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Abstract. Functional subnetwork extraction is commonly employed to
study the brain’s modular structure. However, reliable extraction from
functional magnetic resonance imaging (fMRI) data remains challenging.
As representations of brain networks, brain graph estimates are typically
noisy due to the pronounced noise in fMRI data. Also, confounds, such as
region size bias, motion artifacts, and signal dropout, introduce region-
specific bias in connectivity, e.g. a node in a signal dropout area tends
to display lower connectivity. The traditional approach of global thresh-
olding might thus remove relevant edges that have low connectivity due
to confounds, resulting in erroneous subnetwork extraction. In this paper,
we present a modularity reinforcement strategy that deals with the above
two challenges. Specifically, we propose a local thresholding scheme that
accounts for region-specific connectivity bias when pruning noisy edges.
From the resulting thresholded graph, we derive a node similarity mea-
sure by comparing the adjacency structure of each node, i.e. its connec-
tion fingerprint, with that of other nodes. Drawing on the intuition that
nodes belonging to the same subnetwork should have similar connection
fingerprints, we refine the brain graph with this similarity measure to rein-
force its modularity structure. On synthetic data, our strategy achieves
higher accuracy in subnetwork extraction compared to using standard
brain graph estimates. On real data, subnetworks extracted with our
strategy attain higher overlaps with well-established brain systems and
higher subnetwork reproducibility across a range of graph densities. Our
results thus demonstrate that modularity reinforcement with our strategy
provides a clear gain in subnetwork extraction.

Keywords: Brain graph estimation · Connection fingerprint · fMRI ·
Local thresholding · Subnetwork extraction

1 Introduction

The human brain naturally befits a graphical representation, where brain regions
and their pair-wise interactions constitute graph nodes and weighted edges,
respectively. An important attribute of the brain is its modular structure, in
which specific subnetworks of brain regions work in tandem to execute vari-
ous functions. Functional magnetic resonance imaging (fMRI) is widely used
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for studying this modular structure of the brain. However, reliable subnetwork
extraction from fMRI data remains challenging. First, the brain network topol-
ogy may be obscured by noisy connectivity estimates [1]. Second, confounds,
such as region size bias [2], effects of motion artifacts [3], and signal dropouts
due to susceptibility artifacts (especially in regions like the orbitofrontal cor-
tex and the inferior temporal lobe) [4], introduce region-specific biases to the
connectivity estimates.

The conventional way for dealing with noisy connectivity matrices is to apply
global thresholding (GT) by either keeping only connections with values above
a certain threshold or keeping a certain graph density [1]. Due to region-specific
connectivity biases, e.g. brain regions in signal dropout locations tend to display
lower connectivity, certain regions that do belong to a subnetwork might not
appear as such based on the fMRI measurements, especially after GT, which
prunes weak edges. To mitigate this overlooked problem, a local thresholding
(LT) method based on the minimal spanning tree and k-nearest neighbors (MST-
kNN) has been proposed [5]. The idea in [5] was to build a single connected graph
using the MST and expand the tree by adding edges from each node to its near-
est neighbors until a desired graph density is reached. However, both key steps of
enforcing a single connected graph and adding edges to all nodes when expanding
the tree lack neuro-scientific justifications. A few studies have explored spectral
graph wavelet transform for graph de-noising [6], but this approach does not
explicitly handle region-specific connectivity biases. In fact, most existing con-
nectivity estimation and subnetwork extraction techniques [1,7] do not account
for these biases.

In this paper, we propose a modularity reinforcement strategy for improv-
ing brain subnetwork extraction. To deal with noisy edges and region-specific
connectivity biases, we propose a local thresholding scheme that normalizes the
connectivity distribution of each node prior to thresholding (Sect. 2.1). Also,
since node pairs belonging to the same subnetwork presumably connect to a
similar set of brain regions, i.e. have similar connection fingerprints, we derive a
node similarity measure from the thresholded graph by comparing the adjacency
structure of each node pair, and refine the graph with this similarity measure to
reinforce its modularity structure (Sect. 2.2). More reliable subnetwork extrac-
tion is consequently facilitated on the refined graph (Sect. 2.3). To set the number
of subnetworks, we adopt an automated technique based on graph Laplacian [8],
and compare that against the conventional modularity-maximization approach
[9]. We validate our modularity reinforcement strategy on both synthetic data
and real data from the Human Connectome Project (HCP).

