fig. 2(a) illustrates the
optimization of Eq. (3) by alternating the following three steps. (1) Estimate each
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affinity matrix Sm, which depends on the observed image features xm and the currently
estimated intrinsic data representation T (red arrows); (2) Estimate the intrinsic data
representation T, which requires the estimations of both S1 and S2 and also the
subject-wise relationship in the label domain (purple arrows); (3) Update the latent
labels FQ on the testing subjects which needs guidance from the learned intrinsic data
representation T (blue arrows). It is apparent that the intrinsic data representation
T links the feature domain and label domain, which eventually leads to the dynamic
graph learning model.

3 Experiments

Subject Information and Image Processing. In the following experiments, we select
93 AD subjects, 202 MCI subjects, and 101 NC subjects from ADNI dataset.
Since MCI is a highly heterogeneous group, we further separate them into 55 pro-
gressive MCI subjects (pMCI), who will finally develop into AD patients within the
next 24 months, and 63 stable MCI subjects (sMCI), who won’t convert to AD after 24
months. The remain MCI subjects included a group not converted in 24 months but
converted in 36 months and another group with observation information in baseline but
missing information in 24 months. Each subject has both MR and 18-Fluoro-
DeoxyGlucose PET (FDG-PET) images.

For each subject, we first align the PET image to MR image. Then we remove the
skull and cerebellum from MR image and segment MR image into white matter, gray
matter and cerebrospinal fluid. Next, we parcellate each subject image into 93 ROIs
(Regions of Interest) by registering the template (with manual annotation of 93 ROIs)
to the subject image domain. Finally, the gray matter volume and the mean PET
intensity image in each ROI are used and form a 186-dimensional feature vector.

Experiment Settings. First, we evaluate our proposed pGTL method, with compar-
ison to classic classification methods, such as Canonical Correlation Analysis
(CCA) [8] based SVM (denoted as CCA in the following context), Multi-Kernel SVM
(MKSVM) [9], and a conventional GTL method, since these methods are widely used

(a) (b)

Fig. 2. (a) The dynamic procedure of the proposed pGTL method, (b) Classification accuracy as
a function of the number of training samples used.
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in AD studies. In order to demonstrate the overall performance of our method in several
classification tasks, i.e. AD vs NC, MCI vs NC, and pMCI vs sMCI, in each experi-
ment, we use 10-fold cross-validation strategy, with 9 folds of data as training dataset
and the remaining 1 fold as testing dataset. Second, we compare our proposed method
with three recently published state-of-the-art classification methods: (1) random-forest
based classification method [10], (2) multi-modal graph-fusion method [4], and
(3) multi-modal deep learning method [11]. It is worth noting that we only use the
classification accuracy reported in their papers, in order for fair comparison.

Parameter Settings. In the following experiments, we use the same greedy strategy to
select best parameters for CCA, MKSVM and our proposed method. For example, we
obtain the optimal values for l, k1 and k2 in our method by exhaustive search in the
range from 10�3 to 103 in a small portion of training dataset.

Comparison with Classic CCA, GTL and Multi-kernel SVM (MKSVM). The
classification accuracies by CCA, MKSVM, GTL and our method are evaluated in
three classification tasks (AD vs NC, MCI vs NC, and pMCI vs sMCI), respectively.
The averaged classification accuracy (ACC), sensitivity (SEN), and specificity
(SPE) with 10-fold cross-validation are summarized in Table 1. It is clear that our
proposed method beats other competing classification methods in three classification
tasks, with significant improvement under paired t-test (p < 0.001, designated by ‘*’ in
Table 1).

Furthermore, we evaluate the classification performance w.r.t. the number of
training samples, as shown in Fig. 2(b). It is clear that (1) our proposed method always
has higher classification accuracy than both CCA and MKSVM methods; and (2) all
methods can improve the classification accuracy as the number of training samples
increases. It is worth nothing that our proposed method achieves large improvement
against MKSVM, when only 10 % of data is used as the training dataset. The reason is

Table 1. Comparison of classification performance by different methods.
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that supervised methods require a sufficient number of samples to train the reliable
classifier. Since the training samples with known labels are expensive to collect in
medical imaging area, this experiment indicates that our method has high potential to
be deployed in current neuroimaging studies.

Comparison with Recently Published State-of-the-Art Methods. Table 2 summa-
rizes the subject information, imaging modality, and average classification accuracy by
using state-of-the-art methods. These comparison methods represent four typical
machine learning techniques. Since the classification between pMCI and sMCI groups
are not reported in [4, 10, 11], we only show the classification results for AD vs NC,
and MCI vs NC tasks. Our method achieves higher classification accuracy than both
random forest and graph fusion methods, even though those two methods use addi-
tional CSF and genetic information.

Discussion. Deep learning approach in [11] learns feature representation in a
layer-by-layer manner. Thus, it is time consuming to re-train the deep neural-network
from scratch. Instead, our proposed method only uses hand-crafted features for clas-
sification. It is noteworthy that we can complete the classification on a new dataset
(including greedy parameter tuning) within three hours on a regular PC (8 CPU cores
and 16 GB memory), which is much more economic than massive training cost in [11].
Complementary information in multi-modal data can help improve the classification
performance, therefore, in order to find the intrinsic data representation, we combine
our proposed pGTL with multi-modal information.

4 Conclusion

In this paper, we present a novel pGTL method to identify individual subject at dif-
ferent stages of AD progression, using multi-modal imaging data. Compared to con-
ventional methods, our method seeks for the intrinsic data representation, which can be
learned from the observed imaging features and simultaneously validated on the
existing labels of training data. Since the learned intrinsic data presentation is more
relevant to label propagation, our method achieves promising classification perfor-
mance in AD vs NC, MCI vs NC, and pMCI vs sMCI tasks, after comprehensive
comparison with classic and recent state-of-the-art methods.

Table 2. Comparison with the classification accuracies reported in the literatures (%).

Method Subject information Modality AD/NC MCI/NC

Random forest [10] 37AD + 75MCI + 35NC MRI + PET + CSF
+ Genetic

89.0 74.6

Graph fusion [4] 35AD + 75MCI + 77NC MRI + PET + CSF
+ Genetic

91.8 79.5

Deep learning [11] 85AD + 169MCI + 77NC MRI + PET 91.4 82.1
Our method 99AD + 202MCI + 101NC MRI + PET 92.6 78.6
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