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Abstract. Integral volume is an important image representation tech-
nique, which is useful in many computer vision applications. Processing
integral volumes for large scale 3D datasets is challenging due to high
memory requirements. The difficulties lie in efficiently computing, stor-
ing, querying and updating the integral volume values. In this work, we
address the above problems and present a novel solution for process-
ing integral volumes for large scale 3D datasets efficiently. We propose
an octree-based method where the worst-case complexity for querying
the integral volume of arbitrary regions is O(log n), here n is the num-
ber of nodes in the octree. We evaluate our proposed method on multi-
resolution LiDAR point cloud data. Our work can serve as a tool to fast
extract features from large scale 3D datasets, which can be beneficial for
computer vision applications.
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1 Introduction

Integral images are probably best known for their use in real-time face detection
[1]. Since its first introduction in the ’80s [2], integral images have found many
important applications in computer vision research [3–6].

In general, the sum of pixels inside any rectangular shaped region in an 2D
image can be calculated in constant time using its integral image representation.
Integral images can be easily extended for 3D data. 3D version of integral images
or integral volumes can be used to calculate sum of pixels of different cube
shaped regions in constant time. However, the additional dimension poses some
new challenges as huge amount of memory is required for storing the integral
volumes and it also becomes computationally expensive to query and modify the
integral volumes.

Computation of integral volumes of 3D datasets are difficult as all existing
approaches require the data to be loaded into memory to get the integral repre-
sentations. This approach becomes impossible if we consider large scale datasets:
Multi resolution world map data, 3D model of a city, country or the whole world.
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These datasets are just too huge to load into memory. Various compression tech-
niques [7,8] can be used to mitigate the primary memory requirement to an
extent but they will not work in case of the global scale datasets mentioned
before. Another challenge is updating the integral volume values. For example,
if the original data changes by a single pixel, all the values of its integral repre-
sentation can change. Needless to say we need efficient methods to store, query
and update integral volumes for global scale datasets in order to apply many
computer vision algorithms.

Hierarchical octree data structures are often used to represent these kind of
large scale multi-resolution data [9]. However, there is no existing method for
efficient integral volume processing for them. The problem still lies in efficiently
querying and updating the integral values.

A simple approach towards this problem would be to compute and store
the integral volumes locally in the leaf nodes of the tree. The integral volume
value of any query region can be simply found by adding the values of all the
nodes inside that region. With this design we achieve efficient storage and also
deal with the updating issue. If some data changes, we only need to update
the integral volume values of that specific leaf node, which saves significant
computational overheads. However, this approach is very in-efficient in case of
querying the integral volume value of a point or a region, as the values from
the number of nodes to be accumulated to get the result may be very high.
This design can be improved to work really well if the query region is aligned
with the tree node-structure (see baseline method) but can be extremely slow
in case of misalignment, as we show in our experiment. Thus, we need a more
robust design for integral volume query while keeping the querying computation
complexity low.

In this paper we present a novel approach which queries integral volumes
for global scale data, and which has querying time complexity O(log n), where
n is the number of nodes in the octree representation of the data. We achieve
significant speed gain by storing extra values in non-leaf nodes. Thus, we settle
for higher offline memory usage for fast integral volume query. We experiment
and demonstrate our method on large point-cloud data (Fig. 1.) and show that
it is possible to fast query integral volumes from 3D global scale datasets.

2 Related Works

Integral Images and Volumes. Integral images was first introduced in 1984
by F. Crow as summed area tables which was used for texture mapping [2].
The 3D extension i.e., the idea of three-dimensional sum-tables was later given
by A. Glassner [10]. In 2004, Integral Images became greatly popular by their
use in Robust Real-Time Face Detection [1]. In this work a very large number
of rectangular features were evaluated for each detection window and integral
image representation made it possible to perform these evaluations very quickly,
consequently making the system real-time in a conventional computation envi-
ronment.
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Fig. 1. Plot of a section of point cloud data at zoom 22 (maximum zoom is 23). It
represents a volume of around (612 m)3 in about 15.2 million data points.

