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Abstract. We present a domain-agnostic system for Question Answering over
multiple semi-structured and possibly linked datasets without the need of a
training corpus. The system is motivated by an industry use-case where
Enterprise Data needs to be combined with a large body of Open Data to fulfill
information needs not satisfied by prescribed application data models. Our
proposed Question Answering pipeline combines existing components with
novel methods to perform, in turn, linguistic analysis of a query, named entity
extraction, entity/graph search, fusion and ranking of possible answers. We
evaluate QuerioDALI with two open-domain benchmarks and a biomedical one
over Linked Open Data sources, and show that our system produces comparable
results to systems that require training data and are domain-dependent. In
addition, we analyze the current challenges and shortcomings.

1 Introduction

With the advent of Open Data in all aspects of enterprise and government operations,
valuable information is accumulating in disparate stores. Recognizing the infeasibility
of a fully integrated model, Linked Data has presented itself as a paradigm for inter-
operability and (partial) integration. In many scenarios, such as Smart Cities [20],
enterprise data can be enriched with relevant Linked Open Data (LOD) to help users
find relevant entities, as well as answering more specific information needs. In this
paper, we present a Question Answering (QA) system that exploits LOD and
Knowledge Graphs (KGs) extracted from tabular enterprise data to answer user queries
expressed in Natural Language (NL).

Traditionally, QA has focused on unstructured information (to extract answers from
text fragments in documents). Notably, the IBM Watson system [1] won the Jeopardy
challenge against human experts in 2011. In Watson, structured data is used just to find
additional evidence, in the form of typing of answers, spatial-temporal constraints or
semantic expansion for commonly appearing entity types (e.g., countries, US
presidents).

With the growth of Linked Data, various QA systems over structured semantic data
have been proposed to allow end users not familiar with formal queries to express
arbitrarily complex information using NL. Complementary to QA over documents, QA
over large graphs is useful to find answers to factoid questions in a scenario with
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evolving (dynamic) semi-structured interlinked data sources, no fixed schema and no
training corpora. Yet, very few systems address the fact that, often, questions can only
be answered by combining information from several sources.

Driven by the QALD benchmarks [2, 3], the state of the art on QA over Linked
Data has focused on answering open domain queries over the DBpedia dataset [11]
and, to some extent over biomedical LOD. There are two other QA benchmarks over
Freebase (which content has been recently migrated to Wikidata): WebQuestions and
Free917 [17]. The Free917 benchmark includes the correct KB query and answers,
while WebQuestions only provides the answers collected using crowdsourcing. These
benchmarks exhibit quite different challenges: QALD involves more complex ques-
tions requiring multiple relations and operators such as comparatives and superlatives;
Freebase is an order of magnitude bigger than DBpedia, and with several hundreds of
possible mappings for a given keyword in a user query, a major challenge is to find the
matching entities and relations in the KG. Differently from ontology-based QA over
DBpedia, QA approaches over Freebase are based on IR techniques and weak-
supervised learning. Often, QA systems are evaluated for only one of the benchmarks.
None of the ontology-based QA approaches, many of them unsupervised, have been
evaluated over both DBpedia and Freebase.

Structured QA is also gaining popularity among search engines, e.g., Google KG.
With the rise of the Web of Data, more questions can be answered, thus reducing the
sparseness typical of this kind of systems (for a question to be answered the knowledge
need to be encoded in a KG). However, differently from industry systems that rely on a
proprietary curated KG, this incremental growth comes at a cost: noise, heterogeneity,
incomplete schema, and missing linkage across graphs. As a result, a large space of
candidates and mapping combinations need to be checked to find translations to a user
query in quasi real-time, particularly in cases where different KGs may contain only
part of the answers.

In sum, the main contributions of our work are the following:

• A practical approach outlining the most significant design choices to support
practitioners in the open-domain QA. Our implemented system, QuerioDALI,
combines a novel linguistic analysis built on the top of the IBM Watson NLP
pipeline to obtain a set of PAS (predicate argument structures) that link the user
query terms together, and a Graph Pattern (GP) search component to translate these
PAS into a logical representation that coveys the meaning of the query, obtaining
and ranking answers based on evidence extracted from the KGs using semantic
techniques, without the need of a training corpus.

• A novel component to merge facts (GPs) across graphs, obtained from both
enterprise and Open Data. LOD is used both to extract answers or partial answers
(enriching the enterprise data) and to understand the user query (through semantic
expansion). It uses interlinked data to answer queries that could not be answered by
a single KG.

• We perform a benchmark-based evaluation in two scenarios to show that the system
can produce comparable results to state of the art systems that require training:
(a) Open domain over large and heterogeneous KGs: using both QALD-5 and
Free917; (b) Based on a real-world use case in the Smarter Care domain, where
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relational enterprise data and biomedical LOD need to be combined to address care
worker’s information needs regarding a specific client: the evaluation is based on
the QALD-4 biomedical task.

In this paper, we analyze the challenges of balancing precision and recall in every
step of the process: from understanding the user query to obtaining ranked interpre-
tations leading to answers. Moreover, differences in terms of how the data is structured
across graphs (e.g., Freebase vs. DBpedia) raises more challenges than scalability,
regarding the mismatch between the NL query and KGs. The next section elaborates on
a motivating use case. Section 3 presents the main architectural components. Section 4
presents the evaluations and open challenges, followed by related work and conclu-
sions in Sects. 5 and 6.

