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Abstract. In model-based systems engineering a model specifying the system’s
design is shared across a variety of disciplines and used to ensure the consistency
and quality of the overall design. Existing implementations for describing these
system models exhibit a number of shortcomings regarding their approach to data
management. In this emerging applications paper, we present the application of
an ontology for space system design that provides increased semantic soundness
of the underlying standardized data specification, enables reasoners to identify
problems in the system, and allows the application of operational knowledge
collected over past projects to the system to be designed. Based on a qualitative
evaluation driven by data derived from an actual satellite design project, a reflec‐
tion on the applicability of ontologies in the overall model-based systems engi‐
neering approach is pursued.
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1 Introduction

The industrial setting for producing systems to be deployed in space, such as satellites,
launch vehicles, or science spacecraft, involves a multitude of engineering disciplines.
Each involved discipline has its own view on the system to be built, along with its own
models, based on its own model semantics. For forming a consistent picture of the
system, information from all relevant discipline-specific models is integrated towards
an interdisciplinary system model, forming the practice of model-based systems engi‐
neering (MBSE).

Usually the data used to describe these system models is specified in technologies
focused on software specification, such as UML or Ecore. However, these means of
specification fail or neglect to address a number of important aspects. Semantic accuracy
is often sacrificed for efficient implementation, the interdisciplinary nature of the engi‐
neering process is neglected in its data specification, and mechanisms for deriving
knowledge from the information stored in the system models do not exist.

This emerging applications paper demonstrates how using OWL 2 ontologies for
model specification addresses existing shortcomings in describing system models,
making the following contributions:
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• Outlining of shortcomings of the established industrial data management practice
used in space system engineering.

• Delivery and application of an ontology for model-based space systems engineering
for supporting numerous activities involved in a satellite’s design.

• Demonstration of the utility of an OWL 2 conceptual data model for solving current
problems in the context of MBSE.

• Critical discussion on how OWL 2 can fit into current industrial data management
and model-based systems engineering settings.

The ontologies developed for this paper are available online under Creative
Commons licensing. Details on how to access the ontologies can be found in Sect. 4.2.

2 Model-Based Systems Engineering at Airbus DS

2.1 The Practice of Systems Engineering

In many industrial domains today, and especially in the space community, a multitude
of disciplines is involved in creating a product. For space projects such as satellites,
launch vehicles, or resupply spacecraft these disciplines involve, only to name a few,
mechanical engineering, electrical engineering, thermal engineering, requirements engi‐
neering, software engineering, verification engineering, and their respective sub-disci‐
plines. Each of these disciplines specifies, designs, and verifies specific parts or aspects
of the system. In order to provide an all-encompassing understanding of the system of
interest, the unique, yet complementary, views from every involved discipline are
combined. The science and art of integrating different views on one system towards
system thinking is called Systems Engineering.

As NASA [1] elegantly puts it: “Systems engineering is a holistic, integrative disci‐
pline, wherein the contributions of structural engineers, electrical engineers, mechanism
designers, power engineers, human factors engineers, and many more disciplines are
evaluated and balanced, one against an-other, to produce a coherent whole that is not
dominated by the perspective of a single discipline.”

2.2 Model-Based Systems Engineering (MBSE)

Many of the engineering activities performed within these disciplines are already well
supported by computer-based models. Mechanical design models built with tools such
as CATIA V5, mechanical analysis models built with tools such as PATRAN and
thermal analysis models built with tools such as ESATAN-TMS are well established in
the space engineering community today. Furthermore, requirements models based on
DOORS play an important role, while also “traditional” tools such as Excel or Visio are
used on a regular basis for specifying models.

Some tools provide an automated data exchange interface to other tools inside their
own domain, e.g. in the case of mechanical design and mechanical analysis. However,
classically, most engineering tools have been regarded in isolation from each other.
Personal communication and documents are usually the main mechanism for bringing
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information from one domain into another one. Such a manual information management
process is a pragmatic approach that can easily be established as it does not involve a
lot of technical prerequisites, but is generally regarded as error-prone, producing incon‐
sistencies, and involving a high amount of coordination overhead.

