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Abstract. We introduce the French Street Name Signs (FSNS) Dataset
consisting of more than a million images of street name signs cropped
from Google Street View images of France. Each image contains several
views of the same street name sign. Every image has normalized, title case
folded ground-truth text as it would appear on a map. We believe that
the FSNS dataset is large and complex enough to train a deep network of
significant complexity to solve the street name extraction problem “end-
to-end” or to explore the design trade-offs between a single complex
engineered network and multiple sub-networks designed and trained to
solve sub-problems. We present such an “end-to-end” network/graph for
Tensor Flow and its results on the FSNS dataset.

Keywords: Deep networks · End-to-end networks · Image dataset ·
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1 Introduction

The detection and recognition of text from outdoor images is of increasing
research interest to the fields of computer vision, machine learning and optical
character recognition. The combination of perspective distortion, uncontrolled
source text quality, and lack of significant structure to the text layout adds
extra challenge to the still incompletely solved problem of accurately recognizing
text from all the world’s languages. Demonstrating the interest, several datasets
related to the problem have become available: including ICDAR 2003 Robust
Reading [11], SVHN [13], and, more recently, COCO-Text [16], with details of
these and others shown in Table 1.

While these datasets each make a useful contribution to the field, the major-
ity are very small compared to the size of a typical deep neural network. As the
dataset size increases, it becomes increasingly difficult to maintain the accuracy
of the ground-truth, as the task of annotating must be delegated to an increas-
ingly large pool of workers less involved with the project. In the COCO-text
[16] dataset for instance, the authors performed an audit themselves of the accu-
racy of the ground truth, and found that the annotators had found legible text
regions with a recall of 84 %, and transcribed the text content with an accuracy
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of 87.5 %. Even at an edit distance of 1, the text content accuracy was still only
92.5 %, with missing punctuation being the largest remaining category of error.

Synthetic data has been shown [8] to be a good solution to this problem
and can work well provided the synthetic data generator includes the format-
ting/distortions that will be present in the target problem. Some real-world data
however, by its very nature, can be hard to predict, so real data remains the first
choice in many cases where available.

The difficulty remains therefore, in generating a sufficiently accurately anno-
tated, large enough dataset of real images, to satisfy the needs of modern data-
hungry deep network-based systems, which can learn as large a dataset as we
can provide, without necessarily giving back the generalization that we would
like. To this end, and to make OCR more like image captioning, we present
the French Street Name Signs (FSNS) dataset, which we believe to be the first
to offer multiple views of the same physical object, and thus the chance for a
learning system to compensate for degradation in any individual view.

Table 1. Datasets of outdoor images containing text, including larger than single
character ground truth. Information obtained mostly from the iapr-tc11.org website

Name Content Size

ICDAR2003 [11] Images with word and
character bounding boxes

Train: 258 Images, 1,157
words Test: 251 Images,
1,111 words

SVHN [13] Images of numbers and single
digits from Google Street
View with boxes

Train: 73,257 digits Test:
26,032 Additional: 531,131

COCO-text [16] Images from the MS COCO
dataset that contain text

63,686 images with 173,589
text regions

KAIST [9] scene text Images with word and
character boxes of Korean
and English

3,000 images

NEOCR [12] Images with text field boxes
and perspective
quadrangles.

659 images with 5,238 text
fields

SVT [18] Images from Google Street
View, with names of
businesses in them

Train: 100 images, 211 words
Test: 250 images, 514
words

Synthetic word [8] Synthetic images of
real-world-like words

9 million images, 90k distinct
words

FSNS Images of French street name
signs

>1,000,000 images

http://www.iapr-tc11.org/mediawiki/index.php/Datasets
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2 Basics of the FSNS Dataset

As its name suggests, the FSNS dataset is a set of signs, from the streets of
France, that bear street names. Some example images are shown in Fig. 1. Each
image carries four tiles of 150 × 150 pixels laid out horizontally, each of which
contains a pre-detected street name sign, or random noise in the case that less
than four independent views are available of the same physical sign. The text
detection problem is thus largely eliminated, although the signs are still of vari-
able size and orientation within each tile image. Also each sign carries multiple
text lines, with a maximum of 3 lines of significant text, with the possibility
of other additional lines of irrelevant text. Each of the tiles within an image is
intended to be a different view of the same physical sign, taken from a different
position and/or at a different time. Different physical signs of the same street
name, from elsewhere on the same street, are included as separate images. There
are over 1 million different physical signs.

