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Abstract. The cortical folding of the human brain is highly complex and
variable across individuals. Mining the major patterns of cortical folding from
modern large-scale neuroimaging datasets is of great importance in advancing
techniques for neuroimaging analysis and understanding the inter-individual
variations of cortical folding and its relationship with cognitive function and
disorders. As the primary cortical folding is genetically influenced and has been
established at term birth, neonates with the minimal exposure to the complicated
postnatal environmental influence are the ideal candidates for understanding the
major patterns of cortical folding. In this paper, for the first time, we propose a
novel method for discovering the major patterns of cortical folding in a
large-scale dataset of neonatal brain MR images (N = 677). In our method, first,
cortical folding is characterized by the distribution of sulcal pits, which are the
locally deepest points in cortical sulci. Because deep sulcal pits are genetically
related, relatively consistent across individuals, and also stable during brain
development, they are well suitable for representing and characterizing cortical
folding. Then, the similarities between sulcal pit distributions of any two sub-
jects are measured from spatial, geometrical, and topological points of view.
Next, these different measurements are adaptively fused together using a simi-
larity network fusion technique, to preserve their common information and also
catch their complementary information. Finally, leveraging the fused similarity
measurements, a hierarchical affinity propagation algorithm is used to group
similar sulcal folding patterns together. The proposed method has been applied
to 677 neonatal brains (the largest neonatal dataset to our knowledge) in the
central sulcus, superior temporal sulcus, and cingulate sulcus, and revealed
multiple distinct and meaningful folding patterns in each region.
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1 Introduction

The human cerebral cortex is a highly convoluted and complex structure. Its cortical
folding is quite variable across individuals (Fig. 1). However, certain common folding
patterns exist in some specific cortical regions as shown in the classic textbook [1],
which examined 25 autopsy specimen adult brains. Mining the major representative
patterns of cortical folding from modern large-scale datasets is of great importance in
advancing techniques for neuroimaging analysis and understanding the inter-individual
variations of cortical folding and their relationship with structural connectivity, cog-
nitive function, and brain disorders. For example, in cortical surface registration [2],
typically a single cortical atlas is constructed for a group of brains. Such an atlas may
not be able to reflect some important patterns of cortical folding, due to the averaging
effect, thus leading to poor registration accuracy for some subjects that cannot be well
characterized by the folding patterns in the atlas. Building multiple atlases, with each
representing one major pattern of cortical folding, will lead to boosted accuracy in
cortical surface registration and subsequent group-level analysis.

To investigate the patterns of cortical folding, a clustering approach has been
proposed [3]. This approach used 3D moment invariants to represent each sulcus and
used the agglomerative clustering algorithm to group major sulcal patterns in 150 adult
brains. However, the discrimination of 3D moment invariants was limited in distin-
guishing different patterns. Hence, a more representative descriptor was proposed in
[4], where the distance between any two sulcal folds in 62 adult brains was computed
after they were aligned, resulting in more meaningful results. Meanwhile, sulcal pits,
the locally deepest points in cortical sulci, were proposed for studying the
inter-individual variability of cortical folding [5]. This is because sulcal pits have been
suggested to be genetically affected and closely related to functional areas [6]. It has
been found that the spatial distribution of sulcal pits is relatively consistent across
individuals, compared to the shallow folding regions, in both adults (148 subjects) and
infants (73 subjects) [7, 8].

In this paper, we propose a novel method for discovering major representative
patterns of cortical folding on a large-scale neonatal dataset (N = 677). The motivation
of using a neonatal dataset is that all primary cortical folding is largely genetically
determined and has been established at term birth [9]; hence, neonates with the minimal
exposure to the complicated postnatal environmental influence are the ideal candidates

Fig. 1. Huge inter-individual variability of sulcal folding patterns in neonatal cortical surfaces,
colored by the sulcal depth. Sulcal pits are shown by white spheres.
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for discovering the major cortical patterns. This is very important for understanding the
biological relationships between cortical folding and brain functional development or
neurodevelopmental disorders rooted during infancy. The motivation of using a
large-scale dataset is that small datasets may not sufficiently cover all kinds of major
cortical patterns and thus would likely lead to biased results.

