
Mapping Lifetime Brain Volumetry
with Covariate-Adjusted Restricted Cubic
Spline Regression from Cross-Sectional

Multi-site MRI

Yuankai Huo1(&), Katherine Aboud2, Hakmook Kang3,
Laurie E. Cutting2, and Bennett A. Landman1

1 Department of Electrical Engineering,
Vanderbilt University, Nashville, TN, USA
yuankai.huo@vanderbilt.edu

2 Department of Special Education, Vanderbilt University, Nashville, TN, USA
3 Department of Biostatistics, Vanderbilt University, Nashville, TN, USA

Abstract. Understanding brain volumetry is essential to understand neuro-
development and disease. Historically, age-related changes have been studied in
detail for specific age ranges (e.g., early childhood, teen, young adults, elderly,
etc.) or more sparsely sampled for wider considerations of lifetime aging. Recent
advancements in data sharing and robust processing have made available con-
siderable quantities of brain images from normal, healthy volunteers. However,
existing analysis approaches have had difficulty addressing (1) complex volu-
metric developments on the large cohort across the life time (e.g., beyond cubic
age trends), (2) accounting for confound effects, and (3) maintaining an analysis
framework consistent with the general linear model (GLM) approach pervasive
in neuroscience. To address these challenges, we propose to use covariate-
adjusted restricted cubic spline (C-RCS) regression within a multi-site cross-
sectional framework. This model allows for flexible consideration of nonlinear
age-associated patterns while accounting for traditional covariates and interac-
tion effects. As a demonstration of this approach on lifetime brain aging, we
derive normative volumetric trajectories and 95 % confidence intervals from
5111 healthy patients from 64 sites while accounting for confounding sex,
intracranial volume and field strength effects. The volumetric results are shown
to be consistent with traditional studies that have explored more limited age
ranges using single-site analyses. This work represents the first integration of
C-RCS with neuroimaging and the derivation of structural covariance networks
(SCNs) from a large study of multi-site, cross-sectional data.

1 Introduction

Brain volumetry across the lifespan is essential in neurological research and clinical
investigation. Magnetic resonance imaging (MRI) allows for quantification of such
changes, and consequent investigation of specific age ranges or more sparsely sampled
lifetime data [1]. Contemporaneous advancements in data sharing have made consid-
erable quantities of brain images available from normal, healthy populations. However,
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the regression models prevalent in volumetric mapping (e.g., linear, polynomial,
non-parametric model, etc.) have had difficulty in modeling complex, cross-sectional
large cohorts while accounting for confound effects.

This paper proposes a novel multi-site cross-sectional framework using
Covariate-adjusted Restricted Cubic Spline (C-RCS) regression to map brain volumetry
on a large cohort (5111 MR 3D images) across the lifespan (4 * 98 years). The
C-RCS extends the Restricted Cubic Spline [2, 3] by regressing out the confound
effects in a general linear model (GLM) fashion. Multi-atlas segmentation is used to
obtain whole brain volume (WBV) and 132 regional volumes. The regional volumes
are further grouped to 15 networks of interest (NOIs). Then, structural covariance
networks (SCNs), i.e. regions or networks that mature or decline together during
developmental periods, are established based on NOIs using hierarchical clustering
analysis (HCA). To validate the large-scale framework, confidence intervals (CI) are
provided for both C-RCS regression and clustering from 10,000 bootstrap samples.

2 Methods

2.1 Extracting Volumetric Information

The complete cohort aggregates 9 datasets with a total 5111 MR T1w 3D images from
normal healthy subjects (Table 1). 45 atlases are non-rigidly registered [4] to a target
image and non-local spatial staple (NLSS) label fusion [5] is used to fuse the labels
from each atlas to the target image using the BrainCOLOR protocol [6] (Fig. 1). WBV
and regional volume are then calculated by multiplying the volume of a single voxel by

Table 1. Data summary of 5111 multi-site images.

Study name Website Images Sites

Baltimore Longitudinal Study of Aging (BLSA) www.blsa.nih.gov 605 4

Cutting Pediatrics vkc.mc.vanderbilt.edu/ebrl 586 2

Autism Brain Imaging Data Exchange (ABIDE) fcon_1000.projects.nitrc.org/indi/abide 563 17

Information eXtraction from Images (IXI) www.nitrc.org/projects/ixi_dataset 523 3

Attention Deficit Hyperactivity Disorder (ADHD200) fcon_1000.projects.nitrc.org/indi/adhd200 949 8

National Database for Autism Research (NDAR) ndar.nih.gov 328 6

Open Access Series on Imaging Study (OASIS) www.oasis-brains.org 312 1

1000 Functional Connectome (fcon_1000) fcon_1000.projects.nitrc.org 1102 22

Nathan Kline Institute Rockland (NKI_rockland) fcon_1000.projects.nitrc.org/indi/enhanced 143 1

Fig. 1. The large-scale cross-sectional framework on 5111 multi-site MR 3D images.
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the number of labeled voxels in original image space. In total, 15 NOIs are defined by
structural and functional covariance networks including visual, frontal, language,
memory, motor, fusiform, basal ganglia (BG) and cerebellum (CB).