Fig. 1. Some examples of FSNS images

The different views are of different quality, possibly taken from an acute
angle, or blurred by motion, distance from the camera, or by unintentional pri-
vacy filtering. Occasionally some of the tiles may be views of a different sign
altogether, which can happen when two signs are attached to the same post.
Some examples of these problems are shown in Fig. 2. The multiple views can
reduce some of the usual problems of outdoor images, such as occlusion by fore-
ground objects, image truncation caused by the target object being at the edge
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Fig. 2. Examples of blurring, obstruction, and incorrect spatial clustering

of the frame, and varied lighting. Other problems cannot be solved by multiple
views, such as bent, corroded or faded signs.

The task of the system then is to obtain the best possible canonical text
result by combining information from the multiple views, either by processing
each tile independently and combining the results, or by combining information
deep within the recognition system (most likely deep network).

3 How the FSNS Dataset Was Created

The following process was used to create the FSNS dataset:

1. A street-name-sign detector was applied to all Google Street View images
from France. The detector returns an image rectangle around each street
name sign, together with its geographic location (latitude and longitude).

2. Multiple images of the same geographic location were gathered together (spa-
tially clustered).

3. Text from the signs was transcribed using a combination of reCAPTCHA [3],
OCR and human operators.

4. Transcribed text was presented to human operators to verify the accuracy of
the transcription. Incorrect samples were re-routed for human transcription
(back to step 3) or discarded if already the result of a human transcription.

5. Images were bucketized geographically (by latitude/longitude) so that the
train, validation, test, and private test sets come from disjoint geographic
locations, with 100 m wide strips of “wall” in between that are not used, to
ensure that the same physical sign can’t be viewed from different sets.
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6. Since roads are long entities that may pass between the disjoint geographic
sections, there may be multiple signs of the same street name at multiple loca-
tions in different subsets. Therefore as each subset is generated, any images
with truth strings that match a truth string in any previously generated sub-
set are discarded. Each subset thereby has a disjoint set of truth strings.

7. All images for which the truth string included a character outside of the
chosen encoding set, or for which the encoded label length exceeded the max-
imum of 37, were discarded. The character set to be handled is thus carefully
controlled.

Note that the transcription was systematically Title Case folded from the
original transcription, in order to make it represent the way that the street
name would appear on a map. This process includes removal of text that is not
relevant, including data such as the district or building numbers.

4 Normalized Truth Text

The FSNS dataset is made more interesting by the fact that the truth text is
a normalized representation of the name of the street, as it should be written
on the map, instead of a simple direct transcription of the text on the sign.
The main normalization is Title Case transformation of the text, which is often
written on the sign in all upper case. Title Case is specified as follows:

The words: au, aux, de, des, du, et, la, le, les, sous, sur always appear
in lower-case. The prefixes: d’, l’ always appear in lower-case. All other
words, including suffixes after d’ and l’, always appear with the initial
letter capitalized and the rest in lower-case.

The other main normalization is that some text on the sign, which is not part
of the name of the street, is discarded. Although this seems a rather vague
instruction, for a human, even without knowledge of French, it becomes easy
after reading a few signs, as the actual street names fit into a reasonably obvious
pattern, and the extraneous text is usually in a smaller size.

Some examples of some of these normalizations of the text between the sign
and the truth text are shown in Fig. 3. The task of transcribing the signs is thus
not a basic OCR problem, but perhaps somewhat more like image captioning
[17], by requiring an interpretation of what the sign means, not just its literal
content. A researcher working with the FSNS dataset is hereby provided with
a variety of design options between adding text post-processing to the output
of an OCR engine and training a single network to learn the entire problem
“end-to-end”.