Despite significant speed gain while computing certain features, a common
issue with using Integral Images and Volumes is that they require great amount
of storage and large word length. Methods to reduce the storage size and word
length has been introduced by H. Belt [8]. In that work, a lossless and a lossy
method of word length reduction is introduced. The lossless method takes advan-
tage of numerical properties of complement-coded arithmetic and the lossy
method is based on rounding the original image prior to the integral image
calculation. In the 3D extension, memory efficient data structure introduced by
Urschler et al. [7] is very useful to reduce the memory usage when dealing with
integral volumes. It works by dividing the integral volume data into equal-sized
blocks and estimating the integral volume value for the points of each block using
a one-parameter model and then storing the differences between the estimated
values and the actual values using different word length per block. They tested
their method in a weak learner ensemble based machine learning framework and
the memory usage was 3 times less. However, these methods still rely on loading
the input data into memory for integral volume processing. Thus, they cannot
be scaled to work with global scale datasets. Also, updating the integral volume
values as the dataset gets larger remains an issue with these methods.

Octrees, Point Clouds. First introduced in 1982 by D. Meagher [11] for geo-
metric modelling, octrees have found wide range of applications. Octrees are used
in efficient rendering techniques [12]. In the field of robotics, octree based 3D
mapping frameworks are used [13]. Web mapping services such as Bing Maps
uses 2D version of octree (quadtree) based tiling system for efficient indexing
and retrieval of map data [14].

LiDAR (Light Detection and Ranging) is a great remote sensing tool to
scan and record urban environments. It works by emitting beams of laser in
the surrounding and recording the reflection time to create a highly detailed
map. LiDAR scans usually generate large point cloud data. The octree data
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structure is often a common choice for efficiently storing and processing of the
point clouds generated by these kind of remote sensing technologies [9,15,16].
Also, octree based region growing algorithms have been used for segmentation
of point cloud data [17].

3 Method

3.1 Octrees, Octkeys and General Offline Computation

Octrees are hierarchical data structures, where any internal node can have at
most eight children. The most important property of octrees, is that they are
based on the principle of recursive decomposition. For example, when represent-
ing region data, the root node of the tree represents the entire region. Each child
node represents one of the eight equal cube-shaped part of the region represented
by its parent node. This division of space is recursively continued until we reach
a maximum depth of the tree.

Fig. 2. Integral volumes stored at the leaf nodes of the octree

To efficiently access and visualise the data we use an octkey based tile system
which is a 3D extension of the quadkey based tile system used in Bing Maps [14].
Each node in the tree is analogous to a tile at a certain zoom level and is identified
by an octkey. All the tiles at a certain depth have octkeys of the same length.
Also, the number of digits in the octkey is always equal to the depth of the node
in the octree. In this work, we use the word tile and node interchangeably.

To achieve the task of querying the integral volume value of any point or
region, we first need to compute and store the integral volume values for all the
data points. As the maximum resolution data is stored at the leaf nodes, we visit
all the leaf nodes of the tree and calculate the integral volume, and store it in a
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file in the respective nodes. This can be visualized in Fig. 2. These computations
are strictly local and are restricted to each leaf node.

We worked with 3D LiDAR scans of the city of Tampere, Finland. This data
was collected by driving cars through the streets while simultaneously scanning
the environment through LiDAR sensors. The range of values for the global
coordinates at full resolution was (0, 231 − 1), as 31 bits were used to represent
the coordinate values. For efficiency, the points were grouped at level 23. That
means, 8 bit local displacement offset was stored in the nodes at depth 23 [15].
That’s why we have an octree of height 23. The integral volumes at each leaf
node are of the dimension 28 × 28 × 28.

Now, to query the integral volume for any arbitrary region, we can add up
all the tiles inside the queried region. As mentioned earlier, this is a challenge as
the region gets bigger, the number of tiles to be added also gets bigger. In the
worst case, if the queried region represents the root, we have to add 823 tiles;
Which is prohibitively inefficient. Thus, we need smarter ways to accumulate
values to produce the desired result. In the next subsections we analyse different
approaches to tackle this problem.

3.2 The Base-Line System

The integral volume value of a queried region can be calculated in a faster way
if we can decrease the number of tiles to be added. To achieve this, we need to
store values at the non-leaf nodes of the tree, otherwise we will not be able to
access the integral volume values of bigger tiles without breaking it into children.
Thus, we do a bottom up traversal of the tree and sum up all the children’s value
and store it in a file in their parents node.