In order to cope with the shortcomings imposed by manual data integration, a further
integration of these engineering tools is being pushed by the systems engineering
community in numerous industrial sectors, including the space business unit of Airbus
DS [2, 3]. The approach of MBSE focuses on employing a truly interdisciplinary repre‐
sentation of a system that incorporates design information of relevance to all domains.
A common approach to achieve this kind of system-level data integration is employing
a system model that serves as a central hub integrating the different modeling paradigms,
and model semantics. This architecture is visualized in Fig. 1.
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Fig. 1. System model as hub for integrating information from different engineering tools

For the purpose of designing space systems at Airbus DS, a product line of system
engineering tools [4] has been developed that manages the system model. This model
contains artefacts of system-wide relevance such as requirements, the product structure,
operational modes, geometric properties, or verification approaches and traces between
those artefacts. For the purpose of easing integration across engineering disciplines, and
easing integration across the whole customer-supplier chain along multiple companies,
the specification of these artefacts is done in a conceptual data model (CDM) that is
shared between many stakeholders from the European space community, including the
European Space Agency (ESA) and Airbus DS. This common data model, forming the
meta-model to the system model, has been defined in a specification called ECSS-E-
TM-10-23A [2] (abbreviated 10-23) and is specified using UML. It has been imple‐
mented in a number of tools, such as those employed in the Virtual Spacecraft Design
Project [5], the SVTLC and FSS ESA TRP activities [6], in the EGS-CC project [7],
and in Airbus DS’ internal system engineering product line [4].
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2.3 Shortcomings of Data Management Approach in Use by Current Tools

The current approach to describe system models neglects to address a number of impor‐
tant aspects that are of essential relevance to the MBSE domain. These points originate
from shortcomings (SCs) identified in the Airbus DS data management approach, but
are generalizable for other modeling approaches based on similar specification technol‐
ogies.

SC1 - Semantics sacrificed for ease of implementation: The necessity for cost-effi‐
cient deployment of a system modeling application often leads to using generic struc‐
tures for defining central concepts, as is the case for the Product Structure of 10-23.
These generic structures ease implementation and applicability to a wide range of
systems, but their logical consistency is not necessarily ensured. For instance, a system
element might be a piece of software, but also exhibit mechanical properties, such as
mass, being intuitively incorrect, but nevertheless possible in the system model.

SC2 - Inadequate tailoring support: In the space engineering community, the practice
of tailoring is very dominant, meaning that selected engineering standards are adapted
(albeit in a limited way) for each individual project. This implies that specific data
structures have to be changed for every individual project, leading to high adaption cost.

SC3 - Missing discipline context information on elements: Although the need for
having a system model comes from an interdisciplinary problem, this interdisciplinary
nature is not directly reflected in the CDM. Consequently there is no logical link that
allows a derivation of which engineering discipline is involved with which system
element, falling short of improving discipline management and coordination.

SC4 - No exploitation of existing system design data: As the main purpose of current
databases is data storage, versioning, and exchange, using system description data for
other purposes, such as logical soundness checking, is currently not done.

SC5 - No existing knowledge capture and application mechanism: There is no mech‐
anism for continuously gathering and formalizing knowledge across numerous projects,
and making it available for application to future projects, steadily improving system
quality as more knowledge becomes available.

2.4 Related Work on Describing System Models

Describing a system model in the MBSE context can also be done using other, yet
similar, means. On the one hand, the System Modeling Language SysML [8] has been
gaining a lot of traction and can be employed for the functional specification of a system
using tools such as Papyrus [9]. On the other hand, a tool named Capella [10] surfaced,
implementing the Arcadia meta-model, and supporting the Arcadia method [11]. In the
case of SysML, being a profile to UML, the CDM’s specification language is MOF [12]
while the Arcadia data model is described using the modeling language of EMF, Ecore
[13]. Further approaches include the Open Concurrent Design Tool (OCDT) [14] and
the Concurrent Design Platform (CDP) [15].
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3 Improving the System Modeling Approach Using OWL 2

3.1 Improvement of System Model Through Employment of OWL 2

For overcoming the shortcomings associated with system models based on object-
oriented specification languages, describing the system model and the CDM with an
ontology description language is proposed. The motivation behind this approach is based
upon the following assumptions: Improvement of system model semantic accuracy
(SC1), support of tailoring (SC2), classification of elements according to their engi‐
neering discipline (SC3), and further improvement of system model utility by inferring
new information with help of a knowledge base (SC4 and SC5).

