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Abstract. Methods for general object detection, such as R-CNN [4] and
Fast R-CNN [3], have been successfully applied to text detection, as in
[7]. However, there exists difficulty when directly using RPN [10], which
is a leading object detection method, for text detection. This is due to the
difference between text and general objects. On one hand, text regions
have variable lengths, and thus networks must be designed to have large
receptive field sizes. On the other hand, positive text regions cannot be
measured in the same way as that for general objects at training. In
this paper, we introduce a novel vertically-regressed proposal network
(VRPN), which allows text regions to be matched by multiple neigh-
boring small anchors. Meanwhile, training regions are selected according
to how much they overlap with ground-truth boxes vertically and the
location of positive regions is regressed only in the vertical direction.
Experiments on dataset provided by ICDAR 2015 Challenge 1 demon-
strate the effectiveness of our methods.

Keywords: Text detection · Vertical regression · Regional Proposal
Network

1 Introduction

Text detection, or text localization, plays a key role in robust text reading. Due to
the special pattern of text regions, most traditional efforts utilize some specially
designed features for text detection, such as the Maximally Stable Extremal
Region (MSER) method [9] or the Stroke Width Transform (SWT) method [2].
Recently, the success of convolutional neural network in general object detec-
tion motivates researchers to bring the experience from general objects to text
regions. For example, the method in [7] first generates some text proposals, and
then performs classification and regression on them, which is similar to R-CNN
[4] and Fast R-CNN [3] in a nutshell.

Text regions, as a special type of object regions, can be effectively detected by
utilizing the detection framework of general objects, as revealed by [7]. Then we
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Fig. 1. (a) An example of text region that occupies almost the whole width of the
image is shown in red box. (b) The anchor is shown in green, and it is excluded from
positive training samples according to the measurement of RPN, but is included in our
method. (c) Our method uses “thin” anchors (in green color) and only regresses the
locations of ground-truth in vertical direction (in blue color). (Color figure online)

wonder how the most recent Faster R-CNN method [10] can be adopted for text
detection. The core of Faster R-CNN [10] lies in a Region Proposal Network
(RPN), in which object proposals are selected based on convolutional feature
maps. Although RPN is originally used as a proposal generator, it can serve as
a powerful detector itself. This paper will investigate the usage of RPN in the
task of text detection.

However, directly applying RPN to text detection may suffer from a num-
ber of limitations. First, RPN selects positive training regions based on the
intersection-over-union between an anchor and a ground-truth. In this way,
anchors which fully overlap with a ground-truth in vertical direction but partly
overlap in the horizontal direction are likely to be excluded from positive training
samples, although they are text regions indeed (Fig. 1(b)). Second, the length of
text regions varies substantially, and there always exist text regions that almost
occupy the whole width of image (Fig. 1(a)). In this situation, the networks
must be designed to have extremely large receptive field in horizontal direction
in order to “see” large text regions thoroughly. As a result, the network is diffi-
cult to design: it must either have very deep convolutional layers, or skip many
details in early steps by pooling.

To tackle the above problems, in this work we propose a vertically-regressed
proposal network (VRPN) for the task of text detection. We select training
samples in the view of what are text regions and what are not. In VRPN,
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positive training samples are not measured by the intersection-over-union
between anchor regions and ground-truth boxes any more. Instead, anchor
regions which largely overlap with a ground-truth box in vertical direction while
lying inside the ground-truth box in horizontal direction are treated as positives
(Fig. 1(b)). Considering that a text region is not a single object but a union of
text patterns, we use very “thin” anchors and only regress the vertical coordi-
nates of positive samples (Fig. 1(c)). In this way, training samples are selected
based on the nature of text regions and it is not rigid to have a network with an
extremely large receptive field size.

The contribution of this work is summarized as follows:

1. We show that the RPN method can be borrowed from general object detection
to the task of text detection.

2. We demonstrate that the size of receptive field in a network is critical to the
detection of text regions of variable sizes.

3. We propose a novel VRPN method that fully utilizes information in the
images and effectively solves the challenge of detecting text regions with vari-
able length.

In experiments, our VRPN method shows substantial improvement compared
with the RPN method on the ICDAR 2015 Robust Reading Competition Chal-
lenge 1 [8], which demonstrates the effectiveness of the proposed method.

2 Related Works

A lot of efforts have been devoted to the task of text detection in literature. The
proposed methods can be categorized in two lines: the connected-component
methods and the sliding-window methods.

