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Abstract. Typical studies of the geometry of the cerebral cortical struc-
ture focus on either cortical folding or thickness. They rely on spatial
normalization, but use cortical descriptors that are sensitive to misreg-
istration arising from the well-known problems of partial homologies
between subject brains and local optima in nonlinear registration. In
contrast to these approaches, we propose a novel framework for study-
ing the geometry of the entire cortical sheet, subsuming its folding and
thickness characteristics. We propose a novel descriptor of local cortical
geometry to increase robustness to partial homology and misregistration.
The proposed descriptor lies on a Riemannian manifold, and we describe
a method for hypothesis testing on manifolds for cross-sectional studies.
Results on simulated and clinical data show the benefits of the proposed
approach for detecting between-group differences with greater accuracy
and consistency.

Keywords: Brain cortex · Folding · Thickness · Riemannian space ·
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1 Introduction and Related Work

Studies of cerebral cortical geometry can provide insights into development,
aging, and disease progression. We propose a novel framework to study the geom-
etry of the entire cortical sheet, subsuming its folding and thickness properties
and modeling the complementary nature of these two attributes. Our histogram-
based approach provides robustness to partial homologies and misregistration in
detecting inter-cohort differences.

Typical cross-sectional cortical studies of thickness [6,10,18] or folding [16,
21,22] first perform spatial normalization and then conduct hypothesis tests at
every cortical location in the normalized space. However, it is difficult to find a
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large number of homologous features across individual cortices [11,12,20]. While
the major sulcal patterns are similar across individuals, there is a large individ-
ual variation in the folding pattern and, thus, the homology between cortical
surfaces of two brains is only approximate. This partial homology between two
cortices can lead to large within-group variance of cortical properties, e.g., bend-
ing, shape, or thickness. Moreover, fine-scale misregistrations, either because of
partial homology or numerical challenges in finding the global optimum under-
lying nonlinear diffeomorphic registration, can lead to invalid between-group
comparisons of cortical structure at non-homologous locations.

This paper proposes a novel statistical descriptor of local cortical geometry
that increases robustness to partial homology and misregistration. The proposed
descriptor for cortical folding, and thickness, can lead to easier interpretation,
unlike descriptors based on spherical harmonics or spherical wavelets [21]. The
proposed descriptor lies on a Riemannian manifold and, unlike related studies
on region-based cortical folding [1], uses a method for hypothesis testing on the
Riemannian manifold.

This paper presents a framework for cross-sectional cortical studies, which
models the geometry of the entire cortical sheet, unlike approaches that model
either cortical folding or thickness. It proposes a neighborhood-based histogram
feature of local cortical shape, which is robust to partial homology and misreg-
istration. It presents a method for hypothesis testing for cross-sectional studies
on the Riemannian manifold of histograms. The cross-sectional studies on simu-
lated and clinical brain MRI show the benefits of (i) modeling the entire geome-
try of the cortex, (ii) the robust histogram-based measure, and (iii) Riemannian
hypothesis testing, each of which leads to the detection of the between-group
differences with greater accuracy and precision.

2 Methods

This section describes the proposed model for the cortical sheet, the robust
descriptor of local cortical geometry, and its use for hypothesis testing on a
Riemannian manifold.

2.1 Modeling the Cortex

We propose a medial surface model for the cortex, which subsumes models for
cortical folding and thickness. The proposed model comprises (i) the mid cortical
surface, as the medial surface, and (ii) local cortical thickness values at each point
on the mid-cortical surface. Given the mid-cortical surface M, the value of the
thickness t at each point m on M gives the locations of the inner and outer
(pial) cortical surfaces, at distances t/2 along the inward and outward normals
to the mid-cortical surface at m.

We compute cortical thickness based on [7]. We model the geometry of the
mid-cortical surface M through the local surface-patch characteristics at each
point on the surface. At every point m ∈ M, the principal curvatures κmin(m)
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and κmax(m) describe the local geometry [3] (up to second order and up to a
translation and rotation). The space (κmin(m),κmax(m)) can be reparametrized,
by a polar transformation, into the orthogonal bases of curvedness C(m) :=
[κmin(m)2 + κmax(m)2]0.5 and shape index S(m) := 1

π arctan
[

κmin(m)+κmax(m)
κmin(m)−κmax(m)

]
,

which meaningfully separate notions of bending and shape [9], leading to easier
interpretation. The shape index S(m) ∈ [−1, 1] is a pure measure of shape,
modulo size, location, and pose. The curvedness C(m) ≥ 0 captures a notion of
surface bending at a particular patch scale/size, and is invariant to location and
pose. We compute principal curvatures at m by fitting a quadratic patch to the
local surface around m [3].