In our method, we leveraged the reliable deep sulcal pits to characterize the cortical
folding, and thus eliminating the effects of noisy shallow folding regions that are
extremely heterogeneous and variable. Specifically, first, sulcal pits were extracted
using a watershed algorithm [8] and represented using a sulcal graph. Then, the dif-
ference between sulcal pit distributions of any two cortices was computed based on six
complementary measurements, i.e., sulcal pit position, sulcal pit depth, ridge point
depth, sulcal basin area, sulcal basin boundary, and sulcal pit local connection, thus
resulting in six matrices. Next, these difference matrices were further converted to
similarity matrices, and adaptively fused as one comprehensive similarity matrix using
a similarity network fusion technique [10], to preserve their common information and
also capture their complementary information. Finally, based on the fused similarity
matrix, a hierarchical affinity propagation clustering algorithm was performed to group
sulcal graphs into different clusters. The proposed method was applied to 677 neonatal
brains (the largest neonatal dataset to our knowledge) in the central sulcus, superior
temporal sulcus, and cingulate sulcus, and revealed multiple distinct and meaningful
patterns of cortical folding in each region.

2 Methods

Subjects and Image Acquisition. MR images for N = 677 term-born neonates were
acquired on a Siemens head-only 3T scanner with a circular polarized head coil. Before
scanning, neonates were fed, swaddled, and fitted with ear protection. All neonates were
unsedated during scanning. T1-weightedMR images with 160 axial slices were obtained
using the parameters: TR = 1,820 ms, TE = 4.38 ms, and resolution = 1 � 1�1 mm3.
T2-weighted MR images with 70 axial slices were acquired with the parameters:
TR =7,380 ms, TE = 119 ms, and resolution = 1.25 � 1.25 � 1.95 mm3.

Cortical Surface Mapping. All neonatal MRIs were processed using an infant-
dedicated pipeline [2]. Specifically, it contained the steps of rigid alignment between
T2 and T1 MR images, skull-stripping, intensity inhomogeneity correction, tissue
segmentation, topology correction, cortical surface reconstruction, spherical mapping,
spherical registration onto an infant surface atlas, and cortical surface resampling [2].
All results have been visually checked to ensure the quality.

Sulcal Pits Extraction and Sulcal Graph Construction. To characterize the sulcal
folding patterns in each individual, sulcal pits, the locally deepest point of sulci, were
extracted on each cortical surface (Fig. 1) using the method in [8]. The motivation is
that deep sulcal pits were relatively consistent across individuals and stable during
brain development as reported in [6], and thus were well suitable as reliable landmarks
for characterizing sulcal folding. To exact sulcal pits, each cortical surface was
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partitioned into small basins using a watershed method based on the sulcal depth map
[11], and the deepest point of each basin was identified as a sulcal pit, after pruning
noisy basins [8]. Then, a sulcal graph was constructed for each cortical surface as in
[5]. Specifically, each sulcal pit was defined as a node, and two nodes were linked by
an edge, if their corresponding basins were spatially connected.

Sulcal Graph Comparison. To compare two sulcal graphs, their similarities were
measured using multiple metrics from spatial, geometrical, and topological points of
view, to capture the multiple aspects of sulcal graphs. Specifically, we computed six
distinct metrics, using sulcal pit position D, sulcal pit depth H, sulcal basin area S,
sulcal basin boundary B, sulcal pit local connection C, and ridge point depth R. Given
N sulcal graphs from N subjects, any two of them were compared using above six
metrics, so a N � N matrix was constructed for each metric.

The difference between two sulcal graphs can be measured by comparing the
attributes of the corresponding sulcal pits in the two graphs. In general, the difference
between any sulcal-pit-wise attribute of sulcal graphs P and Q can be computed as

