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Abstract. Understanding the emotional appeal of paintings is a signifi-
cant research problem related to affective image classification. The prob-
lem is challenging in part due to the scarceness of manually-classified
paintings. Our work proposes to apply statistical models trained over
photographs to infer the emotional appeal of paintings. Directly apply-
ing the learned models on photographs to paintings cannot provide
accurate classification results, because visual features extracted from
paintings and natural photographs have different characteristics. This
work presents an adaptive learning algorithm that leverages labeled pho-
tographs and unlabeled paintings to infer the visual appeal of paintings.
In particular, we iteratively adapt the feature distribution in photographs
to fit paintings and maximize the joint likelihood of labeled and unla-
beled data. We evaluate our approach through two emotional classifica-
tion tasks: distinguishing positive from negative emotions, and differen-
tiating reactive emotions from non-reactive ones. Experimental results
show the potential of our approach.

Keywords: Classification · Evoked emotion · Adaptive learning · Pho-
tograph · Visual art

1 Introduction

Visual artworks such as paintings can evoke a variety of emotional responses from
human observers, such as calmness, dynamism, turmoil, and happiness. Auto-
matic inference of the emotions aroused from a given painting is an important
research question due to its potential application in large-scale image manage-
ment and human perception understanding. For instance, the affective capability
of paintings might be leveraged to determine which artwork might be used to
decorate workplaces, hospitals, gymnasia, and schools. The problem is highly
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challenging because many paintings are abstract in nature. The exact associa-
tion between visual features and evoked emotions is often not obvious.

An applicable framework that has been used to quantify general emotion
recognition problem from color photographs [3,8,13,14] is to learn a statisti-
cal model that connects handcrafted visual features extracted from the training
images with their associated emotional labels. However, unlike emotion recogni-
tion in photographs which can leverage existing annotated datasets such as the
International Affective Picture System (IAPS) [10], we do not have a validated
dataset with sufficient manually-labeled paintings. Previous methods [7,11,12]
conducted training on a small collection (around a hundred pieces) of labeled
paintings, which is insufficient and not publicly accessible. As the features of
images from the same emotional category form a perplexing distribution in the
feature space, a large labeled training dataset is needed to provide good coverage
of possible variations. Establishing a large collection of paintings associated with
emotional labels is time-consuming in that the subjectivity of visual appeal judg-
ment to paintings requires the validation of the emotional labels to a collection
of images.

One intuitive alternative is to apply those model learned from labeled pho-
tographs onto paintings straightforwardly. However, due to the difference in fea-
ture distributions between paintings and color photographs, as we will illustrate
in Sect. 3, the statistics captured by the model is quite different from those in
paintings. Experimental results (Sect. 5) also confirm that the model trained on
photographs is inaccurate in recognizing emotions in paintings.

Fig. 1. Simplified illustration of distribution adaptation between photographs and
paintings. Left: solid ellipses represent initially-estimated feature spaces of pho-
tographs from different emotional categories (indicated by different colors); orange
dashed ellipses represent feature spaces of paintings whose emotional categories are
unknown. The decision boundaries derived from photographs (black dashed lines) are
unfit for paintings as they cut through feature spaces of paintings. Right: the estima-
tion of photograph feature spaces adjusted according to the overlaps of photographs
and paintings (region I and II). The new decision boundaries are more reasonable for
paintings. (Color figure online)
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This paper proposes an adaptive learning approach to recognize emotions
in paintings, which leverages both labeled photographs and unlabeled paintings.
The idea is to transfer the learned knowledge of photographs to paintings through
distribution adaptation, a process wherein the distribution of the source domain
is gradually adapted to the distribution of the target domain. Specifically, each
photograph is associated with a weight; we account for the difference between
the two distributions by re-weighting the weights. Figure 1 illustrates the basic
intuition of this approach.

The rest of this paper is organized as follows: Sect. 2 provides a summary
of related work. We present extensive statistical analysis to identify the dra-
matic distributions in paintings and color photographs in Sect. 3. The proposed
algorithm is detailed in Sect. 4. Experimental results are presented in Sect. 5.
Discussions and conclusions are provided in Sect. 6.

