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Abstract. Exosomes are nanosized, cell-derived vesicles that appear
in different biological fluids. They attract a growing interest of the
researcher community due to their important role in intercellular com-
munication. An easy to use and reliable method for their quantification
and characterization at the single-vesicle level is tremendously needed
to help evaluating exosomal preparations in research as well as clini-
cal studies. In this paper, we present a morphological method for auto-
matic detection and segmentation of exosomes in transmission electron
microscopy images. The exosome segmentation is carried out using mor-
phological seeded watershed on gradient magnitude image, with the seeds
established by applying a series of hysteresis thresholdings, followed by
morphological filtering and cluster splitting. We tested the method on
a diverse image data set, yielding the detection performance of slightly
over 80 %.

Keywords: Exosome - Detection + Segmentation + Transmission elec-
tron microscopy ‘- Image processing

1 Introduction

Exosomes are small (30-200nm) vesicles appearing in biological fluids, such as
blood and urine. They play important roles in intercellular signaling and have
garnered interest due to their therapeutic and diagnostic potential, e.g. in rela-
tion to oncological diseases [1,2]. However, to utilize this potential, novel auto-
mated approaches for isolation and characterization of these vesicles are required.

Due to their nanosize, exosomes are usually observed using transmission elec-
tron microscopy (TEM). Not limited by the diffraction limit for visible light,
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TEM enables us to visualize structures several orders of magnitude smaller than
those viewable with optical microscopes. Nevertheless, TEM alone is not very
suitable as a method for quantification and characterization of exosomes, and
therefore, image analysis tools for automated quantitative characterization of
TEM exosomal images are heavily sought after.

A number of algorithms have been proposed for the analysis of various struc-
tures in electron microscopy images over the past decade. These primarily include
segmentation of neurons [3], their synapses [4], and mitochondria [5,6] from
scanning electron microscopy stacks using machine learning, reconstruction of
nuclear envelopes [7] from TEM stacks using region growing, and detection of
virus particles [8,9] in TEM images using size priors and texture descriptors.
Nevertheless, to the best of our knowledge, there are no image analysis tools for
the quantification of exosomes in TEM images currently available. As all of the
above, exosome analysis requires a special treatment to properly discriminate
between desired exosomes of nearly oval shapes of highly variable sizes and typ-
ical contaminants, such precipitated stain, proteins, and other impurities, found
in the preparations.

In this paper, we introduce a novel method for automatic quantification
of exosomes in TEM images. The method employs traditional morphological
seeded watershed, the performance of which depends significantly on the proper
choice of seeds. We establish them by applying a gradual edge growing procedure
followed by size and shape filtering, and by a cluster splitting step. The proposed
method is validated over a diverse data set of TEM exosomal images, achieving
a promising detection performance in terms of F; score.

2 Input Data

The data set used to validate the proposed algorithm consisted of 20 hetero-
geneous 16-bit images, containing 63 exosomes of roughly oval shapes in total,
together with a coarse, grainy background and non-exosome structures. The
exosomes were isolated by ultracentrifugation from the ascites of ovarian cancer
patients, negatively contrasted with ammonium molybdate [10], and imaged with
a Morgagni 268D microscope (FEI) equipped with Megaview IIT (Soft Imaging
System), at 70 kV. The dimensions of the individual images were 500 x 500
pixels, with scales ranging from 1.0 to 2.5 nanometers per pixel. Three examples
of the analyzed images can be seen in Fig. 1.

3 Proposed Approach

The high variability of the input images calls for a segmentation approach that
would be successful across a wide range of scenarios. Since some of the exo-
somes were lighter than their surrounding, while other were darker, or of similar
intensity as the background, the intensity could not be reliably used as a dis-
criminating feature. The identifying feature that showed to be most consistent
across various images was the exosome border, and its roughly oval shape. The
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Fig. 1. Three examples of the analyzed images at different scales, with exosomes indi-
cated by the arrows. Note the precipitated stain and other impurities in the background,
and the varying exosome intensity relative to their surrounding.

Fig. 2. Left: The input grayscale image. Center: The result of edge-enhancing filtering
(A = 0.0050). Right: The edge map of the filtered image displayed in the central panel.

backbone of our segmentation method is based on morphological watershed, with
the identification of the exosome seeds being the crucial step.

To reduce the amount of noise and enhance the exosome borders, we start by
preprocessing the input image with edge-enhancing diffusion (EED) filtering (100
iterations with the time step of 0.1, and a contrast parameter \) [11]. The initial
edge map, G, is then obtained as the gradient magnitude of the preprocessed
image, normalized to the [0, 1] interval (Fig. 2). As the gradient magnitude often
varies along the exosome borders considerably (which would lead to disconnected
edge segments if a simple thresholding of G were used), we apply a gradual edge
growing routine to identify the exosome borders in the edge map G as follows.