Diff P;Q; diffXð Þ ¼ 1
2
ð 1
VP

X
i2P diffXði;QÞþ

1
VQ

X
j2Q diffXðj;PÞÞ ð1Þ

where VP and VQ are respectively the numbers of sulcal pits in P and Q, and diffX i;Qð Þ
is the difference of a specific attribute X between sulcal pit i and its corresponding
sulcal pitin graph Q. Note that we treat the closest pit as the corresponding sulcal pit, as
all cortical surfaces have been aligned to a spherical surface atlas.
(1) Sulcal Pit Position. Based on Eq. 1, the difference between P and Q in terms of
sulcal pit positions is computed as D P;Qð Þ ¼ Diff P;Q; diffDð Þ, where diffDði;QÞ is
the geodesic distance between sulcal pit i and its corresponding sulcal pit in Q on the
spherical surface atlas.
(2) Sulcal Pit Depth. For each subject, the sulcal depth map is normalized by dividing
by the maximum depth value, to reduce the effect of the brain size variation. The
difference between P and Q in terms of sulcal pit depth is computed as
H P;Qð Þ ¼ Diff P;Q; diffHð Þ, where diffHði;QÞ is the depth difference between sulcal
pit i and its corresponding sulcal pit in Q.
(3) Sulcal Basin Area. To reduce the effect of surface area variation across subjects,
the area of each basin is normalized by the area of the whole cortical surface. The
difference between P and Q in terms of sulcal basin area of graphs P and Q is computed
as S P;Qð Þ ¼ Diff P;Q; diffSð Þ, where diffSði;QÞ is the area difference between the
basins of sulcal pit i and its corresponding sulcal pit in Q.
(4) Sulcal Basin Boundary. The difference between P and Q in terms of sulcal basin
boundary is formulated as BðP;QÞ ¼ Diff P;Q; diffBð Þ, where diffBði;QÞ is the dif-
ference between the sulcal basin boundaries of sulcal pit i and its corresponding sulcal
pit in Q. Specifically, we define a vertex as a boundary vertex of a sulcal basin, if one of
its neighboring vertices belongs to a different basin. Given two corresponding sulcal
pits i 2 P and i0 2 Q, their sulcal basin boundary vertices are respectively denoted as Bi

and Bi0 . For any boundary vertex a 2 Bi, its closest vertex a0 is found from Bi0 ; and
similarly for any boundary vertex b0 2 Bi0 , its closest vertex b is found from Bi. Then,
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the difference between the basin boundaries of sulcal pit i and its corresponding pit
i0 2 Q is defined as:

diffB i;Qð Þ ¼ 1
2

1
NBi

X
a2Bi;a

0 2B0
i

dis a; a0ð Þ þ 1
NB0

i

X
b0 2B

i
0 ;b2Bi

disðb0; bÞ
 !

ð2Þ

where NBi and NB
i
0 are respectively the numbers of vertices in Bi and Bi0 , and disð; Þ is

the geodesic distance between two vertices on the spherical surface atlas.
(5) Sulcal Pit Local Connection. The difference between local connections of two
graphs P and Q is computed as C P;Qð Þ ¼ Diff P;Q; diffCð Þ, where diffCði;QÞ is the
difference of local connection after mapping sulcal pit i to graph Q. Specifically, for a
sulcal pit i, assume k is one of its connected sulcal pits. Their corresponding sulcal pits
in graph Q are respectively i0 and k0. The change of local connection after mapping
sulcal pit i to graph Q is measured by:

diffC i;Qð Þ ¼ 1
NGi

X
k2Gi

jdis i; kð Þ � dis i0; k0ð Þj ð3Þ

where Gi is the set of sulcal pits connecting to i, and NGi is the number of pits in Gi.
(6) Ridge Point Depth. Ridge points are the locations, where two sulcal basins meet.
As suggested by [5], the depth of the ridge point is an important indicator for distin-
guishing sulcal patterns. Thus, we compute the difference between the average ridge
point depth of sulcal graphs P and Q, as:

RðP;QÞ ¼ 1
EP

X
e2P re �

1
EQ

X
e2Q re

����
���� ð4Þ

where EP and EQ are respectively the numbers of edges in P and Q; e is the edge
connecting two sulcal pits; and re is the normalized depth of ridge point in the edge e.

Sulcal Graph Similarity Fusion. The above six metrics measured the inter-individual
differences of sulcal graphs from different points of view, and each provided com-
plementary information to the others. To capture both the common information and the
complementary information, we employed a similarity network fusion (SNF) method
[10] to adaptively integrate all six metrics together. To do this, each difference matrix
was normalized by its maximum elements, and then transformed into a similarity
matrix as:

WM x; yð Þ ¼ expð� M2 x; yð Þ
l Ux þUy þM x;yð Þ

3

� �Þ ð5Þ

where l was a scaling parameter; M could be anyone of the above six matrices; Ux and
Uy were respectively the average values of the smallest K elements in the x-th row and
y-th row ofM. Finally, six similarity matrices WD,WH,WR,WS,WB, andWC were fused
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together as a single similarity matrix W by using SNF with t iterations. The parameters
were set as l ¼ 0:8, K = 30, and t = 20 as suggested in [10].