2 Use Case: Smarter Care

For most enterprise applications, user interfaces are based on the premise that business
analysts and designers are able to capture the information that will be required by a user
and display it when requested or as part of a business process. For example, a nurse
doing home calls will most likely be interested in the address of the patients, their
conditions and the medication that they are taking, among others. As the body of open

knowledge available expands,
there is a significant opportu-
nity to satisfy the information
needs of a user when it is dif-
ficult to predict these needs.
Search systems can be used to
look up information, but fail
when they need to combine
information from an enterprise
system with Open Data. For
example, answering the ques-
tions What are the side-effects
for all the medications of this
patient? or Is any of the
patient’s medication related
with insomnia? requires
retrieving the medications of a

patient from the enterprise system, looking each one of them up individually on an
online source and examining each list of side-effects.

Figure 1 shows BlueLENS, an example system to integrate multi-source infor-
mation in the domain of care. The collected information is presented as a set of
self-describing elements (in each rectangle) to allow care workers to obtain a
360-degree view of a client. Although beyond the scope of this paper, this system
allows navigation and ranking of data from multiple sources.

Fig. 1. BlueLENs application for care workers
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But what happens when the user has an information need that is both specific and
not covered by the existing configurations? How can we enrich the data that is already
handled by this system with additional information about, among others, diseases,
drugs and their interactions, openly available on the Web? The work in this paper has
been driven by this real-world problem1. In the following Sections, some of the
examples are related to this base scenario.

3 Approach for QA Over Knowledge Graphs

We propose a QA pipeline to build up the formal graph queries needed to satisfy
complex information needs, expressed in NL, from both open and enterprise KGs.

In our Smarter Care scenario, the system DALI [20] is used to lift the enterprise
relational data from IBM Cúram [10] into a KG with explicit semantics and linked to
well-known W3C and LOD models. We distinguish between two types of data-sources
depending on how the data is interfaced by the system: (1) The QA KGs from which
answers are extracted, built from open and enterprise datasets and exposed through
federated SPARQL endpoints; (2) The Annotators, which are the distributed LOD
sources and dictionaries used to perform query expansion. For the open-domain
scenario, the QA KGs consists of DBpedia 2015-14 and Freebase. For the Smarter

Care scenario it contains
enterprise data from Cúram
about patient conditions,
prescriptions and care plans,
and the biomedical ontolo-
gies SIDER [13], drugbank
[8] and diseasome [7]. As
Annotators, we use WordNet,
the lemon lexicon (http://
lemon-model.net) and
schema.org for both scenar-
ios; and DBpedia for the
Smarter Care scenario. How-
ever, our system can be con-

figured to use any ontologies or dictionaries. QuerioDALI uses a combination of
off-the-shelf and novel components (see Fig. 2). In this paper we detail the following
steps and components:

Step 1: Deep NLP and Named Entity (NE) extraction. Based on the Watson
parsing pipeline and off-the-shelf NE annotators to generate
domain-independent PAS triples for the query.

Step 2: Anchoring. Required to bridge the gap between the user vocabulary and the
terminology in the KGs. Semantic expansion is used to find the candidate
URIs.

Fig. 2. QA Architecture pipeline

1 BlueLENS: https://ibm.biz/Bd465t and QuerioDALi video demos at: https://ibm.biz/BdHEwF.
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Step 3: Graph Pattern Search. From this large pool of candidates, a novel
component translates the PAS triples into GPs, which convey into a formal
query (in terms of entities, relations and logical operators) that can be
executed against the KGs.

Step 4: Merging of GPs. Merging facts and partial translations, from the same or
different sources, requires finding join terms across the GPs to be joined, as
well as entity co-reference if the query involves merging across graphs.

Step 5: Ranking. Due to ambiguity, a query can have alternative representations
that can be combined in different ways, based on the query type (factoid,
boolean, etc.), answers are ranked using a score that reflects the confidence
of the system on the evidence.

The coverage and accuracy of each component influences the design choices and
performance of the next component in the pipeline.

3.1 Step 1: Deep NLP Parsing and NER

For the linguistic processing of a question, we adopted Watson’s general purpose deep
parsing implemented as an Apache UIMA application. It receives as input a question
and identifies syntactic, morphological and semantic elements of the question, building
a dependency parse tree. The predicate arguments of a tree node are other nodes that
may come from remote positions on the tree. A dependency parse tree is shown in
Fig. 3.

The challenge here is generating domain-independent PAS triples in the form
of <subject, predicate, object> . To do that, we use the Watson Subtree Pattern
Matching framework, which allows expressing and executing rules over the depen-
dency tree. We wrote 25 general-purpose rules to extract the triple patterns for the kind
of NL sentences found in the QALD training sets for English [3]. However, its cov-
erage can be extended. On Fig. 3 we see the PAS triples obtained for an example query
and one example rule fired to detect the PAS with the superlative “lowest readmission”
(pattern = nounAdjSup).

Fig. 3 Dependency tree for Which hospitals with elderly care have the lowest readmissions for
cardiology?
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In general terms, all the rules that can be fired generate one of the following
structures: (1) Basic PAS: with explicit subject-predicate-object, the subject can be a
wh-term (e.g., Who climbed Mount Everest?); (2) Noun modifiers PAS for which the
predicate is not explicitly given (e.g., Russian mountain); (3) PAS Tuples: those for
which the predicate is associated to 3 instead of 2 modifier terms (e.g., Who climbed
Mount Everest the first?); (4) PAS with a superlative/comparative determiner (e.g.,
highest mountain); and (5) PAS with spatial or temporal modifiers for the whole
sentence (e.g., in May 2008).

