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Abstract. Wearable cameras allow users to record their daily activi-
ties from a user-centered (First Person Vision) perspective. Due to their
favourable location, they frequently capture the hands of the user, and
may thus represent a promising user-machine interaction tool for differ-
ent applications. Existent First Person Vision, methods understand the
hands as a background/foreground segmentation problem that ignores
two important issues: (i) Each pixel is sequentially classified creating a
long processing queue, (ii) Hands are not a single “skin-like” moving
element but a pair of interacting entities (left-right hand). This paper
proposes a GPU-accelerated implementation of a left right-hand segmen-
tation algorithm. The GPU implementation exploits the nature of the
pixel-by-pixel classification strategy. The left-right identification is car-
ried out by following a competitive likelihood test based the position and
the angle of the segmented pixels.

Keywords: Egovision - Hand-segmentation -+ GPU - Hand-detection -
Wearable cameras

1 Introduction

Computer Vision and video analysis are nowadays two of the most explored
topics in computer science. The increasing computational power, the data avail-
ability and the recent algorithmic developments are quickly attracting high-tech
companies and computer scientist to develop systems to process and understand
video streams. In particular, wearable cameras, by taking advantage of a privi-
leged location, stand out as one of the most promising video perspectives nowa-
days. The videos recorded from this point of view are referred as First-Person
Vision (FPV) or Egocentric videos [6].

The 90’s idea of a device that can understand our surroundings and provide
valuable assistance is nowadays technically possible. During the last couple of
years, several successful applications of wearable cameras have been proposed in
different fields such as Law Enforcement [10], Medical Applications [13], Lifelog-
ging [14], among others. Due to the tight link with the user and its advantageous
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location, wearable cameras are commonly pointed out as a promising strategy to
enhance user-machine interaction by exploiting the hands usage as interaction
instrument.

In seek of such intuitive interaction, hand-based methods constitute the most
explored field in EgoCentric videos. Hand signals have been used for several
purposes, for example, to understand conscious interactions with the device [1],
to infer the gaze of the user without using eye-trackers [9], to infer the active
objects in the scene [20], among others.

The authors in [4] propose a unified structure to develop hand-based meth-
ods in egocentric videos. The proposed structure highlights the importance of
decomposing the understanding of the hands in multiple levels, starting with
simple questions like the presence of the hands [2,3,5] and finally obtaining
more complex variables like the shape of each hand [8], to finally analyze its
trajectories and interactions.

Within the Unified Framework proposed by Betancourt [4], the most explored
level is the hand-segmentation. Its goal is to extract the shape of the hands by
following a background/foreground segmentation at a pixel-by-pixel level. As
shown in the literature this pixel-by-pixel approach achieves reliable results;
However it has to deal with challenging aspects such as the illumination changes
and the significant number of operations required. For instance, the camera of
the Google glasses has a resolution of 720 p and records 30 fps, implying 928.800
pixel classifications per frame and a total of 27'864.000 per second of video.

Regarding the illumination changes, this is partially alleviated by using depth
sensors or by combining multiple hand-segments, each of them trained to deal
with particular light conditions. The former is usually restricted by the use of
bigger devices with extra battery requirements; while the training data avail-
ability limits the latter [8]. About the computational complexity, a promising
strategy is to simplify the frames by using SLIC superpixels [22]. On one side,
the superpixel approach reduces the number of classifications tasks per frame
and includes the concept of an edge in the segmentation; on the other side, it is
necessary to run the SLIC algorithm frame by frame and the classification errors
are considerably larger.

In addition to the technical challenges, the traditional background/
foreground also carries the conceptual issues in the definition of hands under-
standing. On one side, the background/foreground approach assumes that both
hands are equal and constitute the foreground of the scene, while on the other
side, based on human studies, the hands are commonly defined as coupled sys-
tem centrally coordinated by the brain to achieve a particular goal. Furthermore,
there are considerable differences in the motion skills of both hands. In average,
9 out of 10 individuals are right-handed and as a consequence, their upper limb
movement skills are asymmetric concerning speed, control, and strength. These
differences are significantly larger in patients with upper limb motor problems
such as cerebral palsy or upper limb stroke.