2 Related Work

2.1 Affective Image Classification

The analysis of emotions evoked through paintings has been under-explored by
the research community, likely due to the scarcity of manually labeled paintings.
Few studies have estimated aesthetics or emotions with a relatively small number
of painting images [7,11,12]. Sartori et al. have studied abstract paintings using
statistical analysis [16]. Our work is different in that we train statistical models
on labeled photographs and adapt the learned models to paintings.

Some attempts were made to predict emotions from natural images [3,14,24]
with psychologically validated labeled datasets (e.g., the IAPS). Commonly used
visual features included color [2,22], texture [26], composition [25], and content
of the image [15]. Machajdik and Hanbury [14] comprehensively modeled cate-
gorical emotions, using color, texture, composition, content, and semantic level
features such as number of faces to model eight discrete emotional categories.
Other representations of emotions that have also been explored by researchers
include word pairs [18,23] and shape features [13]. As the relationship between
these features and human emotions has been demonstrated on photographs, we
believe these features also have indications to emotions aroused from paintings.
In particular, our work adopted four groups of features: color, texture, compo-
sition, and content.

2.2 Domain Adaptation/Adaptive Learning

Many domain adaptation techniques have been developed in the past decades
for building robust classifiers with data drawn from mismatched distributions.
The two major directions are adapting feature distributions [6,17,20,21] and
adapting classifier training [1,4,5].

To adapt feature distributions, Sugiyama et al. directly provided an esti-
mate of the importance function by matching the two distributions in terms
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of the Kullback-Leibler divergence [20]. Shi and Sha proposed an approach to
learn domain-invariant features and use them to minimize a proxy misclassifi-
cation error on the target domain [17]. Kang et al. [21] proposed an unsuper-
vised domain adaptation approach where the classifier was trained iteratively,
such that each iteration used an increased number of automatically discovered
target domain examples, and a decreased number of source domain examples.
Jhuo et al. [6] transformed the visual samples in the source domain into an
intermediate representation such that each transformed source sample could be
linearly reconstructed by the samples of the target domain. The intrinsic relat-
edness of the source samples was then captured by using a low-rank structure.

To build robust classifiers for data drawn from mismatched distributions,
Bickel et al. [1] proposed a logistic regression classifier to explicitly model classi-
fication problems without having to estimate the marginal distributions for shift
correction. Gopalan et al. [5] computed the domain shift by learning shared sub-
spaces between the source and target domains for classifier training. In [9], joint
bias and weight vectors were estimated as a max-margin optimization problem
for domain adaptation. The authors of [4] enforced the target classifier to share
similar decision values on the unlabeled consumer videos with the selected source
classifiers.

Our work proposes an adaptive learning approach that integrates the feature
adaptation and classifier training. We then leverages labeled photographs and
unlabeled paintings to infer the visual appeal of paintings.

3 Feature Distributions in Paintings and Photographs

To better illustrate the problem and introduce the proposed adaptive learning
algorithm, we first conduct statistical analyses to identify the differences of fea-
ture distributions between color photographs and paintings.

3.1 Settings

We analyzed the feature differences by taking the color photographs within the
IAPS [10] and randomly crawling 10, 000 paintings from Flickr.com. Photograph
and painting examples are shown in Figs. 2 and 3.

We represent an image (photograph or painting) with five types of visual
features: 21-dimensional global color features including statistics of satura-
tion, brightness, hue, and colorfulness; 39-dimension region-based color features
describing region-based color statistics; 27-dimensional texture features com-
posed of wavelet textures and features that depict the contrast, correlation, and
homogeneity for each of the HSV channels of the images; 14-dimensional fea-
ture encoding the depth of field, dynamics, and the rule of thirds to represent
the composition of an image; and 4-dimensional content feature referring to
the number and size of frontal faces and the number of skin-colored pixels. All
dimensions of the feature vectors are normalized to [0, 1]. Detailed descriptions
of those features are presented in [14].

http://www.Flickr.com
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Fig. 2. Examples of photographs in the IAPS dataset [10]. (Color figure online)

Fig. 3. Examples of the painting images that we have collected for this study. (Color
figure online)

3.2 Differences of Feature Distributions

This section unveils the underlying difference of feature distributions of paintings
and photographs. We calculate the differences for each type of features using
Euclidean distance as follows.