“Re-hosting” of the conceptual data model started with a manual transformation of
the original 10-23 UML meta-model according to pre-defined transformation rules,
transforming entities and relations. Subsequently operational knowledge from engi‐
neering domains contained in system design documents was formalized and discussed
with discipline experts. A validation followed in order to ensure that data from both
documents and the 10-23 meta-model is able to accurately be represented by the MBSE
ontology. This approach, along with further information on the evaluation approach, is
illustrated in Fig. 3.

The decision to use OWL 2 was reached by determining the semantic expressivity
required by the MBSE ontology. One evaluation case relies heavily on using disjoints
between classes, eliminating RDF(S). The MBSE ontology also exploits concepts such
as reflexive properties and sub-property chains that are covered well by OWL 2. This
leads to the question if an OWL 2 profile can be used in order to benefit from a perform‐
ance advantage. The MBSE ontology uses inverses of object properties, ruling out OWL
2 EL. OWL 2 QL is ruled out since, as already mentioned, property chains are required.
Some classes state information about yet unknown individuals in their superclass
expressions, ruling out OWL 2 RL. Consequently, required expressivity can only be
supplied using OWL 2.

3.2 Related Work on Ontological Modeling of Engineering Data

Numerous authors have been considering the role of ontologies in the systems engi‐
neering context [16–18]. While these considerations contain valuable remarks and high‐
light issues, the works do not provide usable solutions.

An approach regularly pursued is modeling engineering vocabularies using OWL or
other ontology languages, instead of their native description language. This was done,
for example, with ISO 15926 [19], and ISO 15288 [20]. The main purpose of these
activities is to provide better communication and more accurate specification of data.
The idea of integrating SysML with OWL has been proposed [21, 22] in order to improve
modeling semantics. However, due to the remaining implicit semantics of the engi‐
neering domains to be distinguished, this approach does not fulfill the need for seman‐
tically driven consistency within the engineering domains and between them.

Another approach is specifically constructing engineering ontologies, as Borst [23]
does for the purpose of better facilitating knowledge sharing and reuse. Van Renssen [24]
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even coins his own ontology and vocabulary, Gellish, for describing engineering facts.
The goal of both approaches also does not go further than modeling, sharing, and reusing,
however.

Some authors do apply reasoners to their engineering ontologies. Jenkins [25] uses
inference along the taxonomic structure of system elements in order to query the system
model more easily. Graves [26] suggests using inference in order to evaluate design
consistency in terms of violated constraints. Takker et al. [27] employ OWL and infer‐
encing for coming to diagnoses of tunnel disorders by examining the modeled set of
symptoms observed in tunnels. Abele et al. [28] use the same technologies for validating
design consistency of industrial plant models. Feldmann et al. [29] use SPARQL queries
for specifying and finding design problems. Wende et al. [30] also check basic consis‐
tency of domain models using reasoning.

This paper picks up at consistency checking, but goes beyond the use cases described
by the works above. On the one hand, we approach the multi-disciplinary problem of
MBSE by determining the responsibility of engineering disciplines in specific system
building blocks using inference. Furthermore, we perform engineering tasks automati‐
cally that were entirely manual processes before. Also, we enable new engineering
activities by making information explicit that was only implicitly scattered across system
models before, and introduce a knowledge base to engineering activities.

4 Evaluation of Ontological System Modeling Approach

4.1 Definition of Evaluation Scenario

For evaluating the improvements enabled by re-hosting the system model using ontology
modeling technologies, the approach outlined in Sect. 3.1 will be demonstrated using
examples based on data derived from an actual satellite design, resulting in the satellite
dataset. This mission is representative for a mission in Phase B of the ESA project cycle
[31], close to the Preliminary Design Review (PDR), utilizing data derived from a real
project wherever possible. Data subject to intellectual property ownership issues was
deliberately left out. For providing the necessary data to demonstrate this research, the
ontologies are extended in a representative manner at required points with data not
covered by the established engineering processes. This approach allows using project
data not subject to intellectual property issues whenever possible, and to extend this data
at specific points when required for demonstration purposes.