2.1 Connected-component Methods

Traditionally, connected-component methods [5,6,12,14,15] have been more
prevalent for the text detection task, because text regions which have special
patterns are favorable as detection targets by connected-component methods.
Text in images, no matter in what language, consists of a number of disconnected
characters with sharp boundaries and obvious patterns against the background.
Therefore, connected-component methods rely on some manually designed fea-
tures, usually pixel-level information, to build fast detectors for charter compo-
nents, including MSER [9], SWT [2] and EdgeBox [16]. False alarms are then
filtered out by text/non-text classifiers, such as SVM and CNN, and then char-
acter components are connected to get text lines with complex post-processing
procedures.

The connected-component approaches have a great advantage in terms of
speed, but their drawbacks are obvious as well. First, detectors based on low-
level features generate a number of false alarms, leading to difficulties in filtering
them out. Second, the process of combining all character components into text
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lines is usually quite complicated and inelegant. In addition, using CNNs as
merely filters doesn’t fully tap their potential, which we can see in the sliding-
window methods where CNNs are used as powerful detectors.

2.2 Sliding-window Methods

Compared with connected-component methods, sliding-window approaches
share more common techniques with general object detections. In sliding-window
methods, a window (or windows) scans over the image in different locations and
sizes, and features are extracted for the areas inside the window. Then the areas
are classified as text or non-text by classfiers [1,11,13]. The windows can be
boxes with pre-defined sizes, or just be region proposals. Similar to R-CNN [4]
and Fast R-CNN [3], the recent text detection method in [7] first generates some
text proposals, and then classifies and regresses them.

Notably, Ren et al. [10] propose a Faster R-CNN framework, which exploits
convolutional features for proposing candidate windows. The core of Faster R-
CNN is the Regional Proposal Network (RPN). In RPN, anchors are distributed
all over the images in a sliding-window fashion, and then regions associated
with the anchors are classified and regressed based on convolutional features.
Although RPN is originally used as a proposal generator, it can be adopted as a
powerful detector itself with great accuracy and high efficiency. However, there
are still no works that show how RPN performs when used for text detection.

3 Vertically-Regressed Proposal Network for Text
Detection

In this section, we introduce our vertically-regressed proposal network (VRPN).
We first briefly review the Regional Proposal Network (RPN) proposed by Ren
et al. [10]. Then we explain its limitation when used for text detection, and
introduce our motivation. The proposed VPRN method is presented at last.

3.1 Regional Proposal Network

In RPN [10], classification and regression share the same convolutional layers.
A number of anchors (k) with various sizes and aspect ratios are pre-defined,
in order to explore the shape of objects. At training stage, images are fed into
a convolutional network to obtain convolutional feature maps. Then a small
network (usually a convolutional layer with 3 × 3 kernels followed by ReLU)
slides on the feature map. Each point on the feature map corresponds to k
anchors that are centered at the sliding window. Output of the sliding window
is then fed into two sibling 1 × 1 convolutional layers: one with 2k outputs for
classification (cls), and another with 4k outputs for bounding box regression
(reg). For each anchor region, its intersection-over-union (IoU) with all ground-
truth boxes is computed. If its IoU with any ground-truth box is higher than a
threshold, the region is labeled as positive. The regression target for a positive
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Fig. 2. Architecture of regional proposal network for the problem of text detection.

sample is its best-matched ground-truth box. At test stage, the network predicts
a number of boxes regressed from the anchors, together with their objectiveness
scores. Then non-maximal supression (NMS) is applied on these boxes to remove
redundancy. The architecture of RPN is illustrated in Fig. 2.

3.2 Vertically-Regressed Proposal Network

Motivation. We find that there are a number of limitations when trying to apply
RPN to text detection due to the following reasons.

First, the substantially varying sizes of text regions make the network design-
ing challenging. In the original RPN method, networks usually don’t have a
receptive field that is large enough to cover all long text regions, so the detected
location might deviate severely from the ground-truth. This problem might pos-
sibly be solved by enlarging the receptive field of the network. This can be
achieved by either increasing the stride in early layers, or making the network
deeper by adding more convolutional layers. However, on one hand, larger stride
in early stage leads to inaccurate representation, which means a lot of details
will be missing. This might hinder the accuracy of the prediction. On the other
hand, adding more convolutional layers in order to deepen the network usu-
ally costs more computation. Neither solution is favorable for a text detection
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Fig. 3. Architecture of our proposed vertically-regressed proposal network.

system. Therefore, we hope to have a network that is able to deal with large text
regions with moderate receptive field size and network size.