Sulcal Pattern Clustering. To cluster sulcal graphs into different groups based on the
fused similarity matrix W, we employed the Affinity Propagation Clustering
(APC) algorithm [12], which could automatically determine the number of clusters
based on the natural characteristics of data. However, since sulcal folding patterns were
extremely variable across individuals, too many clusters were identified after per-
forming APC, making it difficult to observe the most important major patterns.
Therefore, we proposed a hierarchical APC framework to further group the clusters.
Specifically, after running APC, (1) the exemplars of all clusters were used to perform a
new-level APC, so less clusters were generated. Since the old clusters were merged, the
old exemplars may be no longer representative for the new clusters. Thus, (2) a new
exemplar was selected for each cluster based on the maximal average similarity to all
the other samples in the cluster. We repeated these steps, until the cluster number
reduced to an expected level (<5).

3 Results

We extracted sulcal pits on cortical surfaces from 677 neonatal brains. To demonstrate
the validity of our methods for discovering the cortical folding patterns, we employed
three representative cortical regions, i.e., the central sulcus, superior temporal sulcus,
and cingulate sulcus. For each cortical region, a 677 � 677 similarity matrix was
computed using SNF and all subjects were then clustered into different groups by the
hierarchical APC. To better explore the major folding patterns, an average cortical
surface was constructed for each cluster, based on 20 representative cortical surfaces
that are most similar to the exemplar in each cluster. All sulcal pits in each cluster were
mapped onto the average surfaces.

For the central sulcus, three distinct folding patterns were identified, as shown in
Fig. 2. In the pattern (a), two sulcal pits concentration areas can be observed, indicating
two sulcal basins in the central sulcus. This pattern was further confirmed by six
representative examples of individual subjects (second to seventh columns). In the
pattern (b), three distinct sulcal pits concentration areas can be observed, with one extra
area (basin 3) located in the most inferior portion of the central sulcus, compared to the
pattern (a). In the pattern (c), three distinct sulcal pits concentration areas can be
observed as in the pattern (b), but they are more concentrated. This is also confirmed by
six representative examples of (c). Moreover, compared to the pattern (b), the sulcal
basin 2 is very short, while the sulcal basin 3 is very long in the pattern (c). Such
phenomenon is likely related to “hand knob shift” in a study of the shape of the central
sulcus in adults [13]. Previously, different studies reported either two [8] or three [7]
sulcal basins in the central sulcus. Herein, we can see that both two-basin and
three-basin patterns are major patterns of sulcal folding.

For the superior temporal sulcus (STS), three distinct folding patterns were
identified, as shown in Fig. 3. In the pattern (a), the distribution of sulcal pits in the
posterior portion of STS is more diffused and bended, compared to the patterns (b) and
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(c), indicating the differences in the folding shape of STS. This is supported by a
previous cortical folding study in adults, which reported that for some brains there was
a Y-shaped STS but for some brains there was a single long STS [4]. In the pattern (b),
compared to (a) and (c), an extra concentration region of sulcal pits is exhibited near
the temporal pole, which is also confirmed by six representative examples in individual
subjects, showing small sulcal basins near the temporal pole. In the pattern (c), the
sulcal basin in the anterior portion of STS is very long and straight, extending to the
temporal pole.

Fig. 2. Sulcal folding patterns in the central sulcus. The first column shows three discovered
sulcal folding patterns, with all sulcal pits (red spheres) mapped onto the average surface of each
cluster. For each pattern, the second to seventh columns show six representative examples of
individual subjects. Different sulcal basins are marked with different colors. The percentage of
each pattern is shown at the top-left corner.

Fig. 3. Sulcal folding patterns in the superior temporal sulcus. The first column shows three
discovered sulcal folding patterns, with all sulcal pits (red spheres) mapped onto the average
surface of each cluster. For each pattern, the second to seventh columns show six representative
examples of individual subjects. Different sulcal basins are marked with different colors.
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For the cingulate sulcus, four distinct major folding patterns were identified, as
shown in Fig. 4. In the pattern (a), a single long cingulate sulcus is clearly shown,
while in the pattern (b), two long parallel sulci are observed. This is consistent with the
previous cortical folding pattern study in adults [4], which reported that two cingulate
sulci were observed in some brains. A study of autopsy specimen brains also reported
that 24 % left hemispheres had double parallel cingulate sulcus [1]. In the pattern (c),
the cingulate sulcus is interrupted in the anterior region; in contrast, in the pattern (d),
the cingulate sulcus is interrupted in the posterior region. This two types of interruption
were also reported in [1]. In pattern (c) and pattern (d), some parallel sulci can be
observed, but they are much shorter than that in pattern (b).

