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Abstract. Alzheimer’s Disease (AD), a severe type of neurodegenera-
tive disorder with progressive impairment of learning and memory, has
threatened the health of millions of people. How to recognize AD at
early stage is crucial. Multiple models have been presented to predict
cognitive impairments by means of neuroimaging data. However, tra-
ditional models did not employ the valuable longitudinal information
along the progression of the disease. In this paper, we proposed a novel
longitudinal feature learning model to simultaneously uncover the inter-
relations among different cognitive measures at different time points and
utilize such interrelated structures to enhance the learning of associations
between imaging features and prediction tasks. Moreover, we adopted
Schatten p-norm to identify the interrelation structures existing in the
low-rank subspace. Empirical results on the ADNI cohort demonstrated
promising performance of our model.

1 Introduction

Alzheimer’s Disease (AD), the most common form of dementia, is a neurodegen-
erative disorder which severely impacts patients’ thinking, memory and behavior.
Current consensus has emphasized the demand of early recognition of this dis-
ease, with which the goal of stoping or slowing down the disease progression
can be achieved [8]. The effectiveness of neuroimaging in predicting the progres-
sion of AD or cognitive performance has been studied and reported in plentiful
research [4,12]. However, many previous research merely paid attention to the
prediction using the baseline data, which neglected correlation among longitudi-
nal cognitive performance. AD is a progressive neurodegenerative disorder, thus
it is significant to discover neuroimaging measures that impact the progression
of this disease along the time axis.
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In the association study of predicting cognitive scores from imaging features,
the input data usually consists of two matrices: the imaging feature matrix X
and the cognitive score matrix Y. If we denote the number or samples as n;
the number of features as d while the number of different measures of a certain
cognitive performance test as m, then X and Y can be formed in the following
format: X = [X1, · · · , XT ] ∈ R

d×nT corresponds to the imaging features at T
consecutive time points where Xt ∈ R

d×n is the imaging marker matrix at the
t-th time point; Y = [Y1, · · · , YT ] ∈ R

n×mT corresponds to the cognitive scores
at T consecutive time points with Yt ∈ R

n×m denoting the measurement at the
t-th time point.

Let’s consider the prediction of one cognitive measure at one time point to
be one task, then the association study between cognitive scores and imaging
features can be regarded as a multi-task problem. Apparently, in our setting of
the longitudinal association study, the number of tasks is mT . The goal of the
association study is to find a weight matrix W = [W1, · · · ,WT ] ∈ R

d×mT , which
captures the relevant features for predicting the cognitive scores.

A forthright method is to perform linear regression at each time point and
determine Wt separately. However, the linear regression treats all tasks indepen-
dently and ignores the useful information reserved in the change along the time
continuum. Since AD is a progressive neurodegenerative disorder and cognitive
performance is an intuitive indication of the disease status, we can reasonably
regard the various tasks to be possibly related. In one cognitive experiment,
the result of a certain measure at different time points may be correlated and
also different cognitive measures at a certain time point may have mutual influ-
ence. To excavate the correlations among the cognitive scores, several multi-task
models are put forward.

One possible method is the longitudinal �2,1-norm regression model [6,11]. In
this model, the introduced �2,1-norm regularization enforces structured sparsity,
which helps to detect features related to all the cognitive measures along the
whole time axis. Moreover, with the assumption that imaging features may be
correlated with each other thus gain an overlap in their effects on brain structure
or disease progression, we can use the trace norm (also known as nuclear norm)
regularization to impose a low-rank restriction. Also, there are models combining
these two regularization terms to enforce the structured sparsity as well as low-
rank constraint [13,14].

Indeed, these models impose trace norm regularization to the whole parame-
ter matrix, such that the common subspace globally shared by different predic-
tion tasks can be extracted. However, the longitudinal prediction tasks can be
interrelated as different groups. The straightforward way to discover such inter-
related groups is to conduct the clustering analysis first and extract the group
structures. However, such a heuristic step is independent to the entire longitu-
dinal learning model, thus the detected group structures are not optimal for the
longitudinal learning process.

To address this challenging problem, we propose a novel longitudinal struc-
tured low-rank learning model to uncover the interrelations among different
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cognitive measures and utilize the learned interrelated structures to enhance
cognitive function prediction tasks.

