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Abstract. In this work, we use a fully convolutional neural network for
microscopy cell image segmentation. Rather than designing the network
from scratch, we modify an existing network to suit our dataset. We show
that improved cell segmentation can be obtained by augmenting the raw
images with specialized feature maps such as eigen value of Hessian and
wavelet filtered images, for training our network. We also show modality
transfer learning, by training a network on phase contrast images and
testing on fluorescent images. Finally we show that our network is able
to segment irregularly shaped cells. We evaluate the performance of our
methods on three datasets consisting of phase contrast, fluorescent and
bright-field images.

Keywords: Deep neural network · Feature augmentation · Cell segmen-
tation · Convolutional neural network · Unstained cells

1 Introduction

Observation of biological samples over prolonged periods of time is commonly
used to study phenotypical changes due to variations in environmental condi-
tions or genetic modifications. High-throughput high-content screening is used
to analyse many biological processes simultaneously [1]. It is tedious for human
observers to monitor changes at the cellular level over long time. Automated
image analysis algorithms are widely used to simplify and quantify the analysis
process [2].

For automated image analysis at the cellular level, a commonly used app-
roach is to segment the cellular regions and track the cell segments over time
[3]. The cell segmentation is a crucial step in this process, which affects the
quality of the cell tracking results. In this work, we aim to segment cells in time-
lapse microscopy image sequences. Cell segmentation is a challenging process,
especially when the cells are unstained. Deep Neural Networks (DNN) using
Fully Convolutional Neural Networks (FCNN) have shown excellent results in
semantic segmentation [4]. FCNNs were also used in segmenting unstained cells
in microscopy images [5,6]. The network structures of these high performing
FCNNs, as opposed to traditional DNNs [7,8], suggest that designing the proper
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(a) EFD (b) EPD (c) MBD

Fig. 1. (a) Input E. coli fluorescent dataset (EFD) (b) E. coli phase contrast dataset
(EPD) and (c) mouse mammary cells bright-field dataset (MBD).

deep network is non-trivial. Often, a network that gives good results on a partic-
ular dataset may not give good results on another dataset. Fusing features from
different layers of deep networks [9] or combining deep features with hand-crafted
features [10] were used in video action recognition tasks, where the authors used
‘late fusion’, i.e., they combined features at later layers of the deep network
for classification. A combination of Gabor filters and Convolutional Neural Net-
works was used for face detection [11], where the author performed an ‘early
fusion’, by combining hand-crafted features in the first layer of the neural net-
work. Recently, DNNs with a reduced number of parameters [12,13] were also
successfully used for classification. In this work, we augment features at the first
layer by combining hand-crafted features with raw images, and train an FCNN
with a reduced number of parameters. We use wavelet filtering and eigen value
based enhancement for feature augmentation. For one of our datasets we create
ground-truth semi-automatically, using an existing method [14]. In Sect. 2, we
describe how to modify a deep network with augmented features for two different
datasets of E. coli cells and mouse cells. In Sect. 3, we perform a quantitative
evaluation of our results with an existing method for the E. coli dataset and a
qualitative evaluation of our results on the mouse cells dataset. We also show
how the feature augmentation improves segmentation of the cells.

2 Materials and Methods

2.1 Input Images

The input images comprise two time-lapse datasets- (1) a prokaryotic cell
dataset, consisting of E. coli and (2) a eukaryotic cell dataset, consisting of
mouse mammary gland cells. The E. coli cell images were acquired using a
phase contrast microscope and we call this dataset E. coli phase dataset (EPD)
and the mouse cells were acquired using a bright-field microscope and we call it
mouse bright-field dataset (MBD), hereafter. The EPD consists of 500 images
of size 1024×1360 pixels in vertical and horizontal directions respectively, while
the bright-field dataset consists of 411 images of size 1040 × 1392 pixels. These
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two datasets are used for both training and testing of our FCNNs. In addition,
we use a single image of the E. coli sample, imaged under a fluorescence micro-
scope and we name this dataset E. coli fluorescent dataset (EFD), for additional
testing of a modality that is different from the one used for training the FCNN.
Sample images from the image datasets are shown in Fig. 1.