The strongest segments of the exosome borders are found by thresholding G
with the threshold T, fixed as the top 2% of the cumulative histogram of G. To
find the seeds for exosome interiors, we then let the edge segments grow along
the ridges until they fully enclose the exosomes. We do this by performing a
sequence of hysteresis thresholdings for n = 1,2,.... The upper threshold stays
at T', whereas the lower threshold T'— nAt gets progressively lower. The lowest
possible threshold was chosen as 0.05 to account for all important edges.
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Fig. 3. Finding the exosome borders and interiors in the gradient magnitude image in
two successive iterations of the gradual edge growing procedure. The red area shows the
edge segmented with the highest threshold, T'. The blue area shows the edge segmented
with the lower threshold, T'— (n — 1) At and T — nAt, right before and at the moment
the component I becomes fully enclosed, respectively. At the latter moment, the blue
area gets frozen, except for the tips of the branches (marked in green) of the blue area
skeleton (marked in yellow), allowing the edge to grow further to fully enclose also the
component II, without potentially corrupting the edge around the component I. (Color
figure online)

Each time the growing edge segments create a new interior component, that
component is stored as a new candidate seed, and the edge component surround-
ing it is frozen, preventing it from growing any further, and thus distorting or
removing the candidate seed. However, this may potentially prevent some of the
edge segments from completely enclosing the corresponding exosomes, if multi-
ple exosomes are touching. In such cases, the first exosome interior to be fully
enclosed causes the common edge component of all the touching exosomes to
get frozen before it can grow enough to fully enclose the others. To prevent this,
we analyze the skeleton of the edge component at the time of freezing, and if it
contains any long branches (exceeding approximately 5% of the expected exo-
some circumference), their tips are kept unfrozen, allowing them to grow further
along the respective gradient magnitude ridges. An illustrative example of such
a situation is depicted in Fig. 3.

Once the hysteresis thresholdings are computed, the candidate seeds are
processed based on their size and shape. The size criterion discards those candi-
date seeds not falling within the expected exosome dimensions. To filter out the
candidate seeds by shape, they are subjected to morphological opening, with a
disc structuring element of the size corresponding to a user-defined fraction «
of the expected exosome size. If the area of a candidate seed decreases by more
than 10 % after the opening, it indicates its boundary is not smooth enough, and
the candidate seed is discarded.

If the image contains any touching exosomes that have not been separated
during the gradual edge growing due to weak edges between them, they usually
form non-convex clusters. Such clusters are split by computing the Euclidean
distance transform (EDT) over them, and taking its HCONVEX transform [12],
with h = 3, yielding a single seed for each of the EDT distinct local maxima.



322 K. Stépka et al.

Fig. 4. Left: The candidate seed contours after the gradual edge growing procedure,
overlaid over the input image. Center: The seeds established after the basic filtering,
and the corresponding auxiliary watershed segmentation. The white seeds are those
that will be removed by the additional filtering, since the corresponding components
in the auxiliary segmentation are not round enough. Right: Three exosomes segmented
from the black seeds depicted in the central panel.

When the seeds have been established, they can either be directly used for
the final segmentation, or an additional, optional filtering step can be taken to
improve the detection performance. This step involves an auxiliary watershed
segmentation based on the seeds. For each resulting component ¢, we calculate

its roundness R, as "
47
RC = 2 - bl
PC

where A, and P, denotes the component area and perimeter, respectively. If
R. < 0.75, the component ¢ of the auxiliary segmentation is not considered
round, and its corresponding seed is discarded. This helps especially in images
with strong and complex background, where false seeds may be detected among
the EED-processed background structures (such random structures generally
tend to have low roundness).

For the final segmentation, the gradient magnitude of the input image is
used as the segmentation function in morphological seeded watershed, but the
exact choice of the segmentation function is less critical than finding the seeds
properly, and can be adapted for particular needs. As an alternative, the final
segmentation can also be based on an energy minimization approach. The results
of the basic and additional filtering, and the final segmentation, are depicted in
Fig. 4, showing the segmentation of three exosomes.

4 Results and Discussion

We applied the proposed algorithm to the image data set described in Sect. 2,
and expressed the detection success rate in terms of Precision, Recall, and the
combined F; score:
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P o _ - _ =
recitsion = TP FP, Recall = TP FN,

=2 Precision - Recall

Precision + Recall’

where TP is the number of True Positives, F'P is the number of False Positives,
and F'N is the number of False Negatives.