2 Longitudinal Structured Low-Rank Regression Model

In our multi-task problem, suppose these mT tasks come from c groups, where
tasks in each group are correlated. We can introduce and optimize a group index
matrix set Q = {Q1, Q2, . . . Qc} to discover this group structure. Each Qi is a
diagonal matrix with Qi ∈ {0, 1}mT×mT showing the assignment of tasks to the
i-th group. For the (k, k)-th element of Qi, (Qi)kk = 1 means that the k-th
task belongs to the i-th group while (Qi)kk = 0 means not. To avoid overlap of
groups, we constrain

∑c
i=1 Qi = I.

Since each group of tasks share correlative dependence, we can reasonably
assume the latent subspace of each group maintains a low-rank structure. We
impose Schatten-p norm as a low-rank constraint to uncover the common sub-
space shared by different tasks. According to the discussion below, Schatten
p-norm makes a better approximation of the low-rank constraint than the pop-
ular trace norm regularization [7].

For a matrix A ∈ R
d×n, suppose σi is its i-th singular value, then the rank of

A can be written as rank(A) =
∑min{d,n}

i=1 σ0
i , where 00 = 0. And the definition

of p-th power Schatten p-norm (0 < p < ∞) of A is: ‖A‖pSp
= Tr((ATA)

p
2 ) =

∑min{d,n}
i=1 σp

i . Specially, when p = 1, we find the Schatten p-norm of A is exactly
its trace norm: ‖A‖S1

= (Tr((ATA)
1
2 )) =

∑min{d,n}
i=1 σi = ‖A‖∗.

So when 0 < p < 1, Schatten p-norm is a better low-rank regularization
than trace norm. Accordingly, our longitudinal structured low-rank regression
model is:

min
W,Qi|ci=1∈{0,1}mT×mT ,

c∑

i=1
Qi=I

T∑

t=1

∥
∥WT

t Xt − Yt

∥
∥2

F
+ γ

c∑

i=1

(‖WQi‖pSp
)l. (1)

In Problem (1), the grouping structure tends to be unstable when p is small,
so we add a power parameter l to the regularization term and make our model
robust. It is difficult to solve this new non-convex and non-smooth objective func-
tion. In next section, we will propose a novel alternating optimization method
for Problem (1).

3 Optimization Algorithm for Solving Problem (1)

According to the property of Qi that Qi
2 = Qi, Problem (1) can be rewritten as:

min
W,Qi|ci=1∈{0,1}mT×mT ,

c∑

i=1
Qi=I

T∑

t=1

∥
∥WT

t Xt − Yt

∥
∥2

F
+ γ

c∑

i=1

Tr(WTDiWQi), (2)
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where Di is defined as:

Di =
lp

2
(‖WQi‖pSp

)l−1(WQiWT )
p−2
2 . (3)

We can solve Problem (2) via alternating optimization method.
The first step is fixing W and solving Q, and then Problem (2) becomes:

min
Qi|ci=1∈{0,1}mT×mT ,

c∑

i=1
Qi=I

c∑

i=1

Tr((WTDiW)Qi). (4)

Letting Ai = WTDiW, then the solution of Qi is:

(Qi)kk =

{
1 i = arg min

j
(Aj)kk

0 otherwise
(5)

The second step is fixing Q and solving W, and then Problem (2) becomes:

min
W

T∑

t=1

∥
∥WT

t Xt − Yt

∥
∥2

F
+ γ

c∑

i=1

Tr(WTDiWQi). (6)

Denote Qi in the format that Qi = diag(Qi1, Qi2, . . . , QiT ). Since

Tr(WTDiWQi) =
T∑

t=1
Tr(WT

t DiWtQit), we can decouple Problem (6) for each t:

min
Wt

∥
∥WT

t Xt − Yt

∥
∥2

F
+ γ

c∑

i=1

Tr(WT
t DiWtQit). (7)

Problem (7) can be further decoupled for each column of Wt as follows:

min
(wt)k

∥
∥(wt

T )kXt − (yt)k
∥
∥2

2
+ γ Tr((wt

T )k(
c∑

i=1

(Qit)kkDi)(wt)k). (8)

Taking derivative w.r.t. (wt)k in Problem (8) and setting it to zero, then we
get:

(wt)k = (XtXt
T + γ (

c∑

i=1

(Qit)kkDi))−1Xt((yt)k)T . (9)

We can iteratively update Q, W and D with the alternating steps mentioned
above and the algorithm of Problem (2) is summarized in Algorithm 1.