2.2 Covariate-Adjusted Restricted Cubic Spline (C-RCS)

We define x as the ages of all subjects and S xð Þ as the corresponding brain volumes. In
canonical nth degree spline regression, splines are used to model non-linear relation-
ships between variables S xð Þ and x by deciding the connections between K knots
ðt1\t2\ � � �\tKÞ. In this work, such knots were determined based on previously
identified developmental shifts [1], specifically corresponding with transitions between
childhood (7–12), late adolescence (12–19), young adulthood (19–30), middle adult-
hood (30–55), older adulthood (55–75), and late life (75–90). Using the expression
from Durrleman and Simon [2], the canonical nth degree spline function is defined as

S xð Þ ¼
Xn

j¼0
_bojx

j þ
XK

i¼1
_binðx� tiÞnþ ð1Þ
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where C is the number of confound effects.
In the RCS regression, a linear constrain is introduced [2] to address the poor

behavior of the cubic spline model in the tails (x\t1 and x[ tK) [7]. Using the same
principle, C-RCS regression extends the RCS regression (n ¼ 3) and restricts the
relationship between S xð Þ and x to be a linear function in the tails. First, for x\t1,

S xð Þ ¼ _b00 þ _b01xþ _b02x
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u¼0
b

0
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where _b02 ¼ _b03 ¼ 0 ensures the linearity before the first knot. Second, for x[ tK ,

S xð Þ ¼ _b00 þ _b01xþ _b13 x� t1ð Þ3þ þ � � � þ _bK3ðx� tKÞ3þ þ
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To guarantee the linearity of C-RCS after the last knot, we expand the previous
expression and force the coefficients of x2 and x3 to be zero. After expansion,
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As a result, linearity of S xð Þ at x[ tK implies that
PK

i¼1
_bi3ti ¼ 0 and

PK
i¼1

_bi3 ¼ 0.
Following such restrictions, the _b K�1ð Þ3 and _bK3 are derived as
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and the complete C-RCS regression model is defined as
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2.3 Regressing Out Confound Effects by C-RCS Regression in GLM
Fashion

To adapt C-RCS regression in the GLM fashion, we redefine the coefficients
b0; b1; b2; . . .; bK�1 as Harrell [3] where b0 ¼ _b00; b1 ¼ _b01; b2 ¼ _b13; b3 ¼ _b23;

b4 ¼ _b33; � � � ; bK�1 ¼ _b K�2ð Þ3. Then, the C-RCS regression with confound effects
becomes

S xð Þ ¼ b0 þ
XK�1

j¼1
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u¼0
b

0
uX

0
u ð8Þ

where C is the number for all confound effects (X
0
u). X1 ¼ x and for j ¼ 2; . . .;K � 1

Xj ¼ x� tj�1
� �3
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Then, the beta coefficients are solvable under GLM framework. Once b̂0; b̂1; b̂2;

� � � ; b̂K�1 are obtained, two linear assured terms b̂K and b̂Kþ 1 are estimated:
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The final estimated volumetric trajectories ŜðxÞ can be fitted as

ŜðxÞ ¼ b̂0 þ
XKþ 1

j¼1
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b̂
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In this work, gender, field strength and total intracranial volume (TICV) are employed
as covariates X

0
u. TICV values are calculated using SIENAX [8]. Field strength and

TICV are used to regress out site effects rather than using site categories directly since
the sites are highly correlated with the explanatory variable age.

2.4 SCNs and CI Using Bootstrap Method

Using aforementioned C-RCS regression, the lifespan volumetric trajectories of WBV
and 15 NOIs are obtained from 5111 images. Simultaneously, the piecewise volumetric
trajectories within a particular age bin (between adjacent knots) of all 15 NOIs
(Ŝi xð Þ; i ¼ 1; 2; . . .; 15) are separated to establish SCNs dendrograms using HCA [9].
The distance metric D used in HCA is defined as D ¼ 1� corrðŜi xð Þ; Ŝj xð ÞÞ;
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i; j 2 1; 2; . . .; 15½ � and i 6¼ j, where corrð�Þ is the Pearson’s correlation between any
two C-RCS fitted piecewise trajectories Ŝi xð Þ and Ŝj xð Þ in the same age bin.