2 Methods

2.1 Local Thresholding

Due to region-specific connectivity biases, conventional GT might prune relevant
connections with weak edge strength. To account for these biases, we present here
a LT scheme. The idea is to first normalize the connectivity distribution of each
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node into a uniform interval to rectify the biases. Subsequent global thresholding
on this normalized graph would have the effect of applying local thresholding on
each node. Specifically, let C be an n × n connectivity matrix, where n is the
number of nodes in the brain graph. We normalize the connectivity distribution
by mapping each row of C from [min (Ci,:),max (Ci,:)] to [0, 1], where Ci,:

denotes row i of C corresponding to the connectivity between brain region i
and all other regions in the brain. A threshold is then applied to generate a
binary adjacency matrix, G, which we then symmetrize by taking the union of
G and GT : A = Gi,j ∪ Gj,i. This binary adjacency matrix A is used to mask
out the noisy edges from C: Ĉi,j = Ai,jCi,j , which is equivalent to applying a
local threshold to Ci,: for all i . We note that in the event that noisy nodes are
accidentally included, some of the connections to these noise nodes (that might
not be kept by GT) would be kept by LT due to the normalization step.

2.2 Modularity Reinforcement

Since nodes working in tandem are expected to have similar connection finger-
prints, given A, where Ai,: is the connection fingerprint of node i , we define
the similarity between a pair of nodes (i , j ) as the number of common adjacent
nodes they share, normalized by the minimum node degree of the node pair:

Si,j =
∑n

k=1 Ai,kAj,k

min (di , dj )
(1)

where di =
∑n

k=1 Ai,k . We use the minimal degree for normalization, instead of
e.g. the average degree, so that connections associated with hub nodes (nodes
with more edges) will not be overly down-weighted. Since nodes within a sub-
network are expected to share more adjacent neighbors than nodes belonging
to different subnetworks, S boosts the within-subnetwork edges while suppresses
the between-subnetwork edges, which highlights the modular pattern inherent in
Ĉ: Hence, we use S to refine Ĉ to reinforce its modular structure: ĈS

i,j = Si,j Ĉi,j .

2.3 Subnetwork Extraction

For subnetwork extraction, we employ normalized cuts (Ncuts), chosen due to
its wide use by the fMRI community. To set the number of subnetworks, m,
we adopt an automated technique based on the spectral properties of the graph
Laplacian: L = D − W, where W is a connectivity matrix, Dii =

∑n
k=1 Wi,k .

Specifically, an eigenvalue of 1 has been shown to correspond to the transition
where single isolated nodes would no longer be declared as a subnetwork [8]. We
thus set m to the number of eigenvalues of L with values less than 1.

3 Materials

3.1 Synthetic Data

To illustrate our strategy, we synthesized a small-scale network consisting of
n = 13 nodes in Fig. 1. We also generated synthetic data that cover 100 random
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network configurations with n set to 100 nodes. For each network configuration,
the number of subnetworks, N , was randomly selected from [10, 20]. The number
of regions within each subnetwork was set to round (n/N) + r, where r was
randomly selected from [−2, 2]. With the resulting configuration, we created the
corresponding adjacency matrix, Σ, and drew time courses with 4,800 samples
(analogous to real data) from N(0, Σ). We then added Gaussian noise to the time
courses with signal-to-noise ratio randomly set between [−6dB, −3dB]. Sample
covariance was then estimated from these time courses with correlation values
associated with q % of the nodes reduced by z %, where q was randomly selected
from [20%, 30%] and z was randomly selected from [30%, 40%] to simulate
region-specific connectivity biases for smaller brain regions [2].

3.2 Real Data

We used the resting state fMRI scans of 77 healthy subjects (36 males and
41 females, ages ranging from 22 to 35) from the HCP Q3 dataset [10]. The
data comprised two sessions, each having a 30 min acquisition with a TR of
0.72 s and an isotropic voxel size of 2 mm. Preprocessing already applied to the
data by HCP [11] included gradient distortion correction, motion correction,
spatial normalization to MNI space, and intensity normalization. Additionally,
we regressed out motion artifacts, mean white matter and cerebrospinal fluid
signals, and principal components of high variance voxels [12], followed by band-
pass filtering with cutoff frequencies of 0.01 and 0.1 Hz. We used the Will90fROI
atlas [13] and the Harvard-Oxford (HO) atlas [14] to define regions of interest
(ROIs). The Will90fROI and HO atlas have 90 and 112 ROIs, respectively. Voxel
time courses within ROIs were averaged to generate region time courses. The
region time courses were demeaned, normalized by the standard deviation, and
concatenated across subjects for extracting group subnetworks. The Pearson’s
correlation values between the region time courses were taken as estimates of
connectivity. Negative elements in the connectivity matrix were set to zero due
to the currently unclear interpretation of negative connectivity [15].