Second, as the aspect ratio of text regions are quite different, a large num-
ber of anchors with different height and width would be required in order to
match the ground-truth boxes. This also increases the computation cost. We
expect to have a network that can solve the problem with fewer anchors and less
computation effort.

Third, in the training stage of RPN, positive and negative labels are assigned
to anchors according to their IoU values with ground-truth. Therefore, some
regions that are indeed textual would be excluded from positives. To illustrate,
we show an example in Fig. 3. We can see that each of the green anchors region
only covers a small part of the whole text region in red, so they will not be
selected as positive samples. And even worse, the green regions may be selected
as negatives. However, these regions are indeed textual, and the information
within these regions might be contributive to training a powerful detector.

Network Description. Vertically-regressed proposal network shares a similar net-
work structure to regional proposal network. However, VRPN adopts different
approaches in selecting training samples and defining loss.

Our approach defines a new measurement of how well an anchor matches a
ground-truth box for text regions. We denote the ground-truth bounding boxes
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inside an image by {Gj} = {(Gjx1, Gjy1, Gjx2, Gjy2)}, where Gjx1, Gjy1, Gjx2

and Gjy2 are the x and y coordinates of the top-left and bottom-right vertices
of Gj , respectively. Given an anchor Ai = (Aix1, Aiy1, Aix2, Aiy2), we define a
candidate target bounding box for Ai and Gj as

tij = (max{Gjx1, Aix1}, Gjy1,min{Gjx2, Aix2}, Gjy2) . (1)

The candidate target box is empty if max{Gjx1, Aix1} > min{Gjx2, Aix2}.
Then, the matching score between Ai and Gj is defined as

Sij = IoU(Ai, tij) . (2)

The class label assigned to Ai is

c∗
i =

{
1 if max

j
{Sij} > threshold,

0 otherwise.
(3)

If Ai is assigned as positive, we also define the regression target associated
with Ai as Ti = tij where j = argmaxk{Sik}.

To explain the rule in plain words, we select Ai as a positive training sample
if the matching score between Ai and any ground-truth box is greater than a
threshold. If the anchor is assigned a positive label, it is also trained for regres-
sion, and the regression target is just the candidate target bounding box tij that
has the best matching score with Ai. This rule to match anchors with ground-
truth boxes is illustrated in Fig. 4.

Loss Definition. The training loss for VRPN is given as

L({ci}, {ri}) =
1

Ncls

∑
i

Lcls(ci, c
∗
i ) +

λ

Nreg

∑
i

∑
j∈{x,y,w,h}

c∗
i Lreg(r

j
i , r

j∗
i ). (4)

Here i is the index of anchor regions. ci is the class prediction of Ai and c∗
i is its

label for classification. rx
i is a parameterized coordinate of the anchor’s x-center,

and rx∗
i is the parameterized coordinate of regression target associated with

the anchor. ry
i ,ry∗

i ,rw
i ,rw∗

i ,rh
i , and rh∗

i , are defined likewise. The parameterized
coordinates are:

rx = (x − xa)/wa, ry = (y − ya)/ha,

rw = log(w/wa), rh = log(h/ha), (5)
and
rx∗ = (x∗ − xa)/wa, ry∗ = (y∗ − ya)/ha,

rw∗ = log(w∗/wa), rh∗ = log(h∗/ha), (6)

where [xa, ya, wa, ha] are the x-center coordinate, y-center coordinate, width and
height of the anchor Ai, respectively, while [x, y, w, h] and [x∗, y∗, w∗, h∗] are
similarly defined for the prediction and the regression target Ti associated with
Ai. Lcls is the classification loss, computed by softmax and cross-entropy loss
over the text/non-text classes. Lreg is the regression loss, for which we adopt
smooth L1 loss as defined in [3]. The parameter λ is a weight to balance them.
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Fig. 4. Four cases for matching an anchor with a ground-truth box. In case (1), the
anchor has an IoU above a threshold 0.7 with its candidate target box; in case (2),
the anchor deviates too much from the ground-truth in the vertical direction to be
matched with it; in case (3), the left end of the anchor is outside the ground-truth
so the candidate target has a different left boundary with the anchor; in case (4),
the anchor is completely outside the ground-truth and they don’t match each other.
Whether an anchor region is assigned as positive or not is based on its IoU with its
target.