Now, given a query region, if a tile partially intersects the query region,
it is recursively divided into its children and tested whether the children tiles
intersect the query region. A recursive branch stops if a leaf node is reached or
there is no intersection of the query region with the tile. If a tile completely falls
inside the queried region, its value is returned. The base line system starts with
tile 0 and continues this process for tiles 1, 2 and 3.

Fig. 3. Queried Region aligned with tiles (left). Queried Region not aligned with the
tiles (right)
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To visualise this, let’s consider a simplified two-dimensional case consisting
of only three zoom levels. The tiling convention is exactly same with bing map
tile systems [14]. In Fig. 3, we can see the two queried regions are marked in
orange. Let’s consider the left image; The queried region is totally aligned with
tile number 3. The tiles which actually return value are numbered in the Figure.
The total number of nodes visited for querying is 4 (Tiles 0, 1, 2 and 3).

On the right image, the queried region is not very well aligned with the
bigger tiles. Consequently, there are more recursive calls to break down tiles.
The number of nodes visited for this query is 52 (Tiles 0, 00, 01, 02, 03, 030,
031, 032, 033, 1, 10, 11, 12, 120, 121, 122, 123, 13, ... , 333).

Evidently, there are some significant advantages as well as disadvantages of
this approach. As we see from the given example, if the query region is aligned
with the tile distribution, then the querying is very fast. However, if the query
region is not aligned with the tiles then the system has to recurse down the tree
to find smaller tiles to add. Thus there is a possibility of the number of nodes
visited increasing exponentially as the query region gets larger.

3.3 Integral Volume by Storing Surfaces

We propose an alternative way, which bypasses the shortcoming of the base-line
system. For each non-leaf node, we compute the integral volume locally at full
resolution but only store 3 different surfaces. These are specifically the surfaces
which do not touch (0, 0, 0)th coordinate of the tile. Figure 4 shows the surfaces
coloured in orange.

The surface arrays are of length 28+(23−d) in both dimensions, where d is
the depth of the non-leaf node. For example, at depth 22 the surface arrays
are of the dimension 512 × 512. The reason behind the careful choice of these
three particular surfaces for each tile is the design of how we intend to query the
integral volume of a point or a region.

Fig. 4. Stored surfaces of a tile (Color figure online)

We calculate the integral volume value of a given query point, by starting
at the root node of the tree and traversing the path towards the leaf node
representing the query point. We call it the main recursion branch. For each
node on this path, we calculate the projection of the query point on the relevant
neighbouring sibling nodes at that particular depth. As the projected point is
always on the surface of a node, we easily get the integral volume value of the
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projected point from the stored surface arrays at the neighbouring nodes. We
keep accumulating all the neighbour values as we repeat this process for every
node on the main recursion branch. We stop the recursion at the leaf node. As
there is integral volume present in the leaf node, we instantly get the integral
volume value of the query point local to the leaf node. We then add this value
to the accumulated neighbour values to get the desired result.

From Fig. 5 we can visualise a simple case of how the methods works. We
start with a tile, which is the root node and a query point at which we intend
to evaluate the integral volume value. In the figure, the root node is the cube
on the top of the main recursion branch and the query point can be seen as the
orange dot (a). We break down the root into children and then select the one in
which the query point belongs (b). We then calculate the projection of the query
point on the relevant sibling neighbours. In this case we only need to find the
projection on the neighbour immediately left to the node as the starting point
of the region is on the top left corner. The projected point can be seen as a
black dot (c). We get the value of the projected point from the stored surfaces in
the neighbour node. The surface is shown in orange colour. We then repeat this
process for the selected children node. This time also, we only need to calculate
the projection on the neighbour which is on the immediate left (e). We don’t need
to recurse down further as we have reached the maximum depth in this example
(d). As the integral volume is stored here, we retrieve the integral volume value
of the query point local to this tile. We then add this integral volume value with
all the retrieved neighbour values to get the final result.