This paper proposes an accelerated strategy to segment and identifies the
hands of the user when recorded by a wearable camera. The proposed approach
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follows the unified framework introduced by [4], but targets, in particular, the
segmentation and identification level. The novelties of this paper are three folded:

(i) Formalises a multi-model hand-segmenter based on Random Forest and K-
Nearest-Neighbors. The proposed hand-segmenter is inspired by the work
of [18].

(ii) Proposes a GPU implementation of the multi-model hand-segmenter. The
experimental results show that the accelerated version can process frames
6.2 times faster than a sequential CPU.

(iii) The accelerated hand segmenter is extended with the hand-identification
level proposed in [8]. The experimental results show that using an accept-
able compression rate it is possible to obtain reliable left/right hand-
segmentations in real time.

The remaining of this paper is organized as follows: Sect.2 introduces our
approach. Subsection 2.1 formalizes the hand-segmentation and explains the sin-
gle and multimodel hand-segmenters. Subsection 2.2 introduces the Random For-
est classification algorithm and introduces two GPU kernels. Subsection 2.3 pro-
poses the hand-identification mechanism. Finally, Sect.3 evaluates the perfor-
mance of the proposed kernels and the identification model. Section 4 concludes
the paper.

2 Owur Approach

The goal of this paper is to develop a strategy to delineate the left and right-
hand silhouette by exploiting the GPU processing capabilities. Our approach
extends the traditional pixel-by-pixel hand-segmentation approach by propos-
ing an additional hand-identification step as suggested by [8]. Figurel sum-
marizes the difference between the background/foreground approach and the
Left/Right hand-segmentation. This section briefly introduces the pixel-by-pixel
hand-segmentation problem, the algorithmic procedure behind random forests
and the required improvements to segment each pixel as a separate thread in
the GPU. Finally, the identification level is introduced. For more details about
the identification step, please refer to [8].

2.1 Hand-Segmentation

It is probably the more explored problem in FPV. The main task is to delineate
the silhouette of the hands at a pixel level. The more promising results are
reported in [18] and [23] achieving F-scores around 90 % under slightly stable
illumination conditions. The general idea behind these methods is to reduce the
problem to a pixel binary classification problem, and then construct the frame
result as the composition of the individual decisions.

In the most basic form, it is possible to train a single hand-segmenter by
using a set of input frames and the ground truth masks (pixels belonging to the
hands). This approach can be considered the evolution of the seminal work of
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Fig. 1. The difference between hand-segmentation and hand-identification. The hand-
to-hand occlusions are captured by following [8].

Jones and Rehg 1999 [16], with some differences in the used colour space and
the classification algorithm. Recent works show that by using the Lab colour
space (Lightness and a/b components) it is possible to alleviate the effect of
small illumination changes. Figure 2 illustrates the general procedure to build a
single hand-segmenter. In the first columns are the original frames, the training
masks and their matrix representation. In the second column the training and
testing stage. For illustrative purposes the training stage shows a decision tree;
However, in practice, this can be a different type of classifier. Our experiments,
as well as the state-of-the-art, are based on Random Forest classifiers.
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Fig. 2. Single-model hand-segmentation
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In general a single hand-segmenter easily fails when applied to videos
recorded with slightly changing light conditions. This problem can be partially
alleviated by increasing the number of training frames, which in turns, could
end up reducing the separability of the color space and producing excessive
false-positives and false-negatives. Recent literature propose to train multiple
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hand-segmenters, one per frame and switch between them depending of the light
conditions of the frame. The latter can be captured by built-in light sensors or
estimated indirectly by global features like color histograms or GIST [7]. Figure 3
summarizes our implementation of the multi-model hand-segmenter.
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Fig. 3. Multi-model hand segmentation. Source [8]