For each painting t from the set of paintings T = {ti}Nt
i=1 and its feature vector

fc(t) (c ∈ {color(global), color(region), texture, content, composition}), we pair
it with its nearest neighbor S∗(t) from the photograph set S = {si}Ns

i=1, where
S∗(t) = arg mins D(fc(t), fc(s)). Ns and Nt are the sizes of the photograph
set and the painting set respectively. Distance D(fc(t), fc(S∗(t))), denoted by
Dc(t), is defined as the distance between a single painting t and the collection
of photographs {si} in terms of feature type c. We normalize Dc(t) by

D̃c(t) =
Dc(t)

D(fc(s′), fc(S∗(t)))
, (1)

where s′ is the photo whose feature vector fc(s′) is the nearest one to fc(S∗(t)).
D̃c(t) < 1 means that the visual feature extracted from painting t is close to at
least one feature vector in the photograph collection S, while D̃c(t) ≥ 1 indicates
the existence of a larger difference between t’s feature and one of the features
from S. The greater D̃c(t) is, the larger the difference is between fc(t) and the
photograph set S.

In Fig. 4, we show the distributions of the normalized distance D̃c between a
feature vector (global color features, region-based color features, texture, com-
position, and content) in a painting and its nearest vector from the photograph
set. As shown in the fourth plot, paintings differ from photographs most in terms
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Fig. 4. Distributions of the normalized distance (D̃) from a painting to its nearest
photograph, in terms of color (global), color (region), texture, composition and content
feature, respectively. (Color figure online)

D̃ = 20 D̃ = 40 D̃ = 60 D̃ = 80 D̃ = 100

Fig. 5. Examples of painting-photograph pairs with different value of D̃composition. The
first row are paintings. Their associated photographs are in the second row.

of the composition; the value of D̃composition at the peak of the distribution is
about 17. This indicates that there is dramatic differences in composition fea-
tures between most paintings and photographs. Paintings and photographs also
differ a lot in terms of the global color feature (first plot) and the texture feature
(third plot), as their curves peak at D̃color(global) around 4 and D̃texture around
2, respectively. Finally, in the last plot, D̃content are close to 0 for almost all
paintings, which indicates that photographs and paintings have similar content
features. The reason may be that the content features we extracted only describe
the existence and the number of human faces, as well as the size of human skin
areas. The dramatic differences between feature distributions and paintings indi-
cate the necessity to perform the proposed adaptive learning in order to leverage
the labeled photographs for recognizing emotions in paintings.

In Figs. 5, 6 and 7, we provide some examples of painting-photograph pairs
with different distances. Pairs with small D̃c are similar in terms of feature c.

4 Adaptive Learning Approach

We now introduce the detailed formulation of the proposed adaptive learning
approach. We first explain the notations and provide a formal description of
the common covariant shift approach mentioned in Sect. 2. We then present our
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D̃ = 2 D̃ = 4 D̃ = 6 D̃ = 8 D̃ = 10

Fig. 6. Examples of painting-photograph pairs with different value of D̃texture. The
first row are paintings. Their associated photographs are in the second row.

D̃ = 3 D̃ = 6 D̃ = 9 D̃ = 12 D̃ = 15

Fig. 7. Examples of painting-photograph pairs with different value of D̃color. The first
row are paintings. Their associated photographs are in the second row.

approach that integrates the adaptive feature adaptation and classifier training.
Finally, we describe how we jointly solve the maximization problem.