Now, given a cube shaped query region, we find out the integral volume value
of all its corner points. Then by simple arithmetic addition and subtraction oper-
ation we can get the integral volume value of the queried region. For example,
In Fig. 6. we see an cube whose corners are numbered by letters A−H. To get
the integral volume for this cube, we calculate the integral volume value for each
corner point using surface method. These values indicate the sum of all the point
from the beginning of the global region represented by the octree to that specific
point. Once we have the values for all corners A−H, we get the integral volume
value by Eq. 1 shown above the figure.

ivcube = (H − G − F + E) − (D − C − B + A) (1)

The advantage of this approach is, for each query point we only have to go down
on one particular path of the tree. Thus, if the query region has 8 corner points
and the depth of the tree is d, when need to visit at most 8 × d nodes in the
main recursion branches. Considering the visits to the neighbours the maximum
number of total nodes visited will be k × d. Thus, the time complexity of this
method is O(log n), where n is the number of nodes in the tree. This approach
is also totally independent of the alignment of the query region with the tiles.
While the best case of the base-line system might be better than this method,
the surface method is much better for the average case and the worst case.

This method can be further optimized if we choose the starting node to be
the common ancestor node of all the 8 query points, which has the highest depth
in the tree. This way we don’t always have to start at the root node for small
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Fig. 5. Visualisation of the surface method (Color figure online)

query regions, we can start at a node much lower in the tree. We only have to
start at the root node when the query region is big enough.

3.4 Integral Volume by Storing Surface Borders

The method described in the previous section works by storing surfaces at differ-
ent non-leaf nodes. This approach is fast but relies on the offline storage of the
surfaces at full resolution. This may be challenging as the surface size becomes
significantly big, especially near the root node. For example, in our dataset we
use an octree of height 23. Each surface at depth 14 is of the dimension 217×217.
With gzip compression this array takes around 100 Gbs of storage space. For
each node we need to store 3 of them, i.e., 300 Gbs of storage per node. If we
want to store them at the root, each surface would require approximately 36000
Petabytes of storage. Thus, to tackle this offline storage problem, we present
another approach which works by only storing the boundary vectors of the sur-
faces. Previously, we were storing 3 surface arrays per node. In this approach we
only store two boundary vectors for each of the surface arrays. Thus, we store 6
different vectors per non-leaf node.
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Fig. 6. Integral volume of a cube

Fig. 7. Stored borders of a tile

This approach hugely reduces the off-line memory storage requirement.
Instead of storing 3×m2 elements per node, where m is the width of the surface
array, we now store 3× 2×m elements per node. Thus, the storage requirement
decreases by m

2 times. This factor increases exponentially as we move up the
tree. At depth 14, now we need to store 3 × 2 × 217 elements per node instead
of 3× 217 × 217, i.e., 216 times less elements. Thus, the off-line storage decreases
from 300 Gbs to around 5 Megabytes per node.

However, as a consequence of not storing surfaces, now we cannot readily
access neighbour values if the projection is not exactly on the border. In that
case, we need to start at the root and recursively accumulate values similar to
the surface method, until we reach the depth where integral volume is stored.
We need to do this every time a neighbour value needs to be accessed. Thus,
in this method there are two separate sets of recursion. The first set is the
main branch of recursion, which starts from the root node and ends at the
leaf node containing the query point; The number of recursive calls is equal to
the depth of the tree. The other set of recursive calls are related to the task of
accumulating each neighbour values. Obviously, this approach is computationally
more expensive than the previous one, as it has to recurse down the tree every
time a neighbouring value needs to be accessed. This method can be used if there
is a not enough memory available to store surface arrays.

4 Experiments and Results

In this section we will discuss about the experiment and analyse the results. All
the implementations were done using python 2.7 in a Linux environment (4 GB
Ram, 8-cores).
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4.1 Construction

On an average it took 0.4 s per leaf node to compute and store integral volumes.
In the LiDAR scan of the city of Tampere, there were 509,652 leaf nodes. The
total time taken was approximately 53 h. For the surface method the construction
of surfaces were done by traversing the tree in bottom up direction, each depth
at a time. When the surface sizes became too big, they were constructed chunk
wise. The surface borders were also constructed in a similar manner. All the data
were stored in hdf5 files.

4.2 Experiment Setup

We chose different sizes of query region and compared the performances of all the
three methods (base-line, storing surfaces, storing surface-border). As a perfor-
mance measure we chose the average nodes visited per query. The average nodes
visited is a good metric of performance as it is implementation and hardware
independent. For a fixed sized query region, we randomly shifted it thousands
of time and recorded the average number of nodes visited for all the methods.