The first column of the figure contains the manually labelled masks and
their corresponding raw frames. Let us denote N as the number of manual labels
available in the dataset, and n as the number of training pairs selected to build a
multi-model binary hand-segmenter. For each training pair, s = 1...n a trained
binary random forest (RF;) and its global feature (GF;) are obtained and stored
in a pool of illumination models (second column of the figure). Each RF; is
trained using the LAB values of each pixel in the frame ¢ and as the class their
corresponding values in the binary masks. As global feature (GF;) we use the
flatten HSV histogram. The choice of the colour spaces is based on the results
reported by [17,21]. Finally, we train a K-Nearest-Neighbor K rp with the global
features to switch between the more suitable illumination models.

In the testing phase, the Krp is used as a recommender system which, given
the global features of a new frame, provides the indexes of the closest K illu-
mination models (RF"). These models are subsequently used to obtain K pos-
sible segmentations (S?), which are finally fused to get the final binary hand-
segmentation (HS?). The third column of the figure illustrates this part of the
procedure. Formally, let’s denote the testing frame as ¢ and its HSV-histogram
as GF*, the indexes of the closest K illumination models ordered from closest
to furthest based on the Euclidean distance as Eq. (1), their corresponding K
random forest as Eq. (2), and their pixel-by-pixel segmentation applied to ¢ as

Eq. (3).
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U = Kpp(GF'K)

= {Y1,.. .. ¥k} (1)

RF'={RFy,...,RFy } (2)
S* ={RFy(t),...,RFy (1)}

:{Siw'wsﬁ(} (3)

The binary hand-segmentation of the frame is the normalised weighted aver-
age of the individual segmentations in S?, defined by Eq.(4). Where ) is a
decaying weight factor, selected as 0.9.

j=1

S A

o
S st

HS' = (4)

2.2 Random Forest and Decision Trees

The egocentric literature points to Random Forest (RF) as the most suitable
classifier for the hand-segmentation problem. They offer a fast classification, a
reliable skin detection and are less prone to overfitting. As shown in [8,23], under
a proper training, the use of multiple random forests could provide a robust hand
segmentations even under changing light conditions.

On its general definition, a Random Forests is an ensemble method that fuses
the result of multiple Decision Trees, each of which is in turn on a subset of the
training data [15]. In this way, the main classification workload is carried out
by its decision trees. A Decision Tree, respectively, is an algorithmic strategy to
divide the feature space in such a way that the proposed division fit the output
variable [19].

Without loosing generality lets assume a set of N observations, each of
them containing containing p features and a response: that is (z;,y;) for
t=1,2,...,N, with 2; = (21, Zi2, ... .Tip). Lets define an arbitrary partition of
the input space XP into M regions as Ry, Ra, ..., Ry, and the response of the
model in each region as the constant c¢,,. In this way, the goal of the decision
tree is to find, by using the input data, an appropriate partition and response
constants to map the input space to the output space.

Given an space partition, the values of ¢,, can be obtained by defining an
error function J(¢p,) = J(f (yi, xi, cm)| (24, y:) € Ry) and finding the constants
that minimize it for each region (6). Finding the best partition of the space is
computationally expensive for highly dimensional input spaces; However, it is
possible to design recursive binary partitions in an efficient way.

ém = argmin J (¢, ) Ymel,....,M (5)
= argmin J(f (v, i, cm) | (i, ¥i) € Rin) Ymel,...,.M (6)

Starting with all the inputs consider a splitting feature j and value s to divide
the feature space in two half-planes, namely R; and Rs defined in (7). The best
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pair of (j,s) is the one that minimize the overall error of Ry and Ry as shown
in (8). The same splitting procedure can be applied recursively on each half-
plane until a stop criteria reached. Different stop criteria can be used to finish
the procedure, such as the maximum tree depth or the minimum error required
to consider valid a partition. Other options include the construction of large
trees and then prune the unnecessary branches. The resulting regions and the
model responses are defined by the leafs of the tree and their model responses
respectively. The obtained tree can be applied to process new observations by
following the rules captured by the sequences of (j, s) and returning the constant
assigned to the final leaf.