Convergence Analysis: Our algorithm uses alternating optimization method,
whose convergence has already been proved in [1]. In Algorithm 1, variables in
each iteration has a closed form solution and can be computed fairly fast. In the
following experiments on the ADNI data, the running time of each iteration is
about 0.005 s and our method usually converges within one second.
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Algorithm 1. Algorithm to solve problem (2).
Input:

Longitudinal imaging feature matrix X = [X1, X2, ..., XT ] ∈ R
d×nT , longitudinal

cognitive score matrix Y = [Y1, Y2, ..., YT ] ∈ R
n×mT , parameter γ, and number of

groups c.
Output:

Weight matrix W = [W1, W2, ..., WT ] where Wt ∈ R
d×m and c different group

matrix Qi ∈ R
mT×mT which groups the tasks into exactly c groups.

Initialize W by the optimal solution to ridge regression problem
while not converge do

1. Update Di|ci=1 according to the definition in Eq. (3).
2. Update Qi|ci=1 according to the solution in Eq. (5)
3. Update W, where the solution to the k-th column of Wt is displayed in Eq. (9).

end while

4 Experimental Results

In this section, we evaluate the prediction performance of our proposed method
by applying it to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base.

4.1 Data Description

Data used in the preparation of this article were obtained from the ADNI data-
base (adni.loni.usc.edu). Each MRI T1-weighted image was first anterior com-
missure (AC) posterior commissure (PC) corrected using MIPAV2, intensity
inhomogeneity corrected using the N3 algorithm [10], skull stripped [16] with
manual editing, and cerebellum-removed [15]. We then used FAST [17] in the
FSL package3 to segment the image into gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF), and used HAMMER [9] to register the images to
a common space. GM volumes obtained from 93 ROIs defined in [5], normal-
ized by the total intracranial volume, were extracted as features. Longitudinal
scores were downloaded from three independent cognitive assessments including
Fluency Test, Rey’s Auditory Verbal Learning Test (RAVLT) and Trail making
test (TRAILS). The details of these cognitive assessments can be found in the
ADNI procedure manuals. The time points examined in this study for both imag-
ing markers and cognitive assessments included baseline (BL), Month 6 (M6),
Month 12 (M12) and Month 24 (M24). All the participants with no missing
BL/M6/M12/M24 MRI measurements and cognitive measures were included in
this study. A total of 385 sample subjects are involved in our study, among which
we have 56 AD samples, and 181 MCI samples and 148 health control (HC) sam-
ples. Seven cognitive scores were included: (1) RAVLT TOTAL, RAVLT TOT6
and RAVLT RECOG scores from RAVLT cognitive assessment; (2) FLU ANIM
and FLU VEG scores from Fluency cognitive assessment; (3) Trails A and Trails
B scores from Trail making test.

http://adni.loni.usc.edu/
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4.2 Performance Comparison on the ADNI Cohort

We first evaluate the ability of our method to predict a certain set of cognitive
scores via neuroimaging marker. We tracked the process along the time axis and
intended to find the set of markers which could influence the cognitive score
over the time points. As the evaluation metric, we reported the Root Mean
Square Error (RMSE) as well as the Correlation Coefficient (CorCoe) between
the predicted score and the ground truth.

We compared our method with all the counterparts discussed in the intro-
duction, which are: Multivariate Linear Regression (MLR), Multivariate Ridge
Regression (MRR), Longitudinal Trace-norm Regression (LTR), Longitudinal
�2,1 norm Regression (L21R) and their combination (L21R + LTR). To illustrate
the advantage of simultaneously conducting task correlation and longitudinal
feature learning, we also compared with the method of using K-means to cluster
the tasks first and then implementing LTR in each group (K-means + LTR) as
the baseline.

We utilized the 10-fold cross validation technique and ran 50 times for each
method. The average RMSE and CorCoe on these 500 trials are reported. For
MLR and MRR, since they were not designed for the longitudinal tasks, we
computed the weight matrix for each time point separately and then merged
them to the final weight matrix according to the definition W = [W1, · · · ,WT ].
Here in this experiment, the number of time points T is 4. Our initial analy-
ses indicated that our model performs fairly stable when choosing parameter l
from {2, 2.5, . . . , 5} and choosing parameter p from {0.1, 0.2, . . . , 0.8} (data not
shown). In our experiments, we fixed p = 0.1 and l = 3.