The goal of the spacecraft’s mission is to measure the Earth’s magnetic field using
a set of specialized instruments, along with other scientific experiments. More specifi‐
cally, the mission consists of a constellation of numerous identical satellites which are
approximately 5 m long, 1.4 m in width, 0.8 m in height, and weighing 600 kg. The
mechanical design of these spacecraft is illustrated in Fig. 2.
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Fig. 2. Isometric view and side-views of the satellite

This object-oriented satellite system model, based upon a derivation of 10-23 data
specified in UML, is re-hosted in an ontology specified in OWL 2, consisting of a concept
ontology (MBSE Ontology) and an ontology containing instance data of the satellite
(satellite dataset). The transformation for object-oriented satellite instances to OWL indi‐
viduals can principally be done in an automated, generic fashion, since it is a very direct
instance mapping, but is done manually in the scope of this paper for pragmatic reasons.

A number of evaluation cases are provided that rely on usage of both satellite dataset
and MBSE ontology. These cases pick up on the shortcomings identified in Sect. 2.3,
giving a proposal on how to solve them with OWL 2, resulting in the provision of
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Fig. 3. Illustration of evaluation approach
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objective evidence that the shortcomings have indeed been solved using an OWL 2
ontology. This evaluation approach is illustrated in Fig. 3.

4.2 Availability of Employed Ontologies

Both MBSE ontology and satellite dataset are available at Zenodo under Creative
Commons Attribution-ShareAlike (CC BY-SA) license and may be accessed via the
following DOIs:

http://dx.doi.org/10.5281/zenodo.57955 (MBSE Ontology)
http://dx.doi.org/10.5281/zenodo.57957 (Satellite Dataset)
These ontologies have been spawned through research on using ontologies in the

model-based systems engineering context. Being research on the future functionality of
system models, these ontologies have not yet been rolled out to actual end-users in an
industrial deployment process. The team involved in ontology design and design of the
infrastructure around them consists of three researchers, with a significant contribution
from domain experts. Both ontologies will continue to be maintained and extended.

The evaluation scenario is based upon the MBSE ontology in version 1.1, and the
satellite dataset in version 1.1. Modeling was performed using Protégé 5.0.0. Reasoning
was done using PelleT 2.2.0. Inferring all statements on the MagSat dataset takes an
average of 24 s on a Core i7 4th generation quad core CPU at 2.8 GHz with 16 GB of
RAM.

4.3 Evaluation Cases

The five selected evaluation cases together encompass activities from the beginning of
a project in Phase 0/A up to system production in Phase D. Their allocation to different
system design phases is illustrated in Fig. 4.

Evaluation and Insurance of Property Consistency. A significant part of describing
space systems is done with physical properties. Based on these properties, assertions
can be made, such as that a Star Sensor has a mass with the value 0.380, based on the

Phase 0/A Phase B Phase C Phase D

Allocation and Management of Disciplines

Evaluation and Insurance of Property Consistency

Generation and Administration of CIL

Identification of Required Tests

Identification of Test Sessions

Fig. 4. Positioning of evaluation cases along the system design cycle
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physical quantity mass, and the unit Kilogram. The assertion of such properties is based
upon the SysML QUDV standard [8] and is employed as reusable library that can be
loaded into multiple projects and adapted accordingly. In order to be applicable to virtu‐
ally any data model element, the implementation of these properties is a generic structure
as outlined in SC1. However, there exist certain data model elements that are not appli‐
cable to any properties, and combinations of properties that do not make sense to occur
together. More specifically, through employing such a generic structure, the possibility
to specify inconsistent model populations emerges.

For example, a property of powerConsumption in Watts could be attributed to a
screw, a software could exhibit dimensions in length, width, and height, or a battery
could have a data rate. While these assertions are illogical at first glance, modeling
mistakes do happen. In other cases, errors are more subtle. For example a component
should get the mass property for items on component level, while subsystems have a
mass property that is composed of mass, margin, and nominalMass, whereas the satellite
on system level exhibits nominalMass, margin, totalDryMass, and totalWetMass
(including propellant and other fluids required for full operation).