R1(j,s) = {X|X; < s} and Ro(j,s) = {X|X; > s} (7)
ming s [J(e1) + J(E2)] = min s [J(f (yi, Tis 1) (25, yi) € Ra(f,8))
+ J(f(yivxivé2)|(xi7 yl) € RQ(j7 S))] (8)

Once obtained the decision tree it can be represented by using 5 arrays: The
decision variables J, the splitting values S, the position of the left and right nodes
L and R respectively, and the response constants C. Each of these vectors has as
many elements as nodes in the trained decision tree. For a Random Forest, the
arrays of all its Decision Trees can be merged by keeping control of the position
of the first node of each decision tree. These positions can be stored in a sixth
array F. Algorithm 1 shows the Random Forest decision procedure. To obtain
the Decision Tree pseudocode it is necessary to modify lines 3, 7 and 9, or define
F =[0] in the Random Forest procedure.

Algorithm 1. Random Forest Pseudocode.

1: function SEGMENTPIXEL(pixel)
2: result =0
3: for i € F do
4: node = F[i]
5: while L[node]! = —1 do
6: if pizel[J[node]] < S[node] then
7 node = L[node] + F[i]
8: else
9: node = R[node] + F[i]
10: end if
11: end while
12: result+ = C[node]
13: end for
14: return result

15: end function

Existent hand-segmenters process each single pixel sequentially in the CPU
of the device. This approach highly restricts the number of pixels being process
at every time instance and creates long queues of pixels to be processed. Addi-
tionally, by analysing Algorithm 1, it is clear that the traversing algorithm is
the result of a sequential access to the decision arrays (J, S, L, R) comparing the
input features with (S) to return the average value (C) finally. This description
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Fig. 4. Summary of the GPU hand-segmenter, including the block and grid dimensions
and the information stored in the shared memory.

and easily fits the single instruction multiple data paradigm (SIMD) and point
to promising speed improvements if processed by GPUs [11].

Figure 4 summarizes the intuition behind our GPU implementation. In prac-
tice we store the decision vectors in the shared memory of the GPU to guarantee
that they can be accessed quickly by all the threads. This is done only once after
the training phase is finished. In addition to the decision arrays the processing
kernel must be uploaded to processing units. For comparative purposes we pro-
pose two kernels; The first kernel (GPU-DT) only parallelize the decisions of
each Decision Tree, while the second kernel (GPU-RF) also includes the aver-
age of the decision trees. The pseudocode, as the final kernels, assume that
J,S,C, L, R, and F are stored in the shared memory of the device. These arrays
does not change and can be submitted to the shared memory immediately after
the training phase.

2.3 Hand-Identification

Once obtained the hand-segmentation it is possible to fit an ellipse to the con-
tours of the hands. A quick analysis of egocentric videos of daily activities easily
points to the angle of the hands with respect to the lower frame border (6), and
the normalized horizontal distance to the left border (z) as two discriminative
variables to build our L/R hand-identification model. Figure5 illustrates these
variables.