We use the term blocksize as a measure of the queried region size. The unit
blocksize has the same dimension as the smallest tile, i.e., tiles at level 23. Block
size 2 means the queried region is two unit blocks long in each dimension, and
so on. The ground resolution at zoom level 23 is 0.0187 m per pixel. Each tile at
zoom level 23 is of the dimension 256 × 256 × 256 pixels. Thus, the unit block
size physically represents a region of approximately 5 m × 5 m × 5 m. We repeat
the experiment for increasing block sizes and observe how the methods behave.

4.3 Comparison: Average Nodes Visited

From Fig. 8 we can see that the average number of nodes visited for the base-line
system increases almost exponentially as the query block size increases. This is
expected as high number of nodes visited when the query regions are not aligned.
The base line system has to recurse down to the leaf nodes many times. As the
query region gets bigger the cost of the mis-alignment also increases.

The number of nodes visited by our proposed method (storing surfaces) stays
almost constant as at most k× d number of recursive calls are required for each
of the 8 query point corners. This is the key advantage as the number of nodes
visited remains totally independent of the query region size.

The nodes visited in the surface-border method is much higher than the
surface method as it needs to recurse down the tree to the maximum depth
each time there is a neighbour call. Interestingly, there is no significant growth
of average nodes visited with increasing block size, as its complexity is directly
proportional to the depth of the tree. As the tree depth remains constant in this
experiment there is no observable growth in the average nodes visited measure.
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Fig. 8. Average nodes visited vs block size

4.4 Comparison: Querying Time

In Table 1 we see the average query time per block size in seconds for different
methods. The naive approach refers to the conventional integral volume query.
It is not possible to query the integral volume for a region greater than blocksize
4 with our setup as the memory required exceeds the memory available. We
observe that base line system is faster for small sized query region. From block
size 8 onwards the surface method performs better. Block size 8 corresponds
to a physical region of approximately 40 m × 40 m × 40 m. The surface-border
method has the poorest performance in terms of querying time for all block sizes
due to high amount of overhead.

Table 1. Average Querying Time for different methods

Block sizes 1 2 4 8 16 32 64

Naive 0.005 0.008 - - - - -

Base line 0.05 0.06 0.08 0.17 0.33 2.91 3.26

Surface 0.13 0.12 0.15 0.16 0.17 0.38 0.46

Surface border 0.46 0.60 0.78 1.50 2.28 4.24 5.25
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5 Discussion and Conclusion

Discussion. There are some limitations with our proposed systems. One of them
is offline storage. To fast compute the integral volume values we need to store
the surfaces at each non-leaf node in full resolution. This is not so difficult for
nodes at higher depth of the tree but as we get nearer to the root of the octree,
the size of the stored surfaces can be huge. We can consider various compression
techniques to achieve this task, but as we get closer and closer to the root level it
will become increasingly difficult to store the surfaces. This problem is mitigated
by using the surface-border method and the base line system, but both of them
are significantly slower than the surface method. All the methods can be viewed
from a compromise between storage and computation perspective. The base line
system is most memory efficient but it’s poorest performing due to exponential
growth. The surface method is the best in terms of performance but it is difficult
to implement due to high storage requirement near the root. The surface-border
method is very slow but relatively much more memory efficient than surface
method. The user can choose between these methods according to memory and
computation constraints.

Secondly, we cannot query the integral volumes in constant time. However,
unlike traditional methods, our methods make it possible to query integral vol-
umes for global scale data in a reasonably fast way.

Conclusion. In this paper, we presented novel methods for querying integral
volume for global scale data. Our methods are based on octree hierarchical data
structures. We can query the integral volume of any region with time complexity
O(log n) by storing surfaces at non-leaf nodes, where n is the number of nodes in
the octree. The query time is independent of the size of the query region. Thus,
our method preserves this beneficial and crucial property of integral representa-
tions.

In the future, we may think of a system which is a mixture of Surface and
Surface-Border methods. As storing the surfaces are difficult near root, we can
store surface-borders there, and we can store surfaces at the nodes with less
height. We can choose the mixture according the memory and computation
constraints.
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