4 Results and Discussion

We compared our strategy (LT with modularity reinforcement - LTMR) against
GT, LT, GT with modularity reinforcement (GTMR) and MST-kNN in [5].
LT was implemented using our proposed scheme (Sect. 2.1). GTMR was imple-
mented by deriving adjacency matrices with global thresholding, and subse-
quently executing our proposed modularity reinforcement strategy (Sect. 2.2).
Instead of using a specific threshold, we examine a range of graph densities to test
the robustness of our proposed strategy. For synthetic data, evaluation was based
on the accuracy of subnetwork extraction. To estimate accuracy, we matched the
extracted subnetworks to the ground truth subnetworks using Hungarian clus-
tering [16] with the Dice coefficient: DC = 2 |X ∩ Y | / (|X | + |Y |), where X is
the set of regions of an extracted subnetwork and Y is the set of regions of
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a ground truth subnetwork. The average DC over matched subnetworks was
taken as accuracy. For real data, we assessed the overlap between the extracted
subnetworks and fourteen well-established brain systems [13] and subnetwork
reproducibility for a range of graph densities [14] using DC.

4.1 Synthetic Data

An example of the various steps of our strategy is shown in Fig. 1c–f to demon-
strate how our strategy highlights the modular structure of the graph. With GT
(Fig. 1c), node 2 was isolated from subnetwork 1. In contrast, our LT scheme
(Fig. 1d) was able to preserve node 2. Also, with our LT (Fig. 1d), one of between-
subnetwork edges (i.e. edges between nodes 6 and 7 & nodes 6 and 9) was
pruned, which would help prevent the two subnetworks from being declared as
one, whereas none of between-network edges was pruned using GT (Fig. 1c). Fur-
ther, refining the graph (Fig. 1c, d) with our similarity helped to highlight the
modular pattern (Fig. 1e, f), e.g. the between-network edges which were similar
to or higher than some within-network edges (especially those edges between
nodes 12 and 13, node 2 and 1 & nodes 2 and 5) in Fig. 1c, d were supressed by
our similarity to be the lowest values in Fig. 1e, f.

(a) Network structure (b) C (c) C̄ (d) Ĉ (e) C̄S (f) ĈS

Fig. 1. Schematic illustrating our method using small scale example having two subnet-
works with each subnetwork having a provincial hub (blue) and linked by a connector
hub (orange). In (b), warmer color indicates higher connectivity and black dots indicate
the ground truth adjacency matrix. We denote C̄ as global thresholded, and Ĉ as local
thresholded connectivity matrix. At a graph density of 0.25, the GT generated isolated
node 2 in (c), while our LT preserved two edges linked to node 2 in (d). Refining the
graph (c) and (d) suppressed the between-network edges (edges between nodes 6 and
7 & nodes 6 and 9) to be the lowest connectivity in (e) and (f).

On the 100 synthetic dataset with 100 nodes over a density range of [0.005,
0.5] at an interval of 0.01, LTMR achieved significantly higher accuracy (aver-
age DC = 0.6735) than GT (average DC= 0.6216, p = 7.56e-10), LT (average
DC = 0.6537, p = 2.89e-7), and MST-kNN (average DC= 0.6327, p = 7.38e-8)
based on Wilcoxon signed rank test. LTMR also achieved higher DC than GTMR
(average DC = 0.6610, p = 0.34), though did not reach significance.