For the identification level, we use the Maxwell model proposed in [8]; where
the identity of the hand is decided according to the result of a likehood ratio
test between two maxwell distributions. The reasons behind the choice of the
Maxwell distribution are two: (i) It is positive defined (ii) It allows to include
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(a) Geometric problem of the (b) Geometric problem of the
left hand-segment right hand-segment

Fig. 5. Input variables for the L/R hand-identification model.

an asymmetry factor in our formulation. The mathematical formulation for the
left hand (p;) and the right hand (p,) is given by Egs. (9) and (10) respectively,
where p, is the Maxwell distribution with parameters © = [d,a]. The values
of  and 6 are defined in the interval [0,1] and [0, 7] respectively. In general d
controls the displacement of the distribution (with respect to the origin) and a
controls its amplitude.

pi(+. 016, 60) = p(xlef In(olef) ©)
Pl 167,68) = p(1 — 71O pl — 06)) (10

, L= d?
p(+16) =plold o) = | 2= (1)

In total this formulation contains 8 parameters summarized in Eq. (12). As
notation, the subindex of © refers to the left (I) or right (r) parameters, and
the super-index refer to the horizontal distance (z) or the anti-clockwise angle
(9). The parameters of the model are selected by fitting the model to the angles
observed in the Kitchen dataset of subject 1. The final values are given by
Eq. (13). For more details about the fitting procedure and the motivation behind
the Maxwell formulation please refer to [8].

or o)1 _ [df af d] af
ok o) = [ ek o ()
_ [—0.05 0.24 —0.63 0.94}

—0.08 0.21 —0.91 1.10 (13)

To compare the goodness of fit of the L /R hand-identification models given
by Egs. (9) and (10) we perform a Likelihood ratio test on the post-processed
hand-like segments. The Likelihood ratio test is given by Eq. (14).

Ll(le?@ﬂxvo) _ pl(x79|@f7@le)
L»,-(@ff,@ﬂi&@) pr(xﬂ0|ef78£)’

Az, 0) = (14)

Relying only on the likelihood ratio, could lead to cases where two hand-like
segments are assigned the same label (left or right). To avoid this cases, and given
that a frame cannot have two left nor two right hands, we follow a competitive
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rule in the following way. Lets assume two hands-like segments in the frame
described by z; = (x1,01) and 2z = (z2,602) as explained in Fig.5, and their
respective likelihood ratios given by A(x1,601) and A(zs,62). The competitive
ids are assigned by Eq. (15).

/1(1‘1791) > A((EQ,QQ) — idzl =1

idy, =7

idy, ,id,, = (15)
A(x1,01) < A(mo,02) — id,, =7
id,, =1

3 Results

To measure the speed improvement of the accelerated hand-segmenter we use
the subject 1 sequences of the kitchen dataset and two different GPU hand-
segmentation kernels: The first kernel (DTgpy) performs each Decision Tree as
separate task in the GPU' and fuses the results in the CPU2. The second kernel
(RFgpy) evaluates the full Random Forest including the average directly in the
GPU. Finally, the CPU sequential implementation of the algorithm is used as the
baseline.? For comparative purposes the segmentation is performed at different
compression levels. The results reported use 20 illumination models and fuses
the closest 5 on each frame.

Figure6 shows the time in seconds required by each hand-segmenter to
process each frame at a particular compression width. It is noteworthy from the
figure that the largest benefits, as expected, are obtained when the full image
is segmented where the GPUgrpr and GPUpr kernels process in average 6.2 and
4.8 times faster than the CPU counterpart. The GPUgp takes 0.052s per frame
while the C'PU takes 0.32s. In the worst case scenario, the C'PU implementation
takes 0.41s, and the GPURp takes 0.058 s, which means that a throughput of
17.24 full resolution frames per second.

If a detailed segmentation is not required a common practice is to compress
the frames before segmentation. If compressed to 180pz width and assuming the
worst scenario the GPUgrp and C'PU could segment 141 and 44 fps respectively.
It is noteworthy that this compression rate strongly compromises the detail of
the segmentation but could lead to real-time analysis of the motion patterns of
the user. The dashed and dotted lines in the figure shows the processing speed
required to process video streams of 40 and 60 fps respectively.

To evaluate the segmentation quality we use the coffee sequence for train-
ing and the remaining ones for testing (i.e. CofHoney, HotDog, Tea, Pealette).
Table 2 shows the performance of the Left/Right segmentation for each video
sequence and the overall performance in the last columns. For this table the

! NVIDIA Corporation GF116 [GeForce GT 640 OEM].
2 Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz.
3 For the CPU baseline we use the Cython procedure available in sklearn.