NE extraction is crucial to find the syntactic roles in a sentence and multi-word
terms, in the example “elderly care”. Thus, we extend the scope of Watson’s NE
recognizer (based on its own domain-independent ontology) by also using LOD NE
extractors to detect multi-words before parsing the sentence; in particular DBpedia
Spotlight [16] and Alchemy API (www.alchemyapi.com) For each term, or NE, in the
PAS we capture the following features: its syntactic role (subj, obj, pred, nadj, etc.),
lemma, covered text, if it is the focus of the sentence, the Part-Of-Speech and asso-
ciated features (plural/singular, verb tense, etc.). If the entity is recognized, the
semantic type is also provided (city, sports team, etc.).

3.2 Step 2: Anchoring and Semantic Expansion

The PAS Triples obtained in Step 1 represent how the terms in a sentence are linked
together, but it does not necessarily correspond to the way information is structured in
the KGs, e.g., the linguistic predicate designed in Who designed the giant dipper? may
translate to an ontological type designer, instead of (or in addition to) an ontological
property. Thus, before we can translate each PAS triple into one or more GPs (from the
same or different KGs), Step 2 returns all candidate entities for each term in the PAS,
together with their type and a matching score, without forcing any heuristic on the kind
of expected type.

The result is a Mapping Table per linguistic term, containing the candidate URIs for
each underlying graph to be queried. The matching is based on exact and approximate
index searches over the entity labels (rdfs:label) for instances, properties and concepts,
as well as literal values. Wh-words in the PAS Triples are replaced with semantic
equivalent term(s), if appropriate: person/organization for who, date for when,
place/location for where.

Semantic expansion of query terms is performed using the lexicons and KGs
selected for the pool of annotators, such as synonyms and hypernyms from WordNet,
and other lexically related words obtained following properties such as owl:sameAs,
SKOS:broader, dcterms:subject and redirects if using DBpedia. For example, the term
penicillin G (in the questionWhat are the side effects of penicillin G?) is annotated with
the DBpedia term Benzylpenicillin, which has an owl:sameAs link to the entity in
SIDER labeled Penicillin G Potassium Injection that links to the list of side effects that
answers the question.
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Lessons Learned. The entity matching problem is hard. For example, there are
more than 200 entities with the exact label Founders in Freebase. Furthermore,
noun-modifier PAS, composed of two terms with an implicit relation, may often
refer to a compound term (multi-word) missed by the previous NE recognition.
Thus, besides looking for URIs matching each independent term it also identifies if
there are candidate matches for the compound (e.g., the PAS <order, ?, dragon> in
Who founded the order of the dragon). While expanding the search space is needed
to find the correct translation, the more accurate the matches are, the less compu-
tational effort is required to find the GPs in the next step. Thus, techniques are
required to prune the space of candidate solutions:

• A syntactic score (based on the index search and string distance metrics) is used
to rank and select only those matches over a minimum threshold and up to a
maximum number (that can be adjusted for each KG). In addition, unconnected
properties, classes with no instances, and instances with no type are removed.

• Approximate (fuzzy) matches are returned only if exact matches are not found
for the term, including the lemma and plural forms. The score of lexically related
matches (synonyms, hypernyms) is penalized with respect to matches to the
original query term, as they can also introduce noise. Expansion is based on
linguistic features (POS, Watson types), e.g., derived words from WordNet (e.g.,
Russia in Russian mountains…) are not obtained for entities which semantic type
is person, such as musician (derived word: music), hypernyms are excluded in
the case of proper nouns, and meronyms are only used for geographical entities.

This is the only component that requires tuning the exact and index searches
according to the source to be queried. While tuning was not needed to query the
biomedical ontologies, Freebase/DBpedia have some unique ways to structure data
that should be considered not to miss relevant mappings: aliases (alternative labels)
are presented through non-standard RDF properties. Ambiguous terms (with dif-
ferent URIs) in DBpedia are represented with different labels, e.g.: db:Sunflowers_
(Van_Gogh_series), as well as redirects (from db:Sunflower to db:Helianthus),
while in Freebase they share the same label. Properties in DBpedia may be covered
by the ontology (e.g., dbo:founder), while in Freebase they have different names-
paces for different domains (fb:organization.founders, fb:formula1.founders, and so
on). Finally, DBpedia types are structured in a taxonomy (requiring inference
through the subsumption hierarchy), while, in Freebase, instances belong to a flat list
of types (where the most relevant one is given by fb:common.topic.notable.type).

3.3 Step 3: Template-Based Graph Pattern Search

The output of this component is a set of Graph-Views, one per graph. Each
Graph-View consists in a set of ranked GPs. We define a GP as: (i) a set of triple
patterns or BGPs (Basic Graph Patterns); (ii) JOINS among them; (iii) FILTER and
modifiers such as ORDER BY, COUNT, OFFSET, LIMIT (as a query can be trans-
lated into alternative GPs, OPTIONALS are covered); (iv) the variables that are the
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focus (the variables we seek an answer for) of the GP; and (v) a confidence score,
explained in Sect. 3.5.

GPs can be readily translated to SPARQL queries. In this step, each GP is formed
with BGPs that belong to the same graph and that join together provide a translation to
one or more given PAS Triples in the query. The algorithm is iterative, looking for the
best translations first, and expanding the search only if required:
Step 3.1. For each PAS Triple, KGs are sorted based on their coverage. Thus, the

graphs that have candidate matches for all or most of the terms in the PAS
are selected first.

Step 3.2. For each PAS Triple and each covering graph with candidate matches, the
search for GPs is performed using parametrized pattern templates. Only
GPs that produce bindings after executing the associate SPARQL query
are selected.