The stability of proposed approaches is demonstrated by the CIs of C-RCS
regression and SCNs using bootstrap method [10]. First, the 95 % CIs of volumetric
trajectories on WBV (Fig. 2) and 15 NOIs (Fig. 3) are derived by deploying C-RCS
regression on 10,000 bootstrap samples. Then, the distances D between all pairs of
clustered NOIs are derived using 15 (NOIs) � 10,000 (bootstrap) C-RCS fitted tra-
jectories. Then, the 95 % CIs are obtained for each pair of clustered NOIs and shown
on six SCNs dendrograms (Fig. 4). The average network distance (AND), the average
distance between 15 NOIs for a dendrogram, can be calculated 10,000 times using
bootstrap. The AND reflects the modularity of connections between all NOIs. We are
able to see if the AND are significantly different during brain development periods by
deploying the two-sample t-test on AND values (10,000/age bin) between age bins.

Fig. 2. Volumetry and growth rate. The left plot in (a) shows the volumetric trajectory of whole
brain volume (WBV) using C-RCS regression on 5111 MR images. The right figure in
(a) indicates the growth rate curve, which shows volumetric change per year of the volumetric
trajectory. In (b), C-RCS regression is deployed on the same dataset by additionally regressing
out TICV. Our growth rate curves are compared with 40 previous longitudinal studies [1] on
smaller cohorts (21 studies in (a) without regressing out TICV and 19 studies in (b) regressing
out TICV). The standard deviations of previous studies are provided as black bars (if available).
The 95 % CIs in all plots are calculated from 10,000 bootstrap samples.
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3 Results

Figure 2a shows the lifespan volumetric trajectories using C-RCS regression as well as
the growth rate (volume change in percentage per year) of WBV when regressing out
gender and field strength effects. Figure 2b indicates the C-RCS regression on the same
dataset by adding TICV as an additional covariate. The cross sectional growth rate

Fig. 3. Lifespan trajectories of 15 NOIs are provided with 95 % CI from 10,000 bootstrap
samples. The upper 3D figures indicate the definition of NOIs (in red). The lower figures show
the trajectories with CI using C-RCS regression method by regressing out gender, field strength
and TICV (same model as Fig. 2b). For each NOI, the piecewise CIs of six age bins are shown in
different colors. The piecewise volumetric trajectories and CIs are separated by 7 knots in the
lifespan C-RCS regression rather than conducting independent fittings. The volumetric
trajectories on both sides of each NOI are derived separately except for CB.
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curve using C-RCS regression is compared with 40 previous longitudinal studies (19
are TICV corrected) [1], which are typically limited on smaller age ranges.

Using the same C-RCS model in Figs. 2b and 3 indicates the both lifespan and
piecewise volumetric trajectories of 15 NOIs. In Fig. 4, the piecewise volumetric tra-
jectories of the 15 NOIs within each age bin are clustered using HCA and shown in one
SCNs dendrogram.

Then, six SCNs dendrograms are obtained by repeating HCA on different age bins,
which demonstrate the evolution of SCNs during different developmental periods. The
ANDs between any two age bins in Fig. 4 are statistically significant (p < 0.001).

Fig. 4. The six structural covariance networks (SCNs) dendrograms using hierarchical
clustering analysis (HCA) indicate which NOIs develop together during different developmental
periods (age bins). The distance on the x-axis is in log scale, which equals to one minus Pearson’s
correlation between two curves. The correlation between NOIs becomes stronger from right to
left on the x-axis. The horizontal range of each colored rectangles indicates the 95 % CI of
distance from 10,000 bootstrap samples. Note that the colors are chosen for visualization
purposes without quantitative meanings.

Mapping Lifetime Brain Volumetry with C-RCS Regression 87



4 Conclusion and Discussion

This paper proposes a large-scale cross-sectional framework to investigate life-time brain
volumetry using C-RCS regression. C-RCS regression captures complex brain volu-
metric trajectories across the lifespan while regressing out confound effects in a GLM
fashion. Hence, it can be used by researchers within a familiar context. The estimated
volume trends are consistent with 40 previous smaller longitudinal studies. The stable
estimation of volumetric trends for NOI (exhibited by narrow confidence bands) provides
a basis for assessing patterns in brain changes through SCNs. Moreover, we demonstrate
how to compute confidence intervals for SCNs and correlations between NOIs. The
significant difference of AND indicates that the C-RCS regression detects the changes of
average SCNs connections during the brain development.

The software is freely available online1.
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