2.2 Image Preprocessing

The EPD contains regions outside the cell colony area. We therefore crop the
images to a size of 860 × 860 pixels to set the field of view to cell regions alone.
The images in the MBD, are not cropped as the raw images contain cells in
the full field of view. We create three different types of feature maps depending
on the dataset, such as eigen value based contrast enhancement [15], wavelet
coefficient filtering [16] and truncated Singular Value Decomposition (SVD) [17].
The idea behind the feature augmentation is to highlight certain regions in the
input images and make the network learn features from those regions resulting in
improved segmentation of cellular regions. The choice of these features depends
on the imaging modality and the type of cells imaged.

For the EPD, we use the eigen value based contrast enhancement and trun-
cated SVD. The eigen value based contrast enhancement was successfully used
in [3] to segment E.coli cells. This method improves the contrast between the
regions of touching cells. The contrast enhancement using this approach helps
the network to learn features for better cell segmentation than the network that
does not use additional contrast enhancements, by accurately segmenting the
touching cells. We use truncated SVD as denoising method and wanted to see if
denoising has any impact on the segmentation results, especially for the EFD,
which is more noisy than either the EPD or the MBD. The eigen value based
contrast enhancement is done by extracting the minimum curvature of the inten-
sity landscape in the input image. For this, first we find the Hessian matrix, H,
which is created by finding the second derivative at each pixel position in the x
and y directions of the image. The maximum and minimum curvatures (principal
curvatures) at a position are the eigen values of the Hessian matrix. The eigen
values are found by the following equation [15].

k1,2 =
trace(H) ± √

trace(H)2 − 4 × det(H)
2

(1)

Here, k1 and k2 are the principal curvatures with k1 < k2. To perform contrast
enhancement, we create an image with k1, the lowest eigen value, from all spatial
locations of the input image. To find the truncated SVD, we find singular values
sorted in decreasing order, for the full raw image, and add the values till they
sum upto 99% of the sum of all singular values. All the singular values after
99% are set to zero and an image is reconstructed from the new set of singular
values. For the EPD, we use four different input combinations for the FCNN
such as- (1) raw images, (2) eigen images, (3) combined raw and eigen images,
and (4) truncated SVD images as summarized in Table 1.
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Table 1. The inputs used for training. The EFD is not used for training

Dataset Raw Eigen Raw + Eigen SVD Raw + Wavelet

EPD yes yes yes yes -

MBD yes - - - yes

EFD - - - - -

For the MBD, we first find the wavelet transform using Daubechies 4 wavelet
[16] (db4) to four decomposition levels and set the approximation coefficients to
zero and then reconstruct the image using these modified coefficients. Two deep
networks with raw images and a stack of combined raw images with wavelet
filtered images as input are created for the MBD. We use open-source code
available at [18] to find wavelet features. Table 1 shows the inputs used for train-
ing both the EPD and the MBD. All these input images were preprocessed by
normalizing to the range [0, 1] and subtracting the median value.