416 R. Smith et al.

Fig. 3. Examples of images with their normalized truth text

5 Details of the FSNS Dataset

The location of the FSNS dataset is documented in the README.md file.1 There
are 3 disjoint subsets, Train, Validation and Test2. Each contains images of fixed
size, 600 × 150 pixels, containing 4 tiles of 150 × 150 laid out horizontally, and
padded with random noise where less than 4 views are available.

The size and location of each subset are shown in Table 2, and some basic
analysis of the word content of each subset is shown in Table 3. The analysis in
Table 3 excludes frequent words with frequency in the Train set >100, and the
words listed in Sect. 4 as lower-case. As might be expected, given the process by
which the subsets have been made disjoint, the fraction of words in each subset
that are out of vocabulary with respect to the Train subset is reasonably high at
around 30 %. Such a rate of out-of-vocabulary words will also make it difficult
for a system to learn the full vocabulary from the Train set.

1 https://github.com/tensorflow/models/tree/master/street/README.md.
2 An additional private test set will be kept back for the purposes of organizing com-

petitions.

https://github.com/tensorflow/models/tree/master/street/README.md
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Table 2. Location and size of each subset of the FSNS dataset

Subset Location Number of images Number of words

Train train/train@512 1044868 3189576

Validation validation/validation@64 16150 50218

Test test/test@64 20404 62650

Private test n/a 21054 65366

Table 3. Word counts excluding ‘stop’ words, (being the prefixes with a frequency
>100, and the lower-cased words) in each subset and number out of vocabulary (OOV)
with respect to (wrt) words in the Train subset

Subset Non-stop Unique Unique words Total OOV Percent OOV words

words words OOV wrt Train words

Train 1336341 93482 0 0 0

Validation 22250 7425 3482 7272 32.7

Test 28587 8675 4081 8526 29.8

Private Test 28752 8870 4265 9375 32.6

Each subset is stored as multiple TFRecords files of tf.train.Example pro-
tocol buffers, which makes them ready-made for input to TensorFlow [1,4]. The
Example protocol buffer is very flexible, so the full details of the content of each
example are laid out in Table 4.

Note that the ultimate goal of a machine learning system is to produce the
UTF-8 string in “image/text.” That may be achieved either by learning the byte
sequences in the text field, or there is also a pre-encoded mapping to integer
class-ids provided in “image/class” and “image/unpadded class”. The mapping
between these class-ids and the UTF-8 text is provided in a separate file at
charset size=134.txt. Each line in that file lists a class-id, a tab character,
and the UTF-8 string that is represented by the class-id. Class-id 0 represents a
space, and the last class-id, 133, represents the “null” character, as used by the
Connectionist Temporal Classification (CTC) alignment algorithm [5] typically
used with an LSTM network. Note that some class-ids map to multiple UTF-8
strings, as some normalization has been applied, such as folding all the different
shapes of double quote to the same class.

The ground truth text in the FSNS dataset uses a subset of these charac-
ters. In addition to all digits, upper and lower-case A-Z, there are the following
accented characters: à À â Â ä ç Ç é É è È ê Ê ë Ë ı̂ Î ı̈ ô Ô œ ù Ù û Û ü ÿ and
these punctuation symbols: <= - , ; ! ? / . ’ ”( ) ] & + a total of 109, including
space.

For systems that process the multiple views separately, it is possible to avoid
processing the noise padding. The number of real, non-noise views of a sign is
given by the value of the field “image/orig width” divided by 150.
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Table 4. The content of each example proto in the TFRecords files

Key name Type Length Content

Image/format Bytes (string) 1 “PNG”

Image/encoded Bytes (string) 1 Image encoded as PNG

Image/class Int64 37 Truth class-ids padded with nulls

Image/unpadded class Int64 Variable Truth class-ids unpadded

Image/width Int64 1 Width of the image in pixels

Image/orig width Int64 1 Pre-padding width in pixels

Image/height Int64 1 Height of the image in pixels

Image/text Bytes (string) 1 Truth string in UTF-8

No sample in any of the subsets has a text field that encodes to more than
37 class-ids. 37 is not a completely arbitrary choice. When padded with nulls
in between each label for CTC, (2 × 37 + 1 = 75) the classic sequences are no
longer than half the width (150/2 = 75) of a single input view, which allows for
some shrinkage of the data width in the network.