3.3 Implementation Details

Our VRPN method measures how well an anchor matches a ground-truth box
mainly according to how much they overlap vertically (if the anchor lies inside the
ground-truth box in the horizontal direction). A ground-truth can be matched
by several neighbouring anchors, whose x-coordinates differ by a total stride of
the network one by one. Therefore, the width of the anchors can be set to be
slightly larger than the total stride to ensure that they leave no space in between,
and only their height varies to fit different text areas.

At test stage, just like RPN, the output of the network is a bunch of fil-
tered boxes regressed from the anchors. Then non-maximal suppresion (NMS)
is performed on these boxes at some threshold. Then some of them are merged
together if they overlap horizontally in order to match long words.

4 Experiments

4.1 Dataset and Evaluation Metric

We conduct experiments on the dataset provided for Challenge 1: “Born-Digital
Images (Web and Email)” of ICDAR 2015 Robust Reading Competition [8]. The
dataset contains 410 images for training and 141 images for testing. We train all
networks with the 410 training images in this dataset and conduct testing using
the 141 test images.

Considering the fact that NMS and other post-processing steps actually have
quite a large impact on the detection results, while what we really want to
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compare is the ability of the networks to cover ground-truth boxes with few false
alarms, we first evaluate methods by their raw outputs without post-processing.
So we use a pixel-level evaluation. We compare the performance of methods by
f-measure, which is defined as

Fβ = (1 + β2)
precision · recall

β2precision + recall
. (7)

The f-measure is a combination of recall and precision. Recall is defined as the
number of pixels in ground-truth boxes that are covered by at least one output
box divided by the total number of ground-truth pixels in the dataset. And
precision is defined as the number of detected ground-truth pixels divided by all
pixels in the output boxes, with repeatedly detected pixels counted only once.
We use β = 1 in evaluation, i.e. the F1 score, which is the harmonic mean of
precision and recall values.

Although post-processing steps are not our focus in this paper, we still pro-
vide the performance of all methods after non-maximal suppresion (NMS) and
basic merging, which will be explained more detailedly in the next paragraph, in
order to demonstrate that our conclusion on methods won’t be challenged when
post-processing steps are added to the pipeline. We still use F1 score to evaluate
performance and the threshold of NMS is set at 0.3 for this experiment setting.

Merging of Bounding Boxes. After NMS is performed on the raw output boxes,
some of them are merged together in order to match long words and extract
text lines. All the boxes in a connected component are merged to one box. The
connected components are built by adding two boxes which overlap with each
other. Here the “overlap” means one box is completely enclosed by the other
or the height of their intersection box divided by the maximum of their heights
is above a certain threshold. The four boundaries of the final output box are
computed as the leftmost one and the rightmost one, as well as the averaged
upper and lower boundaries of boxes inside a connected component.

4.2 Experiments on Vertically-Regressed Proposal Network

In this subsection, we verify the motivation of our VRPN method and demon-
strate its superiority to RPN for the task of text detection by a number of
experiments.

How Receptive Field Size Affects the Performance of RPN? In Sect. 3.2
we argue that, in order for the RPN network to regress the box locations accu-
rately, the receptive field of the network has to be large enough, especially in
horizontal direction. In order to validate it, we conduct the following experiments
in regard to RPN.

We compare two networks with different receptive field sizes, using the RPN
method. The structures of the two networks are shown in Table 1. The same 10
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Table 1. Structure of RPN networks

Layer Parameters

Network
index

RPN I RPN II

Conv kernel=5, pad=2, stride w=2, stride h=1, output=16
ReLU -
Conv kernel=5, pad=2, stride=1, output=16
ReLU -