2.3 Semi-automatic Ground Truth Generation

Training data generation is one of the crucial steps for any FCNN application.
We observed that the quality of the training set was equally important as the
quantity. In this work, we employed two different strategies for training set gen-
eration. For the EPD, we generated the training set semi-automatically. We
used the open-source code available at [14] to segment E. coli cells. Once the
segmentation was finished, we manually removed the false positives to improve
the quality of our training set. We observed that even a single false postive could
adversely affect the results when testing the FCNN. This could be due to two
reasons- (1) when false positives are present, the network learns parameters to
detect foreground regions that actually have the features of the background,
resulting in poor performance during testing. (2) since we perform data aug-
mentation there is a high chance that the false positives are present in multiple
training samples. We selected 30 images, equally spaced at regular intervals in
the EPD consisting of 500 images, for training our FCNN. After selecting rep-
resentative images, we set the input image size of the FCNN to 540× 540 pixels
through cropping. From every representative raw input image, we cropped 5
patches to cover the entire image region. The regions we cropped were such
that the patches cover the top-left corner, bottom-left corner, top-right corner,
bottom-right corner and the centre of the images. We created data augmenta-
tion using these representative images. The data augmentation step consisted of
spatial transformations such as flipping, rotation and elastic deformations [5].
We did two experiments- (1) with the original U-Net and (2) with a modified
U-Net. For the experiment with the original U-Net, we created a training set of
20000 images, while for the experiment with the modified U-Net, we created a
training set of 600 images, followed by feature augmentation. Finally, we created
weight maps to give additional weights to the foreground regions for weighted
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Fig. 2. Architecture of the network. Each block represents two convolutions with a
kernel of size 3 × 3 without padding. An input image with its augmented feature
map and the corresponding output probability map is also shown. The feature map is
contrast enhanced for better visualization.

softmax [5]. Additional weights force the network to learn parameters in such a
way that it can separate touching cells. We set the border weight value to 10 for
the feature augmented networks and 3 for the single input image networks and
standard deviation to 3 for all the networks to create the weighted labels.

For the MBD, there is no previously existing method that gives a satisfac-
tory cell segmentation, to the best of our knowledge. Therefore semi-automated
ground truth generation cannot be used in this case. We manually marked
the boundary of each cell in two images. There were approximately 300 cells
per image. Then, by data augmentation, 600 training samples were generated
from these images, followed by feature augmentation. The rest of the processing
pipeline is similar to the one used for the EPD.

2.4 Deep Neural Network Architecture and Training

The FCNN we use in this work, is inspired by the recent FCNN known as U-Net
[5]. Initially we trained the original U-Net [5] architecture using 20000 train-
ing images, created through data augmentation, for 200000 training iterations.
During testing, we found that the network was under-performing and the final
segmentation result was poor for our dataset. This may be because of the large
number of parameters in the network model and also that our dataset may be
lying in a lower dimensional feature space. The details regarding these results
are given in Sect. 3.1. Next, we modified the original network structure and com-
bined it with traditional image processing techniques to improve performance on
our dataset. We modified the original architecture by reducing the feature map
size, i.e. number of featuremaps, to 1/32 of the original size. For example, the
original U-Net has a feature map size of 64 in the first layer while our modified
network has two feature maps in the first layer. The architecture of the network,
a raw image, a feature map, and an output probability map is shown in Fig. 2.
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Fig. 3. Overlap-tiling to find the probability map of the entire image. The raw image
or the stack of raw images with augmented feature maps is mirrored on all sides to
take care of the boundary problem. Then patch-wise probability maps are created to
cover the entire image and finally the probability map is cropped to the size of the raw
input image.

Here, we reduced the training set size to 600 images. We used the following
hyperparameters for training: the number of training iterations was set to 20000
with base learning rate to 0.01 and momentum to 0.9 and reduced the learning
rate to 1/10 of the current value after every 5000 iterations. We used the open-
source framework Caffe [19], with an additional weighted softmax loss layer and
a crop layer, to implement the FCNN. We trained all different networks on a
workstation with Intel(R) Core(TM) i7-5930K CPU running at 3.50 GHz and a
Nvidia Titan X GPU.

2.5 Segmentation and Postprocessing

For the EPD, testing was done on the whole time-lapse sequence comprising
of 500 images, to quantify its usability for cell tracking applications. The final
network had an input size of 540 × 540 or 540 × 540 × 2, depending on network
architecture, and the output probability map size was 356 × 356. So to create
a probability map for the entire image, we first created an image that was 9
times the size of the original image by mirroring on all eight neighborhood posi-
tions of the image followed by feature map generation. After the mirroring step,
we traversed through the whole image, in an overlap-tile strategy of input, in
such a way that the output probability maps did not overlap, similarly as in
[5]. The overlap-tiling along with cropping of the probability map is shown in
Fig. 3. For the EPD, we empirically found a threshold of 0.2 for binarization and
removed objects that were smaller than 200 pixels to eliminate false positive
pixels. Finally, we filled holes in the output mask to get a final segmentation
mask. For the MBD, a similar procedure was followed to create a probability
map. The probability map for the MBD was not as sharp as the one for the EPD.
We therefore applied watershed segmentation to the probability map to find the
final segmentation mask. We used the openly available CellProfiler software [20]
for watershed segmentation. In CellProfiler, we set the parameters minimum and
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(a) EFD, Orig. U-Net (b) EPD, Orig. U-Net