4.1 Notation

Let x be the p-dimensional data and the class labels of x be y ∈ {1, 2, . . . ,K}.
For binary classification, K is set to two. Let S and T be the sets of photographs
(source domain) and paintings (target domain), respectively, and the marginal
probabilities PX∈S(X) and PX∈T (X) are denoted by Ψ(x) and Φ(x), respec-
tively. Let Φ̂(x) and Ψ̂(x) denote the estimated distributions using the observed
data samples.

4.2 Covariant Shift

Given the same feature observation X = x, the photograph set S and the paint-
ing set T , the conditional distributions of emotion labels Y are expected to be
the same in both datasets, i.e., Px∈S(Y |X = x) = Px∈T (Y |X = x). However,
the marginal distributions of X may be different, i.e. Ψ(X) �= Φ(X). This dif-
ference between the two domains is called covariate shift [19]. This is a problem
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if a mis-specified statistical model from a parametric model family is trained by
minimizing the expected classification error over S. A common covariate shift
correction approach assigns fixed weights to each labeled instance in S propor-
tional to the ratio Ψ(X)

Φ(X) . Then a classifier P (Y |X) is trained to minimize the
weighted classification error. We call it static covariate shift correction, as the
estimation of instance weights is fixed before the subsequent classifier training
task.

4.3 Adaptive Learning Approach

We devise a semi-supervised adaptive learning algorithm using both labeled
and unlabeled data. As in standard covariate shift correction approaches, we
compute a weight w(x) = Φ̂(x)

Ψ̂(x)
for each x ∈ S. Essentially w(x) is a form

of importance sampling where data from the photographs is selected with a
weight that corrects the covariate shift in both photographs and paintings. Then,
all labeled and unlabeled data can be treated in a common semi-supervised
framework to maximize the following objective:

O =
∑

(x,y)∈S×Y

w(x)(log P (x, y)) + α
∑

x′∈T

log P (x′) , (2)

where α is a pre-determined scaling factor associated with incomplete (unla-
beled) data. In Eq. 2, P (x′) = Φ̂(x′) and P (x, y) = Φ̂(x)P (y|x). In the static
way, w(x) is estimated once as Φ̂(x)

Ψ̂(x)
and then maintained constant throughout

the optimization of Eq. 2. Such strategy does not incorporate any information
from the consequent classification task. On the contrary, we update the weights
in each iteration.

4.4 Mixture Discriminant Analysis

The iterative estimation of P (x, y), x ∈ T and Φ(x) can be readily embodied
in a semi-supervised framework using a mixture discriminant analysis (MDA).
A K-class Gaussian mixture discriminant is computed as P (X = x, Y = k) =
ak

∑Rk

r=1 πkrφ(x|μkr,Σkr), where ak is the prior probability of class k(0 ≤ ak ≤
1),

∑K
k=1 ak = 1. Rk is the number of mixture components used to model class k

and the total number of mixture components for all the classes is M =
∑K

k=1 Rk.
πkr is the mixing proportion for the rth component in class k, 0 ≤ πkr ≤ 1, and∑K

k=1 πkr = 1. φ(.) denotes the pdf of a Gaussian distribution with μkr the
centroids of component r in class k and σkr as the corresponding covariance
matrix. To simplify the notation, the mixture model can be written as

P (X = x, Y = k) =
M∑

m=1

πmpm(k)φ(x|μm, σm) , (3)
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where 1 ≤ m ≤ M is the new component label assigned in a consecutive manner
to all the components in the classes. The prior probability for the mth component
πm = akπkr if m is the new label for the rth component in the kth class. The
quantity pm(k) = 1 if the component m belongs to class k and 0 otherwise. This
ensures that the density of X within class k is a weighted sum over only the
components inside class k.

Formulation of Joint Optimization. With weights initialized, we optimize
Eq. 2 using expectation maximization algorithm with an intermediate classifi-
cation step for the unlabeled examples in the paintings. Iterations are denoted
by τ .