6 The Challenge

The FSNS dataset provides a rich and interesting challenge in machine learning,
due to the variety of tasks that are required. Here is a summary of the different
processes that a model needs to learn to discover the right solution:

• Locating the lines of text within the sign within each image.
• Recognizing the text content within each line.
• Discarding irrelevant text.
• Title Case normalization.
• Combining data from multiple signs, ignoring data from blurred or inconsistent

signs.

None of the above is an explicit goal of the challenge. The current trend in
machine learning is to build and train a single large/deep network to solve all
of a problem without additional algorithmic pieces on one end or another, or
to glue trained components together [6,17]. We believe that the FSNS data set
is large enough to train a single deep network to learn all of the above tasks,
and we provide an example in Sect. 7. We therefore propose that a competition
based on the FSNS dataset should measure:

• Word recall: Fraction of space-delimited words in the truth that are present
in the OCR output.

• Word precision: Fraction of space-delimited words in the OCR output that
are present in the truth.

• Sequence error: the fraction of truth text strings that are not produced exactly
by the network, after folding multiple spaces to single space.
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Word recall and precision are almost universally used, and need no introduction.
We add sequence error here because the strings are short enough that we can
expect a significant number of them to be completely correct. Using only these
metrics allows for end-to-end systems to compete directly against systems built
from smaller components that are designed for specific sub-problems.

7 An End-to-End Solution

We now describe a Tensor Flow graph that has been designed specifically to
address the Challenge, end-to-end, using just the graph, with no algorithmic
components. This means that the text line finding and handling of multiple
views, including where there are less than four, is entirely learned and dealt
with inside the network. Instead of using the orig width field in the dataset, the
images are input as fixed size and the random padding informs the network of
the lack of useful content. The network is based on the design that has been
shown to work well for many languages in Tesseract [14], with some extensions
to handle the multi-line, multi-tile FSNS dataset. The design is named Street-
name Tensor-flow Recurrent End-to-End Transcriber (STREET). To perform
the tasks listed above, the graph design has a high-level structure with purpose,
as shown in Fig. 4.

Convolutional 
Feature 

Extraction

Textline 
Finding and 

Reading

Character 
Position 

Normalization

Combination 
of Individual 

View Outputs

4-View 
Tiled 

Image

Target 
Streetname 
Text

Fig. 4. High-level structure of the network graph

Conventional convolutional layers process the images to extract features.
Since each view may contain up to three lines of text, the next step is intended
to allow the network to find upto three text lines and recognize the text in each
separately. The text may appear in different positions within each image, so
some character position normalization is also required. Only then can the indi-
vidual outputs be combined to produce a single target string. These components
of the end-to-end system are described in detail below. Tensor Flow code for the
STREET model described in this paper is available at the Tensor Flow Github
repository3.

7.1 Convolutional Feature Extraction

The input image, being 600 × 150, is de-tiled to make the input a batch of
4 images of size 150 × 150. This is achieved by a generic reshape, which is
a combination of TensorFlow reshape and transpose operations that split one

3 https://github.com/tensorflow/models/tree/master/street.

https://github.com/tensorflow/models/tree/master/street
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[4,150,150,3] [4,150,150,16] [4,75,75,16] [4,75,75,64] [4,25,25,64]

Tensor Size: [Batch, y, x, Depth] (Batch not shown)

5x5 Conv
x16 tanh

2x2 Maxpool 5x5 Conv
 x64 tanh

3x3 Maxpool

Generic Reshape:
Split the x-dimension 
and map the 4 tiles to 
the batch dimension.