Step 3.3. For queries with multiple PAS Triples, Graph-Views are created by
merging the GPs belonging to the same graph but covering different PAS.
Two GPs are merged if they have a common join (focus term) and their
joining produces a non-empty set of bindings. A merged GP will have a
higher ranking than a GP that could not be merged with any other, as it
provides a more complete translation (coverage) to the user query.

If the Graph-View combines GPs that translate each PAS in the query (or if there is
only one PAS in the query) the query can be answered within one graph and this step
already generates a complete translation. If the Graph-View contains alternative
translations (i.e., different interpretations of the query), answers are ranked (Sect. 3.5).
However, for some queries, Graph-Views contains only partial translations and a
complete translation (answers) can only be obtained by combining GPs across graphs
(Sect. 3.4).

Parametrized Pattern Templates. To execute the right pattern templates to search for
the GPs providing a more meaningful representation of each PAS, while reducing the
amount of queries, we use the types of the candidate matches. There are 11 direct
patterns and 7 indirect patterns (corresponding to more costly SPARQL queries that are
executed only if no GPs are found using the direct ones). In Table 1, we give some
examples of patterns executed for a given combination of candidate types2.

Often, properties are either implicit or difficult to match. If there are matches not
only for the subject and/or object of the PAS but also for the properties, a FILTER is
added to the patterns above. If the GP does not produce any binding, the query is
executed again without the filter: FILTER (?prop = <property1> || ?prop = <proper-
ty2> || etc.). Schema information such as domain and range is often missing so
properties need to be inferred by looking at the instance-level when invalid ontological
matches are found for the property. String metrics and annotators are used to calculate
semantic relatedness between all possible properties for the matched entity(-ies) and the
property in the query. In particular, we use WordNet taxonomy to measure their

2 Due to space constraints a full list of templates is presented in https://ibm.biz/BdHEwF.
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semantic distance. Thus, the most related ontological properties to the user query term
are those over a given threshold when applying Wu and Palmer formula [21] (For-
mula 1) and the rest are discarded. For example, in Which mountains are higher than
Anapourna? (pattern 7: ?s a db:Mountain. ?s db:elevation ?o1. db:Anapourna db:
elevation ?o2 FILTER (?o1 > o2)), none of the properties for the instance Anapourna
could be lexically matched; the right ontological property elevation is found among all
of them due to its semantic relatedness to the query term high:

Formula 1. Relatedness between term C1 and C2, where C is the lowest common
ancestor between C1 and C2, Ni is the length of the path from Ci to C, and N is the
length of the path from C to the root.

SimilarityðC1;C2Þ ¼ 2� N
N1 þN2 þð2� NÞð Þ

Merging patterns. These patterns also determine the way BGPs are combined to
create a merged GP for the same graph. For instance, for two type-instance GPs
(pattern 2) the join answers are given by the common focus: ?s, as in Which Russian
rivers flow into the Black Sea? (join term: the subject river) the merged GP joins all
BGPS in both GPs:

GP1: ?s rdf:type dbo:river.?s ?p1 db:Russia. FILTER (?p1 = db:sourceCountry)
GP2: ?s rdf:type dbo:river. ?s ?p2 db:BlackSea. FILTER (?p2 = db:mouth)

Table 1. Example of GP templates according to entity types to support factoid queries
(variables are preceded by the “?” and the parameters to substitute by the matches are
between <>).
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3.4 Step 4: Merging Across Graphs

Partial answers from GPs across graphs that are translations to different PAS Triples
need to be combined to generate complete answers. For GPs to be merged they need to
have at least one variable (binding) in common, as well as one BGP with a common
mapping (the subject or object) that corresponds to the Join Term. However, when
merging across graphs, the Join Term may not necessarily be represented by the same
URI across graphs, even if they refer to the same real world entity; the same applies to
the bindings in common. Therefore, merging across federated graphs presents two
challenges:

(1) Finding the join term between each pair of GPs to be merged considering the
query.

(2) On-the-fly entity co-reference based on both a syntactic (similar labels) and a
semantic (semantic equivalent link) merging between the join term and bindings
across graphs.

Consider an example query in the biomedical scenario: Is Eplerenone having side
effects on Teresa’s conditions?, finding an answer requires combining a GP from the
patients’ graph representing Teresa’s conditions and a GP from the SIDER ontology
with the side effects for the drug Eplerenone. The first step is to find the join term for
the query, which in this case is represented by different URIs and query terms in each
graph. From the three PAS Triples: <Eplerenone, have, side effects> <side effects,
conditions> <conditions, Teresa>, the first one is translated in SIDER and the third in
the patient’s graph. The second PAS, without any valid translation, links Side Effects
(in SIDER) and Conditions (in the patients’ graph); that is, the two terms that need to
be joined to retrieve the answer.

The second step is to retrieve the common bindings for the join terms across
graphs, which will likely have different URIs even if they represent the same real-world
entity. We perform two types of merging: syntactic and semantic. The semantic
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merging relies on the linkage across entities through equivalence relations. To find the
linkage between the join variables (renamed as ?s for instances of Conditions and ?
sjoin for instances of Side Effects), while avoiding pairwise comparison of entities
binding each join, the following BGPs are added to the merged ones (GP1 + GP2)
before executing the final SPARQL query to retrieve the answers over the federated
graphs:

GP1: ?s rdf:type <Condition> . <Teresa> ?p3 ?ent. ?ent p2 ?s.
GP2: ?sjoin rdf:type <Side_effects> . <drug:Eplerenone> ?p1 ?sjoin.