(c) EFD, Mod. U-Net (d) EPD, Mod. U-Net

Fig. 4. Probability maps from the original U-Net and the modified U-Net when raw
images were used as input. (a) and (b) show the probability maps for the EFD and
the EPD, respectively, for the original U-Net. (c) and (d) show the corresponding
probability maps for the modified U-Net with architecture shown in Fig. 2.

maximum diameter of objects to 30 and 100 respectively, for the segmentation,
and kept other parameters at their default values.

2.6 Modality Transfer Learning

Finally, we investigated if a trained network can be transfered to a new imaging
modality, in this case moving from phase contrast to fluorescence microscopy.
For the EFD, we re-used the network trained on the EPD. We inverted the
input image, so that the cells appeared as dark objects and the background was
bright. After inverting the image, we created feature augmentation and fed to
the corresponding network trained on the EPD. This way we were able to re-
use the same network for testing on a different modality, that was not used for
training.

3 Results and Discussions

In this section, we show the results obtained from the modified network for our
image datasets.
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(a) Raw (b) Eigen (c) Raw+Eigen (d) SVD

(e) Raw (f) Eigen (g) Raw+Eigen (h) SVD

Fig. 5. (a–d) Segmentation result overlayed on the EPD (e–h) zoomed-in regions of
corresponding segmentation results on highlighted (red) regions from (a–d). (Color
figure online)

(a) Raw (b) Eigen (c) Raw+Eigen (d) SVD

(e) Raw (f) Eigen (g) Raw+Eigen (h) SVD

Fig. 6. (a–d) Segmentation result overlayed on the EFD (e–h) zoomed-in regions of
corresponding segmentation results on highlighted (red) regions. (Color figure online)

3.1 Deep Neural Network

A comparison of results from the original U-Net and our modified network for
raw input images is shown in Fig. 4. Visual inspection of these results shows that
the modified network performs better than the original one for our dataset. This
might be attributed to the small number of parameters for the network and low
feature dimensionality of our dataset.
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Table 2. The average F-score ± standard deviation for the previously published CBA
method and the here proposed methods using raw images, eigen images, raw images
with eigen images and truncated SVD images for the EPD and the EFD

Dataset CBA Raw Eigen Raw+ Eigen SVD

EPD 0.81 ± 0.27 0.37 ± 0.24 0.60 ± 0.21 0.82± 0.29 0.78 ± 0.28

EFD 0.83 ± 0.25 0.78 ± 0.29 0.84 ± 0.26 0.84 ± 0.25 0.85± 0.25

(a) EPD (b) EFD

Fig. 7. Percentage of cells above particular F-score value v/s F-score for the EPD and
the EFD.

3.2 Segmentation Evaluation

The segmentation results for the EPD and the EFD for different networks are
shown in Figs. 5 and 6 respectively. Zoomed-in regions of highlighted areas (in
red) are also shown in these figures. For the EPD, a performance improvement for
the proposed method can be seen from the results of our feature augmented net-
works, giving comparatively better results than single input networks as shown
in Fig. 5. For the EFD, qualitative evaluation of the results shows that simi-
lar performance is obtained for all networks as shown in Fig. 6. Next we did a
quantitative evaluation of the segmentation result on the EPD and the EFD.
We compared all the segmentation results with the corresponding ground truth
images. The results of the comparison are shown in Fig. 7(a) for the EPD and
Fig. 7(b) for EFD. The average F-score value per cell, together with standard
deviations for the EPD (288 cells) and the EFD (308 cells) with respect to the
different methods are shown in Table 2. The evaluation on the EFD shows that
our proposed method, using feature augmentation, is comparable to the state-
of-the-art method, refered to as CBA [3]. The evaluation on the EPD shows that
the feature augmentation based deep network using the raw image + the eigen
image is better than the deep networks using either the raw image or the eigen
image alone. Furthermore we found that our proposed method is better than the
previous method for detecting irregularly shaped cells. The segmentation results
for two images with irregularly shaped cells are shown in Fig. 8. The results show
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(a) Raw (b) Eigen (c) Raw + Eigen (d) SVD