[1,150,600,3]

y

x Depth

Fig. 5. Convolutional feature extraction and size reduction

dimension of the input tensor and map the split parts to other dimensions. Two
convolutional layers are then used with max pooling, with the expectation that
they will find edges, and combine them into features, as well as reduce the size
of the image down to 25 × 25. Figure 5 shows the detail of the convolutions.

7.2 Textline Finding and Reading

Vertically summarizing Long Short-Term Memory (LSTM)[7] cells are used
to find text lines. Summarizing with an LSTM, inspired by the LSTM used
for sequence to sequence translation [15], involves ignoring the outputs of all
timesteps except the last. A vertically summarizing LSTM is a summarizing
LSTM that scans the input vertically. It is thus expected to compute a vertical
summary of its input, which will be taken from the last vertical timestep. Each
x-position is treated independently. Three different vertical summarizations are
used:

1. Upward to find the top textline.
2. Separate upward and downward LSTMs, with depth-concatenated outputs,

to find the middle textline.
3. Downward to find the bottom textline.

Although each vertically summarizing LSTM sees the same input, and could the-
oretically summarize the entirety of what it sees, they are organized this way so
that they only have to produce a summary of the most recently seen information.
Since the middle line is harder to find, that gets two LSTMs working in opposite
directions. Each receives a copy of the output from the convolutional layers and
passes its output to a separate bi-directional horizontal LSTM to recognize the
text. Bidirectional LSTMs have been shown to be able to read text with high
accuracy [2]. The outputs of the bi-directional LSTMs are concatenated in the
x-dimension, to string the text lines out in reading order. Figure 6 shows the
details.
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[4,1,25,64] [4,1,25,128] [4,1,25,256] [4,1,75,256]
Tensor Size: [Batch, y, x, Depth] (Batch not shown)

[4,25,25,64]
(Input Triplicated)

Vertically summarizing 
LSTMs, 64 inputs, 64  
outputs

Depth concat

Bi-directional LSTMs, 64 inputs (128 
in the middle), 128  outputs each, 
yielding 256 from the bidi pair.

x concat, puts the textlines 
in sequence

Fig. 6. Text line finding and reading

7.3 Character Position Normalization

Assuming that each network component so far has achieved what it was designed
to do, we now have a batch of four sets of one to three lines of text, spread
spatially across the x-dimension. Each of the four sign images in a batch may
have the text positioned differently, due to different perspective within each sign
image. It is therefore useful to give the network some ability to reshuffle the
data along the x-dimension. To that end we provide two more LSTM layers,
one scanning left-to-right across the x-dimension, and the other right-to-left, as
shown in Fig. 7. Instead of a bidirectional configuration, they operate in two
distinct layers. This allows state information to be passed to the right or left in
the x-dimension, allowing the characters in each of the four views to be aligned.

[4,1,75,256] [4,1,75,128] [4,1,75,128]
Tensor Size: [Batch, y, x, Depth] (Batch not shown)

Left-to-Right LSTM, 256 
inputs, 128  outputs

Right-to-Left LSTM, 128 
inputs, 128  outputs

Fig. 7. Character position normalization
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7.4 Combination of Individual View Outputs

After giving the STREET network chance to normalize the position of the char-
acters along the x-dimension, a generic reshape is used to move the batch of
4 views into the depth dimension, which then becomes the input to a single
unidirectional LSTM and the final softmax layer, in Fig. 8. The main purpose
of this last LSTM is to combine the four views for each sign to produce the
most accurate result. If none of the layers that went before have done anything
towards the Title Case normalization, this final LSTM layer is perfectly capable
of learning to do that well.

[4,1,75,128] [1,1,75,512] [1,1,75,256]
Tensor Size: [Batch, y, x, Depth] 

Left-to-Right LSTM, 512 
inputs, 256  outputs

[1,1,75,134]

Reshape to move batch 
to depth

1x1 Conv with Softmax, 
256 inputs, 134  outputs

50% Dropout applied here

Fig. 8. Combination of individual view outputs

The only regularization used is a 50 % dropout layer between the reshape that
combines the four signs and the last LSTM layer. Details of each component of
the STREET graph can be found in Table 5.