– E-step: Compute the posterior probability of each sample (x, y) ∈ S × Y
belonging to component m.

qm(x) ∝ π(τ)
m pm(y)φ(x|μ(τ)

m , σ(τ)
m ), subject to

M∑

m=1

qm(x) = 1 . (4)

For the unlabeled data x′ ∈ T , the labels y′ are to be treated as missing
parameters. We first compute the posterior probability over each component
m.

fm(x′) ∝ π(τ)
m φ(x|μ(τ)

m , σ(τ)
m ) . (5)

Next, classification is conducted to estimate y′(τ) = arg max
k

∑

m∈Rk

fm(x′). The

quantity pm(y′(τ)) = 1 and all other pm′ �=m(y′(τ)) = 0. The posterior for
unlabeled data is updated as:

qm(x′) ∝ π(τ)
m pm(y′(τ))φ(x′|μ(τ)

m , σ(τ)
m ), subject to

M∑

m=1

qmx′ = 1 . (6)

– Maximization: In this step, the parameters for paintings are updated using all
data.

π(τ+1)
m ∝

∑

x∈S

w(τ)(x)qm(x)+α
∑

x′∈T

qm(x′), subject to
∑

m

π(τ+1)
m = 1 . (7)

μ(τ+1)
m,p =

∑

x∈S

w(τ)(x)qm(x)xp + α
∑

x′∈T

qm(x′)x′
p

∑

x∈S

w(τ)(x)qm(x) + α
∑

x′∈T

qm(x′)
. (8)

Let

A =
∑

x∈S

w(τ)(x)qm(x)(xp − μ(τ+1)
m,p )2 , (9)
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B = α
∑

x′∈T

qm(x′)(x′
p − μ(τ+1)

m,p )2 , (10)

C =
∑

x∈S

w(τ)(x)qm(x) ,D = α
∑

x′∈T

qm(x′) . (11)

Then
σ2(τ+1)

m,p =
A + B

C + D
. (12)

– Weight Update: Compute P (X = x|Y = y),∀(x, y) ∈ S, using the updated
parameters of class Y and update their weights as follows:

w(x)(τ+1) =
∑

m πmpm(y)φ(x|y;μ(τ+1)
m , σ

2(τ+1)
m )

Ψ̂(x)
. (13)

In the above formulation, the parameters for unlabeled paintings (i.e., Ψ̂(x))
always remain constant. Thus the adaptation is sensitive to the classification for
paintings (the numerator), and weights are refined iteratively to consider both
classification and clustering error.

5 Experiments

5.1 Settings

Datasets: We use three datasets: photograph dataset with emotional labels,
unlabeled painting dataset, and a collection of 200 labeled paintings.

– Labeled photographs: We used the IAPS [10] as labeled photographs (Fig. 2).
The IAPS dataset is a popular and validated dataset for the study of emotions
evoked by natural photographs. The IAPS dataset contains 1, 149 images, each
of which is associated with an empirically derived mean of valance and arousal.
Valence describes the positive or negative aspect of human emotions, where
common emotions, such as joy and happiness, are positive, whereas anger and
fear are negative. Arousal represents the human physiological state of being
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Fig. 8. Distributions of valence and arousal in the IAPS dataset and the 10,000-painting
dataset.
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reactive to stimuli. A higher value of arousal indicates higher excitation. We
generate the ground truth emotional ratings of the four classification tasks
based on the value of valence and arousal of photographs. The range of valence
in the IAPS is [1.3, 8.3], and the range of arousal is [1.7, 7.4]. The distribution
of valence and arousal in the IAPS is presented in Fig. 8(a).

– Unlabeled paintings: We randomly crawled 10, 000 paintings from Flickr as the
unlabeled painting set. Examples have been presented in Sect. 3. A subset or
a whole set of these paintings were used in our approach.