4 Conclusion

The main contribution of this paper is twofold. First, a novel generic method for
discovering the cortical folding patterns was proposed, by leveraging the reliable sulcal
pits. Specifically, multiple complementary similarity measures of sulcal pits graph were
first computed and adaptively fused to comprehensively capture the individual simi-
larity. Then, based on the fused similarity, sulcal pits graphs were clustered using a
hierarchical affinity propagation algorithm. Second, for the first time, we applied the
proposed method to discover the cortical folding patterns in a large-scale neonatal
dataset with 677 subjects, and revealed multiple distinct and representative patterns.
These results suggested that it is needed to construct multiple representative cortical
folding atlases for each region for better spatial normalization of individuals in

Fig. 4. Sulcal folding patterns in the cingulate sulcus. The first column shows four discovered
folding patterns, with all sulcal pits (red spheres) mapped onto the average surface of each
cluster. The second column shows the schematic drawing of the sulcal curves (blue dashes) on
the average surface of each cluster. For each pattern, the third to seventh columns show five
representative examples of individual subjects. The percentage of each pattern is shown at the
top-left corner.
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group-level studies. Our future work includes discovering patterns in other cortical
regions, and exploring their relationships with structural connectivity and cognitive
functions.

Acknowledgements. This work was supported in part by UNC BRIC-Radiology start-up fund
and NIH grants (MH107815, MH108914, MH100217, HD053000, and MH070890).

References

1. Ono, M., Kubik, S., Abernathey, C.D.: Atlas of the Cerebral Sulci. Thieme, New York
(1990)

2. Li, G., Wang, L., Shi, F., et al.: Construction of 4D high-definition cortical surface atlases of
infants: methods and applications. Med. Image Anal. 25, 22–36 (2015)

3. Sun, Z.Y., Rivière, D., Poupon, F., Régis, J., Mangin, J.-F.: Automatic inference of sulcus
patterns using 3D moment invariants. In: Ayache, N., Ourselin, S., Maeder, A. (eds.)
MICCAI 2007, Part I. LNCS, vol. 4791, pp. 515–522. Springer, Heidelberg (2007)

4. Sun, Z.Y., Perrot, M., Tucholka, A., Rivière, D., Mangin, J.-F.: Constructing a dictionary of
human brain folding patterns. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C.
(eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 117–124. Springer, Heidelberg (2009)

5. Im, K., Raschle, N.M., Smith, S.A., et al.: Atypical sulcal pattern in children with
developmental dyslexia and at-risk kindergarteners. Cereb. Cortex 26, 1138–1148 (2016)

6. Lohmann, G., von Cramon, D.Y., Colchester, A.C.: Deep sulcal landmarks provide an
organizing framework for human cortical folding. Cereb. Cortex 18, 1415–1420 (2008)

7. Im, K., Jo, H.J., Mangin, J.F., et al.: Spatial distribution of deep sulcal landmarks and
hemispherical asymmetry on the cortical surface. Cereb. Cortex 20, 602–611 (2010)

8. Meng, Y., Li, G., Lin, W., et al.: Spatial distribution and longitudinal development of deep
cortical sulcal landmarks in infants. NeuroImage 100, 206–218 (2014)

9. Li, G., Nie, J., Wang, L., et al.: Mapping region-specific longitudinal cortical surface
expansion from birth to 2 years of age. Cereb. Cortex 23, 2724–2733 (2013)

10. Wang, B., Mezlini, A.M., Demir, F., et al.: Similarity network fusion for aggregating data
types on a genomic scale. Nat. Methods 11, 333–337 (2014)

11. Li, G., Nie, J., Wang, L., et al.: Mapping longitudinal hemispheric structural asymmetries of
the human cerebral cortex from birth to 2 years of age. Cereb. Cortex 24, 1289–1300 (2014)

12. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315,
972–976 (2007)

13. Sun, Z.Y., Kloppel, S., Riviere, D., et al.: The effect of handedness on the shape of the
central sulcus. NeuroImage 60, 332–339 (2012)

18 Y. Meng et al.


	Discovering Cortical Folding Patterns in Neonatal Cortical Surfaces Using Large-Scale Dataset
	Abstract
	1 Introduction
	2 Methods
	3 Results
	4 Conclusion
	Acknowledgements
	References