8 Experiments and Results

As a baseline, Tesseract [14] was tested, but the FSNS dataset is extremely diffi-
cult for it. The best results were obtained from the LSTM-based engine in version
4.00, with the addition of pre-processing to locate the rectangle of the sign, and
invert the projective transformation, plus post-processing to Title Case the out-
put to match the truth text, as well as combination of the highest confidence
results from the four views. Even with this help, Tesseract only achieves word
recall of 20–25 %. See Table 6. The majority of failure cases revolve around the
textline finder, which includes noise connected components, drops characters, or
merges textlines. The main cause of these difficulties appears to be the tight line
spacing, compressed characters, and tight border that appears on most signs.

The STREET model was trained using the CTC [5] loss function, with the
Adam optimizer [10] in Tensor Flow, with a learning rate of 2 × 10−5, and
40 parallel training workers. The error metrics outlined in Sect. 6 were used.
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Table 5. Size and computational complexity of the layers in the graph

Name Input Output Weights Mult-add

Reshape0 1× 150× 600× 3 4× 150× 150× 3

Conv0 (5× 5× 16) 4× 150× 150× 3 4× 150× 150× 16 1216 109M

Maxpool0 2× 2 4× 150× 150× 16 4× 75× 75× 16

Conv1 (5× 5× 64) 4× 75× 75× 16 4× 75× 75× 64 25664 577M

Maxpool1 3× 3 4× 75× 75× 64 4× 25× 25× 64

V-SumLSTMs (4× ) 4× 25× 25× 64 4× 1× 25× 128× 4 33024× 4 330M

DepthConcat 4× 1× 25× 128× 2 4× 1× 25× 256

BidiLSTMs (3× ) 4× 1× 25× 128× 2
+ 4× 1× 25× 256

4× 1× 25× 256× 3 263168× 2 +
394240

92M

XConcat 4× 1× 25× 256× 3 4× 1× 75× 256

LTRLSTM 4× 1× 75× 256 4× 1× 75× 128 197120 59M

RTLLSTM 4× 1× 75× 128 4× 1× 75× 128 131584 39M

Reshape1 4× 1× 75× 128 1× 1× 75× 512

LTRLSTM 1× 1× 75× 512 1× 1× 75× 256 787456 59M

Softmax 1× 1× 75× 256 1× 1× 75× 134 34438 2.6M

Total 2.2M 1.3B

Table 6. Error rate results

System Test set Word recall Word precision Sequence error

Tesseract Validation 22.73 20.21 95.81

Tesseract Test 23.58 20.49 98.91

Tesseract Private test 23.93 21.05 95.93

STREET Train 94.90 95.40 13.14

STREET Validation 89.46 90.28 26.63

STREET Test 88.81 89.71 27.54

STREET Private test 89.48 90.32 26.64

The results are also shown in Table 6. The results show that the model is some-
what over-trained, yet the results for validation, test and private test are very
close, which suggests that these subsets are large enough to be a good reflection
of the model’s true performance.

Some examples of error cases are shown in Fig. 9. In the first example, the
model can be confused by obstructions. On the second line, the model drops a
small word, perhaps as not relevant. On the third line, a less frequent prefix is
replaced by a more frequent one. In the final example, an accent is dropped.
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Fig. 9. Some examples of error cases

9 Conclusion

The FSNS dataset provides an interesting machine learning challenge. We have
shown that it is possible to obtain reasonable results for the entire task with a
single end-to-end network, and the STREET network could easily be improved
by application of common regularization approaches and/or changing the net-
work structure. Alternatively there are many other possible approaches that
involve applying algorithmic or learned solutions to parts of the problem. Here
are a few:

• Detecting the position/orientation of the sign by image processing or even
structure from motion methods, correcting the perspective, and applying a
simple OCR engine.

• Text line finding followed by OCR on individual text lines.
• Detecting the worst sign(s) and discarding them, by blur detection, obstruc-

tion detection, contrast, or even determining that there is more than one
physical sign in the image.

A comparison of these approaches against the end-to-end approach would be very
interesting and provide useful information for the direction of future research.
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