– Labeled paintings: We randomly crawled an alternative collection of paint-
ings (200) from Flickr for the purpose of evaluation. We recruited partici-
pants to rate those paintings in terms of valence and arousal. The participants
included college students with major in psychology and community individ-
uals recruited from Amazon Mechanical Turk. Each painting was rated by
at least five participants, and ratings were collected with the same guidelines
as in the IAPS. The range of valence in rated paintings was [1.3, 8.1], and
the range of arousal was [1.5, 8.5]. The distribution of valence and arousal of
labeled paintings is presented in Fig. 8(b).

Model selection and parameter tuning: To make it more convenient to
introduce the tasks, we first briefly discuss the settings for the model selection
and initialization.

– Model selection: We randomly selected 100 images from the labeled painting
set as a validation set and used the remaining 100 paintings for test. We used a
grid search to tune α and the number of unlabeled images to be used for semi-
supervised learning using a validation dataset. Within each task, the number
of mixture components (clusters) was determined using Bayesian Information
Criterion (BIC). Several random initializations were evaluated to select a good
model using the validation dataset.

– Weight initialization: We first approximated Φ̂(x) and Ψ̂(x) by independently
estimating Gaussian mixture models (φ) for the photograph domain and the
painting domain. The initial weights of photograph domain data were com-
puted by taking the ratio of Φ̂(x)/Ψ̂(x).

In the following three subsections, we present the settings and experimental
results of the two classification tasks.

5.2 Classification Tasks and Results

We evaluated our approach with two emotion classification tasks. We first iden-
tified the positivity or negativity of emotion aroused from paintings. Then we
analyze whether the emotional content in paintings was reactive or not. In both
tasks, we compared the performance of our approach with the baseline approach
in which the model was trained on labeled photographs and tested on paintings.

Task 1 - Identifying positivity and negativity of emotional content: As
valence describes the positive or negative aspect of human emotions, we divided
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paintings into two groups based on valence value. We calculated the mean value
of valence in the IAPS, which was 5. Images with valence larger than 5 were
labeled as positive (Class 1), and others were labeled as negative (Class 0). This
results in 631 positive images and 514 negative images. In the validation set,
there were 64 positive paintings and 36 negative ones. In the test set, 62 images
were positive, and 38 were negative.

Task 2 - Identifying reactivity of emotional content: According to the
psychology literature, the dimension of arousal refers to the human physiological
state of being reactive to stimuli. We let images with arousal values larger than
4.8 as images with stronger reactive emotional content (Class 1) and lower than
4.8 has weaker reactive emotional content (Class 0). This results in 597 positive
images and 551 negative images in training. In the validation set, there were 41
positive paintings and 59 negative ones. In the test set, 61 images were positive,
and 39 were negative.

For both tasks, we compared our results with the baseline approach (MDA)
in which the model was trained on labeled photographs and tested on paintings.
Our approach outperformed the MDA approach in both the validation dataset
and the test dataset for both tasks. For Task 1, the classification accuracy by
MDA for the test dataset is 59% (61% for the validation dataset), while that

Fig. 9. Correctly classified and misclassified test paintings in the test set of the task
1. Paintings were annotated with TP, TN, FP, and FN, referring to correctly classified
strongly reactive paintings, correctly classified weakly reactive paintings, misclassified
strongly reactive paintings, and misclassified weakly reactive paintings, respectively.
(Color figure online)
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by our approach is 61% (63% for validation). For Task 2, the accuracy by MDA
for the test dataset is 54% (52% for the validation dataset), while that by our
approach is 61% (62% for validation).

Fig. 10. Correctly classified and misclassified paintings in the test set of the task 2.
Paintings were annotated with TP, TN, FP, and FN, referring to correctly classified
positive paintings, correctly classified negative paintings, misclassified positive paint-
ings, and misclassified negative paintings, respectively. (Color figure online)