Max pooling kernel=2, stride=2

Conv
kernel=3, pad=1, stride=1,

output=32
kernel=5, pad=2, stride=1,

output=32
ReLU - -

Conv
kernel=3, pad=1, stride=1,

output=32
kernel=5, pad=2, stride=1,

output=32
ReLU - -

Max pooling kernel=2, stride=2 kernel=2, stride=2

Conv
kernel=3, pad=1, stride=1,

output=64
kernel=5, pad=2, stride=1,

output=64
ReLU - -

Conv
kernel=3, pad=1, stride=1,

output=64
kernel=5, pad=2, stride=1,

output=64
ReLU - -

Conv (sliding
window)

kernel=3, pad=1, stride=1, output=256

relu -

Conv

kernel=1,
pad=0,

stride=1,
output=20

kernel=1,
pad=0,

stride=1,
output=40

kernel=1,
pad=0,

stride=1,
output=20

kernel=1,
pad=0,

stride=1,
output=40

Loss softmax loss
smooth L1

loss
softmax lost

smooth L1

loss

Receptive
field size

horizontal: 67, vertical: 36 horizontal: 115, vertical: 60

anchors with different sizes are used, which are obtained by clustering ground-
truth boxes in training set. The two networks only differ in the kernel sizes in
four convolutional layers, and RPN II has a larger receptive field.

As can be seen from Table 2, the network with a larger receptive field performs
better, no matter with or without post-processing. However, having a receptive
field size large enough to cover all text regions results in a number of problems, as
has been discussed in Sect. 3.2. This motivates us to develop the VRPN method.

Comparison Between RPN and VRPN. In this section we conduct exper-
iments to compare the performance of RPN and VRPN. In VRPN, we use the
same network structure and anchors as RPN II. So in this experiment, the
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Table 2. Comparisons between RPN I and RPN II with different receptive field size.

w/o post-processing with post-processing

Precision Recall F1 Precision Recall F1

RPN I 0.666 0.513 0.579 0.678 0.654 0.666

RPN II 0.666 0.630 0.648 0.744 0.660 0.699

difference between RPN and VRPN lies in the selection of positive/negative
training samples. Results are shown in Table 3. We can see that VPRN achieves
a much higher recall and overall F1 score than RPN. The improvement is because,
VRPN selects positive training samples mainly according to how well anchors
overlap with ground-truth vertically, which allows much more anchors assigned
as positive. At test stage, more anchors are located in text areas where they will
be scored higher according to our method of training, and therefore cover more
text pixels to achieve a better recall. Also, our precision is close to RPN. This
experiment verifies the superiority of VRPN.

How to Choose Anchors for VRPN? The VRPN method makes the selec-
tion of anchors easy. Because in VRPN, the anchors only need to explore the
heights of ground-truth boxes and their width can be fixed to a value slightly
larger than the horizontal stride of the network. This makes detection more
accurate than using wider anchors as in RPN. We use the following experiments
to validate this idea. We compare two VRPN settings with different anchors.
For VRPN I, we use the same 10 anchors as before; and for VRPN II, we use 5
anchors whose widths are fixed at 10 (the horizontal stride of the network is 8)
and heights range from 8 to 40. The network structure and other hyperparame-
ters remain the same. Experimental results are shown in Table 4.

From the results we can see that VRPN with anchors selected in our designed
method achieves better performance than the original manner even with fewer
anchors and less computation cost. The improvement is presumably due to finer
regression of target bounding boxes, which is a benefit of the smaller anchors.
Some examples of detection outputs by VRPN II are shown in Fig. 5.

Table 3. Comparisons between RPN and VRPN with the same network structure and
anchors.

w/o post-processing with post-processing

Precision Recall F1 Precision Recall F1

RPN II 0.666 0.630 0.648 0.744 0.660 0.699

VRPN I 0.645 0.858 0.736 0.730 0.777 0.753



362 D. Xiang et al.

Table 4. Comparison between two ways of selecting anchors

w/o post-processing with post-processing

Precision Recall F1 Precision Recall F1

VRPN I 0.645 0.858 0.736 0.730 0.777 0.753

VRPN II 0.709 0.822 0.761 0.707 0.826 0.762

Fig. 5. Example detections by the VRPN II network. For each column in this figure,
the first row shows the original image; the second row shows the raw outputs of the
method; and the third row shows the final detection result after merging.

5 Conclusion

In this paper, we present a vertically-regressed proposal network. This method
originates from RPN and is developed for text detection. In the proposed
method, text regions are matched by several consecutive anchor regions, and
each anchor region is regressed to predict the upper and lower boundaries of
text regions. This allows the network to perform accurate and robust text detec-
tion with moderate network structure, fewer anchors and lower computation
cost.

Using “thin” anchors in VRPN can be treated as making anchor-level infer-
ence on dense feature maps. For future work, we can investigate pixel-level detec-
tion which makes inference on a feature map of the same size as the original
image.
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