{?s ?rel1 ?sjoin}. UNION {?sjoin ?rel1 ?s} UNION {?sjoin ?rel1 ?same. ?s ?rel2 ?
same.}
FILTER ((?rel1 == owl.sameAs || skos.closeMatch) && (?rel2 == owl.sameAs ||

skos.closeMatch))
The answer to the query is true, as there is an evidence graph, shown in Fig. 4, where

Teresa’sCondition, prediabetes, links to one of the side effects of Eplerenone, through the
DBpedia instance Diabetes_mellitus.

However, as equiva-
lence links across entities
are often sparse, we also
perform syntactic merging.
An index search is added to
the merged GP to find those
instances from each join
with similar labels.

3.5 Step 5: Ranking of Answers

The answers are the bindings of the variables representing the focus of the query over a
given graph. Ranking is crucial for obtaining the answers with the best confidence
among all the alternative GP representations and their combination (in the same or
across graphs).

Two different scores reflect how well a GP matches a PAS in a user query:
(1) At BGP level: the average score of each individual mapping in a BGP is computed.
A higher score is assigned to BGPs that combine more candidate matches (e.g., if
besides subject/object, the property is also match); and (2) At GP level: this is based on
the pattern executed – direct patterns carry more weight than indirect ones. The
rationale behind it is that the longer the distance between two candidate terms, the more
likely the translation is noisy. Active and passive forms are also considered, if the same
relation is valid in the two directions (from subject to object and vice-versa), e.g., who
was J.F Kennedy successor of?, a higher score is given to the GP with the right
directionality for the relationship.

In short, as show in Formula 2, the final confidence score of each answer A,
denoted by CF(A), is a combination of the score of the GPs where the answer is
computed and the scores of the BGPs in such GPs, irrespective from the graphs that
they are computed from:

Fig. 4 Evidence graph after merging
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Formula 2. Specifically, let A be an answer in GPA and BGPA, where there are in
total m GPs across all data graphs and n BGPs in GPA

CFðAÞ ¼ CFðGPAÞ
Pm

i¼1
CFðGPiÞ

� CFðBGPAÞ
Pn

j¼1
CFðBGPjÞ

Note that answers can be represented by an entity (or a list), a datatype literal, a
boolean a count (how many), or blank nodes (e.g., What is the revenue of Apple? is
answered in Freebase by a set of answer nodes, where each one contains a set of
property-values representing the amount, currency and date). For each answer (or set
of), supporting evidence can be retrieved as per user request. An evidence graph is the
subset of the graph containing all the bindings and mappings the query is translated
into. When partial answers are obtained across graphs, co-reference across entities is
performed; therefore, an answer may correspond to more than one URI from different
graphs.

4 Evaluation

We evaluate the system with a set of blind questions based on two scenarios and for
each question q, we compute precision (P), recall (R) and F-measure (F1), as defined in
QALD:

RðqÞ ¼ number of correct system answer for q
number of gold standard answers for q

F1ðqÞ ¼ 2 � PðqÞ � RðqÞ
PðqÞþRðqÞ

PðqÞ ¼ number of correct system answer for q
number of system answer for q

To evaluate the ranking when there are multiple translations, we calculate: P/R@1
by considering only the answers which confidence score is the highest, ranked in
position 1; P/R@2 for the results in the first and second positions; and P/R@3 for the
results from the first to the third position. The last (P/R@3), essentially considers all
answers (till position 3), without ranking. Detailed results are documented online
(https://goo.gl/0o0KYy).

4.1 Scenario 1: Open Domain

DBpedia QALD-5 Evaluation:We used the 2015 QALD-5 test set [3], which consists
of 50 questions annotated with the corresponding SPARQL query and answers. From
those 50 questions, question Q21 is missing and question Q42 is classified as out of
scope for DBpedia KB. Therefore, we measure the average P, R and F1 over 48 English
queries of different complexity; QALD queries may require operations beyond triple
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matching such as counting or ordering. Retrieving all possible answers to a given query
(total recall) over large and heterogeneous sources such as DBpedia is a challenge,
even for manually created gold standards. This is due to the presence of duplicated
entities (same real world entity represented with different URIs), heterogeneous
properties (dateOfbirth, birthdate, etc.), and literal values that should correspond to
entities, but were not mapped to. QALD queries contain UNIONs to get all answers
when a question can be translated into alternative valid SPARQL queries. However, for
6 of the benchmark queries, QuerioDALI found different translations leading to an
extended set of valid answers. For those queries, we have updated the set of answers in
the benchmark and updated the P/R accordingly (the updated queries are documented
online). Take Q4: Which animals are critically endangered? the SPARQL query in
QALD retrieves a total count of 1613 distinct animals as answers: Select ?uri where {?
uri rdf:type db:Animal. ?uri db:conservationStatus ‘CR’ }

However, there are 1629 answers if one considers the UNION with other valid
translations: {?uri rdf:type dbo:Animal . ?uri dbp:status res:Critically_endangered }
UNION

{?uri dcterms:subject dbc:Critically_endangered_animals . ?uri dbo:kingdom res:
Animal}

In Table 2 we present our P/R and F1 results. The set of results obtained in the first
position are more precise. The best F1 of 0.61 is for the answers ranked first (F1@1),
proving that our ranking mechanism ranks the best answers first. From 48 questions,
the system was unable to find answers for 10 of the queries (F1 strictly 0). Only for 2 of
the queries the answers were not ranked in the first position but the second. In the first
position, 25 queries were answered with an F1 of strictly 1, while for 11 queries either
some answers were missing (4 of them with P = 1, R = (0,1)) or inaccurate answers
were retrieved (6 of them with R = 1, P = (0,1)), or both (1 of them with P = R =
(0,1)). For the second and third position, recall is increased but at a cost, as more
inaccurate answers are also retrieved.