2.2 Multivariate Local Descriptor of Cortical Folding and Thickness

We propose a novel local descriptor of the cortical geometry (folding as well as
thickness) for cross-sectional studies for detecting cortical differences. The par-
tial homology across different brains, biologically limited to about two dozen
landmarks in each hemisphere [20], casts doubts on the validity of typical com-
parisons across non-homologous locations. At location m on the mid-cortical
surface in normalized space, the partial homology can greatly increase the vari-
ance of shape-index values Si(m) across individuals i. The variance increase
reduces the power of the subsequent hypothesis tests.

Surface based smoothing of the shape-index values Si(n), over a neighbor-
hood of location m, cannot address the partial-homology problem. When the
average of the shape index over sulci and gyri leads to a value close to zero, this
average is non-informative about the nature of the folding; e.g., the sinusoidal
surfaces f1(x, y) := sin(x + y) and f2(x, y) := sin(y) can both lead to the same
average close to zero in sufficiently large neighborhoods. Thus, spatial smooth-
ing of shape-index in leads to (i) high variance at fine scales (as for pointwise
analyses) and (ii) loss of differentiability between surfaces at coarse scales (i.e.,
large neighborhoods). So, a single-/multiscale analysis with shape-index values
can be an unreliable indicator of folding differences.

We propose to consider the histogram of shape-index values S(n) in a spatial
neighborhood around location n as the feature. The size of the neighborhood
for building this histogram depends on the typical size of regions (not individual
points) in the cortex over which sulcal/gyral homologies can be reliably estab-
lished. This histogram is immune to the inevitable misregistration of sulci/gyri
at fine scales. Moreover, unlike the neighborhood average that is a scalar, the
histogram is a far richer descriptor that retains neighborhood information by
restricting averaging to each histogram bin.

The limitations exhibited by the shape index, because of partial homology,
are also shared by the curvedness because the surface path from the crown of
a gyrus to a fundus of an adjacent sulcus takes the curvature through a large
variation, i.e., from a large positive value to zero (at the inflection point) and back
to a large positive value. Cortical thickness appears to be the least affected by the
partial homology because thickness exhibits a much smaller variation from gyrus
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to sulcus. Nevertheless, because the crowns of gyri are typically 20% thicker
than the fundi of sulci [4], even thickness studies, relying on normalization and
groupwise comparison of spatially-averaged thickness values (at multiple scales),
suffer from problems related to increased variance/information loss. Thus, we
also include curvedness and thickness through their local histograms.

Finally, motivated by the empirically found biological correlations between
the values of shape index Si(n), curvedness Ci(n), and thickness Ti(n), we pro-
pose their joint histogram, denoted by Hi(m), in the spatial neighborhood (about
5 mm radius) of location m on the medial (mid-cortical) surface, as the local
descriptor of the cortex.

2.3 Riemannian Statistical Modeling

We perform hypothesis testing using the joint histograms Hi(m) as the local
feature descriptor for the cortex at location m for subject i. If the number
of bins in the histogram is B, then Hi(m) ∈ (R≥0)B , ||Hi(m)||1 = 1, and
Hi(m) lies on a Riemannian manifold. To measure distance between histograms
H1(m) and H2(m), we use the Fisher-Rao distance metric d(H1(m),H2(m)) :=
dg(F1(m), F2(m)), where Fi(m) is the square-root histogram that is denoted√

Hi(m), with the value in the b-th bin Fi(m, b) :=
√

Hi(m, b) and
dg(F1(m), F2(m)) is the geodesic distance between F1(m) and F2(m) on the
unit hypersphere S

B−1 [19].
Modeling a probability density function (PDF) on a hypersphere entails fun-

damental trade-offs between model generality and the viability of the underlying
parameter estimation. For instance, although Fisher-Bingham PDFs on S

d are
able to model generic anisotropic distributions using O(d2) parameters, their
parameter estimation may be intractable [14]. In contrast, parameter estimation
for the O(d)-parameter von Mises-Fisher PDF is tractable, but that PDF can
only model isotropic distributions. We use a tractable approximation of a Normal
law on a Riemannian manifold [17], modeling anisotropy through its covariance
parameter in the tangent space at the mean.