514 A. Betancourt et al.

— CPU B
041 — DTepy N T
0 — RFgpy
2 03| - R. Time 40 :
g | R. Time 60
802
v
£
£
0.1}
R e e e e———

T 1 L L L L L L L
480 580 680 780 880 980 1080 1180 1280

Frame Width

180 280 380

Fig. 6. GPU vs. CPU comparison.

Table 1. L/R hand-segmentation confusion matrix. This table uses the “Coffe” video
sequence for training [8].

CofHoney Hotdog Tea Pealette Total

12 12 12} 12 12

el el el el el

g g | g g

< = < = < = < = < =

LI - T B - I I - B I O - N O B )

Z A ~ Z A s z A lad Z A ~ Z _ [ad
No-hands |0.990|0.003/0.007|0.9890.005|0.006|0.996 |0.002|0.002|0.991|0.006|0.003 |0.992|0.004 |0.004
Left 0.064/0.932/0.004|0.040/0.958|0.002|0.056|0.943/0.001|0.120/0.871|0.009/0.073|0.923|0.004
Right 0.092/0.002/0.906|0.136|/0.001 |0.864|0.082|0.000/0.918|0.112/0.002|0.886|0.096 |0.001 |0.903

hand-to-hand occlusions were disambiguated by using the algorithm proposed
in [8] (Table1).

Finally, Table2 compares the multi-model hand-segmenter with previous
works. Compared with a single pixel by pixel classifier of [18], our approach
achieves improvements between 3 and 5 F'1 score points. After the post-
processing and identification process our method achieves a total F'1 improve-
ment of 9,12 and 14 F'1 points on the Coffee, Tea and Peanut video sequences
respectively. In comparison to the shape aware hand-segmenter proposed by [23],
our implementation performs better in all the video sequences. In particular, the
“Tea” video sequence is improved by 10 F'1 points.

Table 2. Hand-Segmenter state of the art comparison [8].

Coffee | Tea | Peanut
1999 - Single pixel color [16] 0.83 |0.80 |0.73
2011 - stabilization + gPb + superpixel + CRF [12] |0.71 |0.82 |0.72
2013 - Li 1 x 1 window [18§] 0.85 ]0.82 |0.74
2013 - Li 9 x 9 window [18] 0.88 | 0.88 | 0.76
2014 - Shape Aware Forest (post-process) [23] 0.90 |0.84 |0.84
2016 - Ours (k=20, m =50) 0.88 |0.87 |0.77
2016 - Ours (k=20, m =50) + Hand-Id Post Process | 0.94 | 0.94| 0.88
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4 Conclusions and Future Research

This paper contributes to 3 of the more challenging aspects of hand-segmentation
methods in egocentric videos. The contributions of this paper are three folded:

(i) Tt proposes a hand-segmenter that fuse multiple hand-segmenter to allevi-
ate illumination changes.

(ii) The proposed hand-segmenter is accelerated by using two different GPU
kernels. The GPU hand-segmenter process 6.2 times faster that the sequen-
tial version.

(iii) A probabilistic hand-identification framework is introduced. This identifi-
cation level seek to reduce the conceptual differences of traditional back-
ground /foreground hand segmenters and the human understanding of the
hands as two cooperative entities. The proposed method properly identifies
99 % of the left and right hands.

As future research we highlight two possible extensions of this work: The first
one is to migrate the implementation to embedded hardware. This would require
additional work in the hardware side. (ii) Another interesting research line is to
extend the identification level with tracker systems as proposed in the Unified
Framework of Betancourt 2015 [4]. This is a promising research line for example
to understand the motion patterns in patients of upper limb motor diseases.
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Agency of the European Commission under EMJD ICE.
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