(e) Raw (f) Eigen (g) Raw + Eigen (h) SVD

Fig. 8. (a–d) show segmentation results, on a selected region, using our networks when
an unusually long cell is present in the input image. Similarly (e–h) show results when
an irregular shaped cell is present in the input image.

that our method can detect E. coli cells of any length or other abnormalities. We
observed that the networks with raw image and truncated SVD image as input
had a low perfomance because the regions between the cells had a high value
in the output probability map and were detected as foreground regions after
thresholding. It is worth noting that the truncated SVD gave better results than
the raw image. This might be due to the reduction in noise while doing SVD
truncation. We observed that 99% of the sum of all singular values gave the best
performance, when the sum was varied from 80% to 99% of the total sum of all
singular values. Since the truncated SVD acts as a denoising filter, it might be
possible to use other denoising filters to achieve similar performance. Qualitative
analysis on the MBD showed that the feature augmented network, using wavelet
filtering, gave visibly improved results as compared to the network using only
the raw images. The probability maps are shown in Fig. 9(a) and (b). Comparing
the two results we can see that the regions inside the cells are brighter, indicating
high probability of being cells, while the boundaries are dark. We did watershed
segmentation on the probability maps to get a final segmentation mask. The
final segmentation mask overlayed on raw input image is shown in Fig. 9(c) and
(d). The results from the MBD also showed that improved performance can be
obtained using feature augmentation.

We compared the execution speed of the CBA method with our deep neural
network approach. A direct comparison of the CBA method with the proposed
method is not possible since CBA is a CPU based algorithm while the proposed
method is GPU based. For the comparison, we used the faster version of CBA
[14]. We found that the CBA method took 1.86 s to segment the EPD of size
860 × 860 on a laptop with quad core Intel(R) Core(TM) i7 CPU running at
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(a) Raw (b) Raw+Wavelet

(c) Raw (d) Raw+Wavelet

Fig. 9. Segmentation result of the MBD. Probability maps of results using the raw
image alone and using the raw image along with feature augmentation using wavelet
filtering is shown in (a) and (b) and corresponding segmentation results using the
watershed algorithm on the probability maps are shown in (c) and (d). Training and
testing was done on separate images.

2.7 GHz with 8 Gb RAM on Ubuntu 14.04. The proposed approach took 0.91 s
to segment the same image on a workstation with six core Intel(R) Core(TM)
i7 CPU running at 3.50 GHz with 32 Gb RAM and a Nvidia Titan X GPU on
Ubuntu 14.04.

4 Conclusion and Future Work

In this work, we have modified an existing FCNN and augment the input
layer with hand-crafted features to improve the performance. We used an exist-
ing method to generate the ground truth semi-automatically, for training our
FCNNs. We showed that modality transfer learning is possible by training the
FCNN on one imaging modality, such as phase contrast microscopy images and
test on a different modality, such as fluorescence microscopy images. We also
showed that our proposed feature augmentation technique improved the segmen-
tation of cells on three different datasets. The previous state-of-the-art method
(CBA) fails in finding cells that do not have an elliptical shape, while the pro-
posed FCNN does not have such restrictions. It should be noted that these
irregularly shaped cells were not part of the training set, and we believe that
the success is due to the ability of the FCNN to identify the local structures
that enables better segmentation of individual cells. In the future, we plan to
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use other features for improved segmentation accuracy for unstained cultured
cells and use the segmentation results for cell tracking applications.
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