For a group with I subjects, at each cortical location m, we fit the approx-
imate Normal law to the data {√

Hi(m)}I
i=1 as follows. We optimize for the

Frechet mean μ ∈ S
B−1 via iterative gradient descent on the manifold S

B−1 [2],
where

μ := arg min
ν

I∑
i=1

d2g(ν,
√

Hi(n)) under the constraint ν ∈ S
B−1. (1)

We use the logarithmic map Logμ(·) to map the square-root histograms
{√

Hi(m)}I
i=1 to the tangent space at the estimated Frechet mean μ and find

the optimal covariance matrix Σ in closed form [5]. For any histogram H, we
define the squared geodesic Mahalanobis distance between

√
H and mean μ,

given covariance Σ, as d2M (
√

H;μ,Σ) := Logμ(
√

H)T Σ−1Logμ(
√

H). Then, the
proposed PDF evaluated at histogram H is
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P (H|μ,Σ) := exp
(
−0.5d2M (

√
H;μ,Σ)

)
/((2π)(B−1)/2|Σ|1/2). (2)

2.4 Permutation Testing for Riemannian Statistical Analysis

Voxel-wise parametric hypothesis testing in the framework of general linear mod-
els runs a test at each voxel and adjusts p-values to control for Type-I error aris-
ing from multiple comparisons, using Gaussian field theory. However, such para-
metric approaches make strong assumptions on the data distributions and the
dependencies within neighborhoods [15]. In contrast, permutation tests are non-
parametric, rely on the generic assumption of exchangeability, lead to stronger
control over Type-1 error, are more robust to deviations of the data and effects
of processing from an assumed model, and yield multiple-comparison adjusted
p values [15].

For permutation testing within the Riemannian manifold of histograms, we
use a test statistic for cross-sectional studies to measure the differences between
the histogram distributions arising from two cohorts X and Y , at every location
m on the cortex. At each cortical location m, for both cohorts {HX

i (m)}I
i=1

and {HY
j (m)}J

j=1, we fit the above Riemannian model to estimate the Frechet
means μX(m), μY (m) and covariances ΣX(m), ΣY (m) (in the respective mean’s
tangent space). The Hotelling’s T 2 test statistic used in the standard multivariate
Gaussian case cannot be applied in our Riemannian case because the covariances
ΣX(m) and ΣY (m) are defined in two different (tangent) spaces. Thus, we
propose the following test statistic t(m) to measure the dissimilarity between the
two cohort distributions by adding the squared Mahalanobis geodesic distance
between the group means with respect to each group covariance, i.e.,

t(m) := d2M (μX(m);μY (m), ΣY (m)) + d2M (μY (m);μX(m), ΣX(m)). (3)

3 Results and Conclusion

We evaluate the proposed framework on MRI volumes from the OASIS
dataset [13]. We use BrainSuite (brainsuite.org) for tissue segmentation, mid-
cortical surface extraction, computing thickness and curvature measures, and
spatial normalization [8].

Validation on Brain MRI by Simulating Cortical Differences. We ran-
domly assigned 140 control subjects to 2 groups of 50 and 90 subjects. We treat
the larger group as normal. For the 50 subjects, we simulated both cortical
thinning (eroding the cortex segmentation) and flattening (smoothing the cor-
tex segmentation) in part of the right parietal lobe (Fig. 1(d)). This (i) reduced
thickness and curvedness values and (ii) increased the concentration of shape
index values around ±0.5 (corresponding to gyral ridges and sulcal valleys) by
smoothing fine-scale cortical features. We then tested for differences between
cortices of these 2 cohorts.

The new approach using the joint histogram descriptor with Riemannian
modeling and hypothesis testing (Fig. 2(d)) correctly shows significantly low p

http://brainsuite.org
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(a) shape index (b) curvedness (c) thickness (d) region selected

Fig. 1. Cortex parametrization: a sample brain showing computed values of the
(a) shape index, (b) curvedness, and (c) thickness, at each point on the mid-cortical
surface. Simulating cortical differences: (d) Selected region for simulating cortical
thinning and flattening.

(a) (b) (c) (d)

Fig. 2. Validation with simulated differences. Permutation test p values using
Riemannian statistical modeling and hypothesis testing for histogram descriptors with:
(a) shape index, (b) curvedness, (c) thickness, and (d) shape index, curvedness, and
thickness jointly (proposed).