4.2 Real Data

We first evaluated our strategy by examining the overlap between our extracted
subnetworks and 14 well-established brain systems presented in [13], which we
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(a) Overlap with established subnetworks (b) Reproducibility over density range

Fig. 2. Subnetwork extraction on real data at graph densities from 0.05 to 0.5 at
interval of 0.05. Blue = GT, green = LT, black = GTMR, cyan = MST-kNN, and
red = our proposed LTMR strategy. Dash lines indicate average value. In (b), the
DC of the reference density of 0.2 was left blank, since inclusion of DC = 1 might
mislead the reader. In both (a) and (b), local thresholding outperforms the global
thresholding, and modularity reinforcement further increases DC compared to using
connectivity alone. Our proposed strategy attained the highest DC overall.

used as ground truth, Fig. 3a. For this assessment, we only considered connectiv-
ity matrices based on the Will90fROI atlas [13]. Our proposed LTMR achieved
an average DC of 0.6222, which was significantly higher than GT (average
DC= 0.5384, p = 0.002), MST-kNN (average DC = 0.4567, p = 0.002), GTMR
(average DC= 0.5422, p = 0.006), and higher than LT (average DC = 0.5936,
p = 0.063), as shown in Fig. 2a. At a graph density of 0.5041, corresponding to no
thresholding except negative correlation removal, a DC of 0.5667 was attained,
suggesting that some thresholding to remove noisy edges is beneficial. We note
that although some node-wise variations in connectivity distribution might have
a neuronal basis, we postulate that these variations would be overwhelmed by
the various confound-induced connectivity biases, as supported by how local
thresholding outperforms global thresholding. We further note that an average
m of 11 was estimated with the Laplace approach, whereas an average m of 4
was estimated with modularity maximization. This result shows the resolution
limits of modularity maximization [9], i.e. it tends to underestimate the number
of subnetworks in favoring network partitions with groups of modules combined
into larger communities. This suggests the need to explore alternative techniques
for estimating the number of subnetworks.

We next evaluated the subnetwork reproducibility over a range of graph
densities. We used connectivity matrices based on the HO atlas, which has larger
brain coverage than the Will90fROI atlas but does not have subnetwork labels
assigned to the regions. We set subnetworks corresponding to an edge density
of 0.2 as the reference. Based on the Laplace approach, the optimal number of
subnetworks was found to be 11±5 over the range of graph density examined. Our
proposed strategy achieved an average DC of 0.7302, which is significantly higher
than that of GT (DC = 0.6121, p = 0.004), LT (DC = 0.6677, p = 0.027), MST-
kNN (DC = 0.5737, p = 0.003), and higher than GTMR (DC = 0.7004, p = 0.262),
Fig. 2b. The results hold with other densities used as reference.
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(a) Will90fROI (b) Global thresholding (c) Local thresholding (d) Proposed

Fig. 3. Subnetwork visualization. 11 subnetworks were extracted from graphs with a
density of 0.2. (a) Well-established brain systems [13] (b) Two subnetwork formed by
isolated nodes and false inclusion of premotor-related regions into auditory system was
observed using global thresholding. (c) Local thresholding failed to detect one region
of known visual systems and falsely detected four unrelated regions into dorsal default
mode system. (d) Our strategy correctly detect most of the subnetworks found in [13].

Qualitatively, with GT (Fig. 3b), we observed two subnetworks comprising
only isolated nodes in the left and right Pallidum (yellow and light grey node in
the blue circle). We also observed that a region in the right premotor area was
falsely grouped into the auditory subsystem (the light green region with a red
arrow). With GTMR, two subnetworks comprising single nodes were found. As
for LT (Fig. 3c), we observed the left and right insular cortex as well as the right
Frontal Operculum Cortices (orange nodes with red arrows) were falsely grouped
with Dorsal Default Mode regions and the left paracingulate gyrus was excluded.
In contrast, our proposed strategy correctly identified known Dorsal Default
Mode regions, such as paracingulate gyrus, anterior division of cingulate gyrus,
and Accumbens, as a single subnetwork. Further, LT excluded the left Cuneal
Cortex in the visual system (blue arrow in Fig. 3c). Other found subnetworks
with our strategy, such as left and right executive control subnetworks (red and
yellow), Fig. 3d, also conform well to known brain systems as was quantitatively
demonstrated in Fig. 3a.

5 Conclusions

We proposed a modularity reinforcement strategy for improving brain subnet-
work extraction. By applying local thresholding in combination with modular-
ity reinforcement based on connection fingerprint similarity, we attained higher
accuracy in subnetwork extraction compared to conventional global thresholding
and local thresholding. Higher overlap with established brain systems and higher
subnetwork reproducibility were also shown on the real data. Our results thus
demonstrate clear benefits of refining conventional connectivity estimates with
our strategy for subnetwork extraction. In fact, our strategy can be extended
to applications beyond subnetwork extraction by deriving features based on the
extracted subnetworks, e.g. within-subnetwork connectivity computed from the
original connectivity estimates, and using those features for group analysis and
behavioural association studies.
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