QALD campaigns are notably challenging, an F1 of 0.61, even if far from perfect,
is a promising result. To put it into perspective, the average F1 of QALD-4 was 0.34
while the average F1 of QALD-5 is 0.43. The relatively low values show that the
complexity of the questions is still high. Note that our P, R and F1 above are with
respect to the total number of questions. This is what QALD reports as
global-measures, which considers all the questions and not just the processed questions
(those for which a system is able to provide a query or an answer, even if wrong). Our
system is designed to give results even if only partial results are found (e.g., in Q38
Where did the architect of the Eiffel Tower study? QuerioDALI finds who is the
architect of the Eiffel Tower but not where he studied, giving partial results rather than
no answers). Thus, QuerioDALI only fails to process 3 out of the 48 questions,
reaching an F1 - if only processed questions are considered- of 0.84.

Xser [12] has the best global F1 reported in QALD-5: 0.63, just 0.02 over our
F1@1. This is well over the second ranked system with a global F1 of 0.3. Like our
system, Xser analyzes the query through a semantic parser, and then instantiates the
query with respect to the KB. However, differently from ours, Xser requires training
data as it relies on a structure prediction approach implemented using a Collins-style
hidden perceptron.
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Freebase Free917 Evaluation:We used the first 101 queries from Free917 to evaluate
and manually analyse why some queries failed to reach P/R of 1; 14 of those queries
did not produce any answer (out of scope using the last available Freebase data dump).
Thus, we measure the average P, R and F1 over the remaining 87 queries covering a
wide range of domains. We did not use any manually crafted lexicons tailored to
answer these queries [9], as addressing entity recognition and anchoring without
domain adaptation is an integral part of the challenge we want to evaluate.

As shown in Table 2, the best F1 of 0.72 is for the answers ranked first (F1@1).
The results obtained in the first position are more precise, with a small drop on recall
compared with position 2. There is not significant drop on precision between position 2
and 3. Interestingly this is because fewer alternative translations are generated when
using Freebase instead of DBpedia. We believe F1 is better for this benchmark because
Free917 queries tend to be more tailored to the underlying KG than QALD queries.
However, while they are linguistically less complex (based on a single relation without
comparisons or superlatives) they can generate complex GPs due to the presence of
intermediate (blank) nodes.

The system was unable to find correct answers for 22 out of 87 queries (F1 strictly 0).
In the first position, 60 queries were answered with an F1 of strictly 1, while for 1 query
some answers were missing (P = 1, R = (0,1)) and 3 queries retrieved inaccurate
answers (R = 1, P = (0,1)). Only for 1 query the answers were not ranked in the first
position but the second, thus R@2 slightly increases by 0.006, but with a drop in P of
0.08.

OPEN CHALLENGES: Entity identification is a crucial step for QA over KGs.
Existent tools to extract NEs while very useful are not enough to retrieve all relevant
entities to translate a user query. We reflect on this challenge with a small experiment to
compare the P/R of the URIs retrieved by just using DBpedia Spotlight and Que-
rioDALI’s final selection of URIs to semantically interpret the user questions, using as
a ground truth the entities in the QALD-5 SPARQL queries. We witnessed a significant
jump in P/R from QuerioDALI results over just using Spotlight: the average P was
improved from 0.31 to 0.61 and the average R from 0.44 to 0.71. Note that Que-
rioDALI uses Spotlight in Step 1, thus this shows the baseline over which QuerioDALI
had to improve to answer the user questions, i.e., by considering the semantic linkage
among query terms.

Next, we analyze the reasons behind the failed queries and those with inaccurate or
missing answers (F1@1 < 1). Errors may be introduced by the different components in
the pipeline, in each step of the process. Thus, a query may fail for more than a reason:

Table 2. Precision, Recall and F1 over QALD-5 test questions and 100 Free917 questions

P@1 R@1 P@2 R@2 P@3 R@3 F1@1 F1@2 F1@3

QALD5 0.64 0.69 0.53 0.73 0.52 0.73 0.61 0.55 0.55
Free917 0.723 0.727 0.637 0.733 0.625 0.733 0.720 0.658 0.647
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Linguistic coverage. When the system fails to linguistically understand the query and
correctly represent how the terms link together. This occurs if the dependency parse
tree generated for the query is incorrect or if the generic rules used to create the PAS
triples from the tree do not cover a particular type of sentence. Only one DBpedia
query, db40: What is the height difference between Mount Everest and K2? and one
ill-formed Freebase query (fb17:How many beers come a can?) failed because the rules
could not capture the linguistic dependencies. These kind of errors need to be solved by
extending the coverage.

NER + Anchoring. When the system fails to bridge the lexical gap between the NL
expressions and the data: a total of 13 queries in DBpedia and 24 in Freebase. In some
cases the anchoring can recover if a multi-word NE is not captured by the annotators –
for fb27:When was home depot founded? it finds the entity db:date_founded combining
the property and the subject - but 7 out of 24 Freebase errors are due to NEs not found.
In the worst case, missing the right anchoring leads to no answers or wrong answers
(db:4/13, fb:21/24), such for db8:Is Barack Obama a democrat? where the term
democrat could not be mapped to db:Democratic_Party_(United_States) and it was
mapped instead to the hypernym db:politician, therefore the true answer is based on not
accurate enough evidence (P/R = 0). Inaccurate anchoring often leads to a combination
of noisy answers among good answers (db:7/13, fb:2/24), or a loss in recall because
relevant properties or instances were not mapped (db:2/13, fb:1/24). For example, in
db11:Who killed John Lennon?, QuerioDALI can not find the property (db:convinc-
tion) and it returns all the instances of a person related to the two instance matches db:
John_Lennon and db:Death_of_John_Lennon (only the latter is related to John Len-
non’s killer), obtaining a R@1 of 1 but a P@1 of 0.09.