The experimental results are summarized in Table 1. From all the results,
we can notice that our method outperforms all other methods consistently on
all data sets. The reasons go as follows: MLR and MRR assumed the cognitive
measures at different time points to be independent, thus didn’t consider the
correlations along the time. Their neglects of the longitudinal correlation within
the data was detrimental to their prediction ability. As for L21R, LTR and their
combination LTR + L21R, even though they take into account the longitudinal
information, they cannot handle the possible group structure within the cognitive

Table 1. Cognitive assessment FLUENCY, RAVLT and TRAILS prediction compari-
son via RMSE and CorCoe. Better performance corresponds to lower RMSE or higher
CorCoe value.

MLR MRR LTR L21R L21R+LTR K-means+LTR OURS

RMSE FLUENCY 0.352 0.350 0.343 0.339 0.345 0.351 0.316

RAVLT 0.469 0.447 0.458 0.445 0.448 0.459 0.417

TRAILS 0.571 0.554 0.564 0.551 0.567 0.557 0.511

CorCoe FLUENCY 0.504 0.499 0.516 0.528 0.513 0.503 0.579

RAVLT 0.872 0.880 0.877 0.879 0.879 0.874 0.891

TRAILS 0.541 0.551 0.548 0.558 0.547 0.562 0.600
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scores. That is why they overweigh the standard methods like MLR and MRR
in most cases, but are inferior to our proposed method. For K-means + LTR,
the clustering step is detached from the longitudinal association study, thus
the learned interrelation structure is not optimal for the following longitudinal
learning process. As for our proposed method, we not only captured longitudinal
correlations among imaging features, but also detected group structure within
cognitive scores. As was discussed in the theoretical sections, our model is able
to find features which impact on the cognitive result at different stages and
meanwhile cluster the cognitive results into groups. Thus, our model can capture
features responsible for some, but not necessarily all, cognitive measures along
the time continuum, which saves more effective information in the prediction.

4.3 Identification of Longitudinal Imaging Markers

We further take a special case, the RAVLT assessment, as an example to analyze
results of our model. RAVLT is composed of three cognitive measures, which
are: (1) the total number of words kept in mind by the testee in the first five
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(a) Weight matrix for the left hemisphere.
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(b) Weight matrix for the right hemisphere.

Fig. 1. Heat maps of our learned weight matrices on the RAVLT cognitive assessment
via MRI data. The weight matrices at four time points, BL, M6, M12 and M24, are
plotted. We draw two matrices for each time point, where the left figure is for the
left hemisphere and the right figure for the right hemisphere. For each weight matrix,
columns denote neuroimaging features while rows represent three different RAVLT
scores, which are RAVLT TOTAL, RAVLT TOT6 and RAVLT RECOG, respectively.
Imaging features (columns) with larger weights possess higher correlation with the
corresponding cognitive measure.
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trials, RAVLT TOTAL; (2) the number of words recalled during the 6th trial,
RAVLT TOT6; and (3) the number of words recognized after a gap of 30 min,
RAVLT RECOG. According to the common sense, these three measures should
be interrelated with each other, thus clustered into the same group in our model.
The result of our model shows a consistent obedience of this rule, i.e., no matter
what the c value (number of groups) is, our model invariably put all these three
measures to the same group, which is in line with reality. Specially, when c is
larger than the real number of groups, the extra groups become empty.

Figure 1 shows the heat maps of the weight matrices learned by our method.
The figures demonstrate the capture of a small set of features that are con-
sistently associated to a certain group of cognitive measures (here the group
includes all measures). Among the selected features, we found the top two are
the hippocampal formation and thalamus, whose impacts on AD have already
been proved in the previous papers [2,3]. In summary, our model is competent
to select a small set of features that consistently correlate with a certain group
of cognitive measures along the time axis. And the effectiveness of the selected
features can be confirmed by previous reports in the literature.

5 Conclusion

In this paper, we proposed a novel longitudinal structured low-rank regression
model to study the longitudinal cognitive score prediction. Our model can simul-
taneously uncover the interrelation structures existing in different prediction
tasks and utilize such learned interrelated structures to enhance the longitudinal
learning model. Moreover, we utilized Schatten p-norm to extract the common
subspace shared by the prediction tasks. Our new model is applied to ADNI
cohort for cognitive impairment prediction using MRI data. Empirical results
validate the effectiveness of our model, showing a potential to provide reference
for current clinical research.
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