(a) (b) (c) (d)

Fig. 3. Validation with simulated differences. Permutation test p values using
multiscale features of (a) curvedness, (b) thickness, and (c) shape index, curvedness,
and thickness jointly. Permutation test p values with the (d) histogram descriptor and
Euclidean statistics.

values in the thinned-flattened region (Fig. 1(d)) and high p values elsewhere. In
contrast, Riemannian analysis on the marginal histograms for the shape index
(Fig. 2(a)), curvedness (Fig. 2(b)), and thickness (Fig. 2(c)) produces far more
Type-I/Type-II errors.

In comparison, a multiscale shape-index descriptor using a Laplacian scale-
space pyramid was unable to detect any significant differences (all p values
> 0.3; hence, figure not shown), multiscale descriptors of curvedness (Fig. 3(a)),
thickness (Fig. 3(b)), and joint shape-curvedness-thickness (Fig. 3(c)) lead to a
large number of false positives. Furthermore, the joint histogram descriptor with
Euclidean statistical modeling and hypothesis testing (permutation test with
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(a) (b) (c)

Fig. 4. Simulated differences, stability analysis. Standard deviation of permuta-
tion test p values, using bootstrap sampling, for (a) joint multiscale descriptor, (b) joint
histogram descriptor with Euclidean analysis, (c) joint histogram descriptor with Rie-
mannian analysis (proposed).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 5. OASIS, histogram descriptors, Riemannian analysis. Permutation test p
values comparing MCI with controls using Riemannian statistical modeling and hypoth-
esis testing for histogram descriptors, for both hemispheres, using: (a),(e) shape index,
(b),(f) curvedness, (c),(g) thickness, and (d),(h) shape index, curvedness, and thick-
ness jointly (proposed). Analogous p values with (i)–(l) MCI cohort subset of 18 (ran-
domly chosen) subjects and (m)–(p) MCI cohort subset of the remaining 10 subjects.
[Color bar same as Fig. 2]
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Hotelling’s test statistic) leads to a large number of false negatives (differences
detected in shrunk region; Fig. 3(d)).

To evaluate the stability of the p values under variation in cohorts, we com-
puted a set of p values by bootstrap sampling the original cohort. This analysis
indicates that the stability of the p values from our framework (Fig. 4(c)) is
superior to approaches using (i) multiscale descriptors (Fig. 4(a)) and (ii) his-
togram descriptors without Riemannian analysis (Fig. 4(b)). The lower values in
the parietal lobe are consistent with the location of the selected region where
strong differences are introduced.

Comparisons of an MCI Cohort to the Control Group. We tested for
differences in 2 cohorts from the OASIS dataset: (i) 140 control subjects and
(ii) 28 subjects with mild cognitive impairment (MCI) with a clinical demen-
tia rating of 1. The results using the proposed approach for 28 MCI subjects
(Fig. 5(d)) remain far more stable for smaller cohort sizes, i.e., 18 MCI sub-
jects (Fig. 5(l)) and 10 MCI subjects (Fig. 5(p)), as compared to using the his-
togram descriptors separately for the shape index (Fig. 5(a),(i),(m)), curvedness
(Fig. 5(b),(j),(n)), and thickness (Fig. 5(c),(k),(o)). The joint multiscale descrip-
tor (Fig. 6) also leads to widely varying results with change in cohort size. Boot-
strap sampling of the cohorts shows that the stability of the p values from our
framework (Fig. 7(c)–(d)) are clearly more stable than those using the joint mul-
tiscale descriptor (Fig. 7(a)–(b)). Our thickness-based results (Fig. 5(c),(g)) share
some similarity with the thickness changes found in MCI [18].

(a) (b) (c)

Fig. 6. OASIS, multiscale descriptor. Permutation test p values with the joint
multiscale descriptor for a MCI cohort of (a) 10 subjects, (b) 18 subjects, and (c) 28
subjects.

(a) (b) (c) (d)

Fig. 7. OASIS, stability analysis. Standard deviation of permutation test p val-
ues, using bootstrap sampling for (a)–(b) joint multiscale descriptor (both hemispheres)
and (c)–(d) joint histogram descriptor with Riemannian analysis (both hemispheres)
(proposed).
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Conclusion. We have described a framework for analysis of cortical geometry
that combines a novel histogram-based descriptor, which is robust to partial
homologies and misregistration, with statistical analysis of a Riemannian man-
ifold. Our results show improved accuracy relative to multiscale approaches in
simulations and improved robustness to small sample sizes using clinical data.
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