Synonym features are important for both datasets. WordNet semantic relatedness is
useful to find the right properties, such as weigh for heavy in db48:Who is the heaviest
player of the Chicago Bulls?. Hypernyms are also needed to map players to db:person
and find the relevant property for heaviest (the exact mapping for player does not lead
to any valid GPs). However, the use of approximate (index) matches, aliases and
alternative names (e.g., foaf:name) tends to be noisy. Thus, we only use them if non
exact matches are found for a term. The use of manually or semi-automatically created
lexicons (if training data is available) or through user feedback, could alleviate the
anchoring problem.

Template coverage. When the system fails to bridge the structural gap between the
NL expressions and the data. Queries fail if there is not a template to properly translate
the query and bridge the structural gap, 5 queries failed in DBpedia due to this (0 in
Freebase), of which 4 of them involved temporal reasoning in one way or another. For
example, queries involving the temporal adjectives, such as youngest/oldest, that were
not mapped to the relevant property db:birth-date can be partially answered by
searching among the properties with datatype date, but it also obtains unrelated
properties like db:death-date; Queries with since, such as since 2000, require to add a
filtering pattern to find dates whose year is over 2000 (FILTER (year(?-
date) > = 2000)). The query db49:Show me everyone who was born on Halloween is
particularly challenging as there is not temporal adjective such as “same date/year as”
to indicate we are looking for persons born on the same date as they day in which
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Halloween is celebrated (as in the correctly answered query db14:Which artists were
born on the same date as Rachel Stevens?)

Merging. In this scenario, merging across sources is not required, even if DBpedia
uses different vocabularies, they are all interlinked as part of the same graph. However,
queries with more than one PAS Triple require that the respective GPs are combined in
order to obtain a complete answer. In this evaluation 18 DBpedia queries require to
fuse GPs, where only one query failed (db22): the system found the right GPs but the
relevant property contained a String literal, with comma separated values, that could
not be linked.

Ranking. There were only 2 ranking errors in Freebase, mostly for ambiguous queries
such as fb22:Who designed the Parthenon?, where the two translations retrieve the
architect for two different instances of Parthenon - the right and expected one, the
Parthenon in Athens, and a full scale replica in Tennessee. For queries evaluated in a
federated manner, the quality can be improved by giving a higher rank when the union
of answers from each data graph forms the final answers (i.e., most popular answers
across graphs).

4.2 Scenario 2: Smarter Care

We use the QALD-4 Task 2 over biomedical data, based on the ontologies SIDER,
Drugbank and Diseasome. There is no benchmark to evaluate patient-based questions
that can be answered using our enterprise dataset and Open Data, but, nonetheless,
QALD-4 Task2 includes questions that need to be answered by combining facts from
graphs, thus, it allows us to evaluate the merging. We used the training dataset used to
evaluate the SINA system [18], which also provides QA over interlinked datasets and
high P/R measures, using a trained Hidden Markov Model for the domain. For one of
the benchmark queries (Q5), we were able to find different translations due to dupli-
cated entities leading to an extended set of valid answers, not present in QALD-4. The
results are given in Table 3.

As expected, the results on a domain-specific set up are better than for open-domain
QA, with an F1 of 0.85 (the SINA system obtains an F1 of 0.89). From the 25 queries in
this task, 7 of them can only be answered by merging GPs across two graphs. Only for
one of them QuerioDALI could not get an F1 of 1 (Q19) but, as analyzed below, the
reason was not because of the merging. The system can find answers for 23 out of 25
queries (92 % coverage). The number of queries with F1 of strictly 1 are 21, thus for
84 % of the queries, perfect answers are retrieved in the first position. For two queries,

Table 3. Precision, Recall and F1 over all QALD-4 (biomedical) train questions

P@1 R@1 P@2 R@2 P@3 R@3 F1@1 F1@2 F1@3
0.85 0.88 0.78 0.92 0.78 0.92 0.85 0.83 0.83
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the system was not able to retrieve any answer. The rest of the queries introduce noisy
answers together with the good answers. We analyze the reasons behind the inaccurate
results:

Linguistic coverage. For one query, Q19: Which are the drugs whose side effects are
associated with the gene TRPM6?, the linguistic component failed to retrieve one of the
PAS needed to fully understand the query. From the two PAS retrieved <drugs,
associate, gene RTPM6> <side effects, associate, gene RTPM6> only the second is
correct. The system can recover from ambiguous associations by using the KGs to find
the right linkage, but it can hardly recover if an association is missing, in this case
<drugs, side effects> .

NER + Anchoring. In domain specific scenarios, ambiguity and errors due to
anchoring are notably reduced, as long as the system can rely on annotator sources with
a good coverage of the domain vocabulary, in order to find both the right lexically
related words and NEs (multi-words). In particular, Q14: Give me drug references of
drugs targeting Prothrombin failed, because the system was unable to detect the
multi-word drug reference. The system could retrieve all drugs targeting Prothrombin,
but failed to find the references (F1 = 0). In Q17: Which are possible drugs against
rickets? the valid answers are ranked in the second position, this is because the relation
against was not mapped to any ontological property and the system ranks first all drugs
with side effect on rickets (from SIDER) and after all drugs with diseasome:possi-
bleDrugs to rickets (the valid answers).