The detected seeds were compared with expert-annotated reference images.
A detected seed was labeled as a True Positive, if it intersected with exactly one
reference seed, and no other detected seed intersected with the same reference
seed. In other cases, the detected seeds were labeled as False Positives. The
reference seeds with no corresponding True Positive (i.e., missed exosomes) were
counted as False Negatives.

In order to find the optimal values of A and «, for which the proposed method
achieves the highest F; score measured over all the analyzed 20 images, 306 dif-
ferent configurations were examined in total, with A = 0.0010, 0.0015, . ..,0.0095
and o = 0.10,0.15,...,0.90. We also evaluated the influence of the additional
filtering step that involved the auxiliary watershed segmentation, as mentioned
in Sect.3. The obtained results are summarized in Table 1, showing the best
F scores, together with the corresponding Precision and Recall values, and the
optimal parameter values. Furthermore, we performed a leave-one-out cross-
validation for the both versions of the proposed method to estimate their
expected performance for new images from the same source. The measured F;
score was approximately 2.2 % and 0.7 % lower than that obtained for the opti-
mal parameter setting (Table1) in case of the basic and additional filtering,
respectively.

In some cases, the additional filtering may lower the Recall value by mis-
takenly removing True Positive seeds. However, the best F; score for the basic
processing was achieved with a different parameter setting than that for the
complete alternative, resulting in the clear improvement of both Precision and
Recall when the additional filtering was used.

Apart from this, low Recall can be caused by a very low contrast of the
edges of some exosomes. Due to the nature of the hysteresis thresholding, each
exosome or cluster of touching exosomes needs to have at least one edge segment

Table 1. Performance of the proposed method with the optimal A and « setting for the
basic and additional seed filtering, and of a machine-learning method that combines
fourth-order algebraic curve fitting [6] with ilastik’s random-forest object classifier [13].

Method Precision | Recall | F1 Aopt Qopt
Proposed (basic filtering) 0.7963 0.6825 | 0.7350 | 0.0045 | 0.40
Proposed (extended filtering) |0.9184 0.7143 1 0.8036 | 0.0050 | 0.15
Algebraic curve fitting—+ilastik | 0.8511 0.6349 | 0.7273 | NA NA
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where the gradient magnitude exceeds the upper threshold T'; otherwise, that
exosome or cluster is completely missed.

We also compared the performance of our method with a machine-learning
approach that combines algebraic curve fitting [6] with object classification pro-
vided by ilastik [13]. To account for variable exosome sizes, the input images were
first divided into five independent series of patches of different sizes (50 x 50,
90 x 90, 150 x 150, 200 x 200, and 250 x 250 pixels) with a 50 % overlap between
neighboring patches. A fourth-order algebraic curve was then fitted to the patch
intensities, and the patch was binarized using the zero level set of the fitted
curve. Finally, all 4-connected components not touching the patch border were
established as exosome candidates and classified using a random-forest classi-
fier provided by ilastik, using 32 shape and textural features calculated over the
gradient magnitude of the corresponding input image data. To utilize all data
for both training and classification, we performed a 10-fold cross-validation. As
shown in Table 1, the machine-learning approach achieved approximately 0.8 %
and 7.6 % less accurate results in terms of the combined F; score than our pro-
posed algorithm with the basic and additional filtering, respectively.

Altogether, our proposed algorithm reliably detects most of the exosomes,
and a preliminary analysis of the quantitative results showed that the size dis-
tribution of the exosomes obtained using our approach corresponds well with the
size distribution patterns obtained using an alternative measurement method,
tunable resistive pulse sensing [14].

5 Conclusion

To the best of our knowledge, we present for the first time an image analy-
sis method specifically developed for a quantitative analysis of TEM exosomal
images. The method exploits morphological seeded watershed, with the seed
detection being the important step. We identify the seeds by performing a series
of hysteresis thresholdings, followed by size and shape filtering, and optionally
by the additional filtering step based on an auxiliary watershed segmentation.
The method is capable of detecting exosomes both lighter and darker than
their surrounding, and of distinguishing them from common artifacts in TEM
images, such as precipitated stain and other impurities in sample preparations.
Moreover, it provides their basic characteristics: number, size, area, and round-
ness, offering a fully automated way to study and evaluate exosomal prepara-
tions both for research and clinical purposes. We believe the ever-growing exoso-
mal research would benefit from the presented tool significantly. The imple-
mentation of this tool and all relevant data used for generating the results
described in this paper are made publicly available at http://cbia.fi.muni.cz/
exosome-analyzer, free of charge for noncommercial and research purposes.
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