We show classification results on example images for the two tasks in Figs. 9
and 10. Abstract paintings with a strong visual difference from natural pho-
tographs tend to be misclassified by the learned model. This indicates that emo-
tional responses evoked by similar stimuli (such as color and texture) might be
different in natural photographs and abstract paintings. To better predict emo-
tions aroused from abstract paintings, it is necessary to include labeled abstract
paintings in the training set in addition to natural photographs. We also observe
that some stimuli have different emotional indications in photographs and paint-
ings. For instance, the color of blue is associated with negative emotions aroused
from natural photographs, whereas the color of red and yellow are associated
with positive emotions. However, this is not necessarily true in paintings as
shown in Fig. 10. To improve the prediction accuracy on paintings in the wild,
we may need to generalize the proposed algorithm in cases that we have some
labeled paintings besides a large collection of labeled photographs and unlabeled
paintings. We would like to take this direction as future work.
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6 Discussions and Conclusions

We investigated the problem of emotion classification on paintings. Due to the
scarcity of paintings with emotional labels, we proposed an adaptive learning
approach that leveraged color photographs with emotion labels and unlabeled
paintings to infer the emotional appeal of paintings. Our approach takes into
account differences in feature distributions in paintings and color photographs
as we use photographs with emotional ratings. We performed two emotion clas-
sification tasks. The experimental results showed that our approach achieved a
higher accuracy in recognizing emotions in paintings.

Although we have shown that the adaptive learning approach improves
clearly upon a baseline approach without adaption, the classification accura-
cies we achieved for classification of emotional responses are nevertheless low,
indicating ample room for enhancement. We believe that the main reason for the
limited performance is the intrinsic complexity of the problem. The visual fea-
tures we have experimented with seem to have weak association with the evoked
emotions of paintings, and it is quite possible that a fundamental breakthrough
is needed to push further the technology. In addition, our adaptive learning app-
roach relies on the assumption that the non-zero density support of the feature
distribution of the source is the same as that of the target, under which re-
weighting is viable to approximate the distribution of the target. The validity of
this assumption calls for thorough examination in the future.

References

1. Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning for differing training
and test distributions. In: International Conference on Machine Learning (ICML),
pp. 81–88 (2007)

2. Changizi, M.A., Zhang, Q., Shimojo, S.: Bare skin, blood and the evolution of
primate colour vision. Biol. Lett. 2(2), 217–221 (2006)

3. Datta, R., Li, J., Wang, J.Z.: Algorithmic inferencing of aesthetics and emotion
in natural image: an exposition. In: International Conference on Image Processing
(ICIP), pp. 105–108 (2008)

4. Duan, L., Xu, D., Chang, S.F.: Exploiting web images for event recognition in con-
sumer videos: a multiple source domain adaptation approach. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1338–1345 (2012)

5. Gopalan, R., Ruonan, L., Chellappa, R.: Domain adaptation for object recogni-
tion: an unsupervised approach. In: International Conference on Computer Vision
(ICCV), pp. 999–1006 (2011)

6. Jhuo, I.H., Liu, D., Lee, D., Chang, S.F.: Robust visual domain adaptation with
low-rank reconstruction. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2168–2175 (2012)

7. Jia, J., Wu, S., Wang, X., Hu, P., Cai, L., Tang, J.: Can we understand van Gogh’s
mood? Learning to infer affects from images in social networks. In: ACM Interna-
tional Conference on Multimedia, pp. 857–860 (2012)

8. Joshi, D., Datta, R., Fedorovskaya, E., Luong, Q.T., Wang, J.Z., Li, J., Luo, J.:
Aesthetics and emotions in images. IEEE Sig. Process. Mag. 28(5), 94–115 (2011)



62 X. Lu et al.

9. Khosla, A., Zhou, T., Malisiewicz, T., Efros, A.A., Torralba, A.: Undoing the
damage of dataset bias. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y.,
Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 158–171. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33718-5 12

10. Lang, P.J., Bradley, M.M., Cuthbert, B.N.: International affective picture system:
affective ratings of pictures and instruction manual. In: Technical report A-8, Uni-
versity of Florida, Gainesville, FL (2008)

11. Li, C., Chen, T.: Aesthetic visual quality assessment of paintings. IEEE J. Sel.
Top. Sig. Process. 3(2), 236–252 (2009)