Templates coverage. Bridging the structural gap is particularly challenging when
schema information is missing. This is the case for Q10:Which foods does allopurinol
interact with? (F1@1 = 0.35), where the interact maps to the ontological properties for
allopurinol: drugbank:interactionDrug and drugbank:foodInteraction. The system
retrieves all the values as answers, but only the latter leads to precise answers. This is
because the relevant property is a datatype and the system can not infer based on the
type food.

5 Related Work

QA approaches over Linked Data are popular because they balance expressivity with
posing queries in an intuitive way, using NL. Here we look at approaches that are
agnostic to the underlying KG or can scale to large open domain scenarios.

On Generating Templates, user questions are generally mapped into appropriate
artifacts that can be processed over RDF datasets. One type of mapping is from
questions to triples, e.g., PowerAqua [19], and FREyA [5]. FreyA leverages users’
feedback for disambiguating the right relation and improve accuracy over time, while
PowerAqua ranks across alternative representations. However, complex questions that
require performing aggregations or comparisons are not mapped in these systems. An
alternative mapping is from questions to SPARQL query templates to capture more
complex structures. For instance, TBSL [4] uses 22 manually curated templates to
match a parsed user question into a SPARQL template, which is then instantiated using
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the domain vocabulary. However, capturing the semantics of input questions can lead
to too rigid templates to fix the triple structure, queries with unknown syntactic con-
structions or domain-independent expressions cannot be parsed (F1 of 0.62 on 39
questions that could be processed out of the 50 in QALD-1). In Yahya et al. [14],
phrases in the questions are extracted and matched to RDF entities using a large
dictionary. To optimize the way of yielding SPARQL queries, an integer linear pro-
gram has been used. The SINA system [18] parses questions into a list of keywords and
links keywords to resources across datasets to form triple patterns using a Hidden
Markov Model. Differently, our approach does not require training (as in [18]) or
building indexes over all relation phrases in a paraphrase dictionary (as in [14]).

On Merging and ranking, only a few existing systems consolidate candidate
answers among a collection of inter-connected, distributed datasets, considering the
fact that sometimes answers to a question can only be provided if information from
several sources are combined. Specifically, PowerAqua can query distributed sources
without requiring federation, but it imposes an overhead for merging the data by
performing entity co-reference (linear to the number of answers). The SINA system
constructs federated SPARQL queries leveraging the built-in owl:sameAs property as
linkage across entities.

On Entity Recognition against Freebase, the systems mainly use IR techniques to
score answers. The Aqqu system [9] performs entity identification, template generation,
relation matching and ranking. It reports an F1 of 0.65 using Free917 without lexicon
and 0.76 with a manually crafted lexicon (from which 276 questions are tested and 641
used as training). Supervised learning is used to find the mappings. Assuming all
mappings are found, they only required the use of 3 templates to map the candidate
instances and relations to queries. YodaQA [15] uses both Freebase and DBpedia,
however, it has been designed to answer questions over text (filtering the passages
containing the most clues from all NEs and noun phrases), which is why it only reaches
a F1 of 0.18 in QALD-5 [3].

6 Conclusions

Our system performs at the same level as the state of the art systems without the use of
training data, both for open scenarios on the Web of Data or domain specific, partic-
ularly in the biomedical domain, where a large number of specialized ontologies are
available [6].

Large scale deployment to scenarios with large evolving data and graphs, requires
(besides supporting concurrency) strategies for iteratively pruning the large search
space of solutions (and speed up the search for GPs by considering fewer candidates),
while keeping the most promising ones based on the context of the query. In turn,
(1) NL queries are converted into PAS Triples to focus on finding the entities and links
that matter; relevant graphs are selected based on their coverage (not for the whole
query but for a given PAS); (2) unconnected and less promising mappings are filtered
out based on their syntactic relevancy (exact vs. approximate); (3) remaining mappings
are assigned a confidence score based on their semantic relation to the query term
(synonyms, etc.); (4) templates are then used to semantically validate the mappings
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according to their type, and search first for the GPs that more accurately represent the
user query, extending the coverage to indirect relations only if nothing is found;
(5) GPs are merged according to the entities to be joined, merging across graphs is
based on semantic linkage or label similarity.

As shown in the evaluation, a major challenge is the anchoring of query terms to
the ontological terms that would lead to the answer. Inevitably, the use of fuzzy search
and semantic expansion to bridge the lexical gap also introduces lots of irrelevant
mappings that, in some cases, may lead to GPs with inaccurate translations. Thus,
ranking is crucial to compare across the possible solutions and select the translations
with higher accuracy and better coverage for the query. The second challenge for both
scenarios is coverage: we can incrementally add new patterns to increase the com-
plexity of the questions, accommodating more complex queries requiring temporal
reasoning, some basic statistical analysis or negations. However, covering the whole
spectrum of different manners in which users express a question is an open problem.
While QuerioDALI reaches F-measures comparable to systems that use training data,
we believe that for these systems to overcome the lexical-structural gap and reach
higher P/R over novel questions, they require a certain level of domain training. As the
availability of training data is sometimes challenging, especially when dealing with
sensitive information, we believe that the system should evolve into a cognitive system,
with the ability to learn over time. This can be done if the system leverages users’
feedback, using a hybrid approach between open factoid QA and guided explorative
queries. In turn, the learning will not only improve the QA but it can also be used to
augment the KGs with relevant connections.
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