12. Li, C.T., Shan, M.K.: Emotion-based impressionism slideshow with automatic
music accompaniment. In: ACM International Conference on Multimedia, pp. 839–
842 (2007)

13. Lu, X., Suryanarayan, P., Adams Jr., R.B., Li, J., Newman, M.G., Wang, J.Z.: On
shape and the computability of emotions. In: ACM International Conference on
Multimedia, pp. 229–238 (2012)

14. Machajdik, J., Hanbury, A.: Affective image classification using features inspired
by psychology and art theory. In: ACM International Conference on Multimedia,
pp. 83–92 (2010)

15. Rodgers, S., Kenix, L.J., Thorson, E.: Stereotypical portrayals of emotionality in
news photos. Mass Commun. Soc. 10(1), 119–138 (2007)

16. Sartori, A., Yanulevskaya, V., Salah, A.A., Uijlings, J., Bruni, E., Sebe, N.: Affec-
tive analysis of professional and amateur abstract paintings using statistical analy-
sis and art theory. ACM Trans. Interact. Intell. Syst. 5(2), 8 (2015)

17. Shi, Y., Sha, F.: Information-theoretical learning of discriminative clusters for
unsupervised domain adaptation. In: International Conference on Machine Learn-
ing (ICML), pp. 1079–1086 (2012)

18. Shibata, T., Kato, T.: Kansei image retrieval system for street landscape-
discrimination and graphical parameters based on correlation of two image sys-
tems. In: International Conference on Systems, Man, and Cybernetics, pp. 274–252
(2006)

19. Shimodaira, H.: Improving predictive inference under covariate shift by weighting
the log-likelihood function. J. Stat. Plan. Infer. 90(2), 227–244 (2000)

20. Sugiyama, M., Nakajima, S., Kashima, H., Buenau, P.V., Kawanabe, M.: Direct
importance estimation with model selection and its application to covariate shift
adaptation. In: Neural Information Processing Systems (NIPS), pp. 1433–1440
(2008)

21. Tang, K., Ramanathan, V., Li, F.F., Koller, D.: Shifting weights: adapting object
detectors from image to video. In: Neural Information Processing Systems (NIPS),
pp. 647–655 (2012)

22. Valdez, P., Mehrabian, A.: Effects of color on emotions. J. Exp. Psychol. Gen.
123(4), 394–409 (1994)

23. Wang, H.L., Cheong, L.F.: Affective understanding in film. IEEE Trans. Circ. Syst.
Video Technol. 16(6), 689–704 (2006)

24. Yanulevskaya, V., van Gemert, J., Roth, K., Herbold, A., Sebe, N., Geusebroek,
J.: Emotional valence categorization using holistic image features. In: International
Conference on Image Processing (ICIP), pp. 101–104 (2008)

http://dx.doi.org/10.1007/978-3-642-33718-5_12


Identifying Emotions Aroused from Paintings 63

25. Yao, L., Suryanarayan, P., Qiao, M., Wang, J.Z., Li, J.: Oscar: on-site composition
and aesthetics feedback through exemplars for photographers. Int. J. Comput. Vis.
96(3), 353–383 (2012)

26. Zhang, H., Augilius, E., Honkela, T., Laaksonen, J., Gamper, H., Alene, H.: Analyz-
ing emotional semantics of abstract art using low-level image features. In: Advances
in Intelligent Data Analysis, pp. 413–423 (2011)


	Identifying Emotions Aroused from Paintings
	1 Introduction
	2 Related Work
	2.1 Affective Image Classification
	2.2 Domain Adaptation/Adaptive Learning

	3 Feature Distributions in Paintings and Photographs
	3.1 Settings
	3.2 Differences of Feature Distributions

	4 Adaptive Learning Approach
	4.1 Notation
	4.2 Covariant Shift
	4.3 Adaptive Learning Approach
	4.4 Mixture Discriminant Analysis

	5 Experiments
	5.1 Settings
	5.2 Classification Tasks and Results

	6 Discussions and Conclusions
	References