In order to deal with the possibility for specifying illogical models, the categories
(essentially containers for properties) of 10-23 are transformed to OWL classes, and
disjoints are added to them. Using the disjoint axioms, logical exclusions between cate‐
gories and specific equipments, or between categories themselves, can be modeled and
evaluated using a reasoner. This essentially tackles SC1. Selected concepts and disjoint
relations are shown in Fig. 5.

SystemMassSubsystemMassElementMass

Subsystem SystemComponent

MassPropertyElement NatureElement

SystemLevelElemen
AOCSSensor

HardwareElementSoftwareElemen

AOCSElementEPSElement

AOCSActor
disjoint with

Fig. 5. Disjoints between model concepts

The satellite’s design was validated through extensive verification, validation, and
reviewing and does not exhibit any inconsistencies in terms of disjoints. However, as
intermediate design baselines may very well contain such inconsistencies, a number of
logical violations were provoked in order to evaluate how the reasoner behaves for
inconsistent system models. As such, inconsistent types were defined and successfully
found for the On-Board Software (ComponentMass and SoftwareElement), Attitude and
Orbit Control System (SystemMass and Subsystem), and Attitude Control Thruster
(AttitudeControlThruster and OrbitControlThruster).

Allocation and Management of Disciplines. In the multi-disciplinary environment of
space system engineering, each discipline is a stakeholder in several system elements.
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Consequently, every system element has an involvement in numerous disciplines. For
example, a star sensor may involve Optical Engineering (due to its sensor), System
Engineering (mass budget, power budget, …), Harness Engineering (the star sensor has
electrical connectors), Mechanical Engineering (geometric accommodation), Opera‐
tional Engineering (modes, services), Requirements Engineering, etc. Due to the amount
of combinations between system elements and disciplines, the exact nature of discipline
involvement is often obscured by sheer mass and complexity.

For overcoming this problem, a reasoner is employed in order to assert what disci‐
plines are involved in each system element. Depending on the nature of discipline
involvement, the inference might be fairly simple (every system element with a require‐
ment involves Requirements Engineering) or more complex (a SystemElement involves
SystemsEngineering with the PowerBudget if it has a DiscreteModel with a DiscreteS‐
tate that has some powerConsumption).

This approach enables the automated assertion of discipline involvement on all
system elements. Based on the current elaboration of the system, the discipline allocation
is automatically adjusted as the system progresses along its life-cycle. Furthermore, the
reasoner is able to provide an explanation as to why a specific discipline is a stakeholder
in a specific element. This addresses SC3. Additionally, due to the fact that the ontology
can be adapted during runtime, SC2 is also tackled.

For evaluation, five system elements are chosen and selected disciplines allocated
by the reasoner (Table 1). A direct comparison to the original 10-23 satellite cannot be
performed due to the fact that there is no explicit overview on discipline allocation.
Nevertheless, the asserted properties of both models are very similar, with the OWL
model able to make the required inferences. The satellite itself is involved in many
disciplines due to the fact that it contains an element from every discipline. The Star
Tracker Electronics (STRE) also has an involvement from almost every discipline,
except Instruments Engineering, since it is not an instrument per se. The On-Board
Software (OBSW) involves mainly Software Engineering, and requirements-related
disciplines. The Orbit Control Thruster (OCT) and the Battery (BATT) both involve a
limited number of disciplines.

Table 1. Allocation of disciplines to system elements
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Generation and Administration of Critical Items List. A central part in space system
engineering is played by the Critical Items List (CIL). Its purpose is to identify elements
of the system that have major difficulties or uncertainties associated and expected in
their design. This list identifies the exact risks associated with these items and provides
risk reduction measures accordingly. An item might be critical for a variety of reasons,
e.g. it may be a single point of failure, be related to personnel safety, exhibit low relia‐
bility, be sensitive to radiation, or limited in its lifespan. One element in the system may
also belong to multiple categories, such as a battery, which can result in personnel injury
in case of failure during spacecraft assembly (safety critical item), but also be a life
limited item due to a limited number of charge and discharge cycles. Generating and
maintaining the CIL is very formal work involving discussion of every single system
element, with a potential of missing out on important item-category-assertions. The
original 10-23 data model does not contain any aspect of the CIL. The idea is to formalize
the knowledge about all critical items originally in the CIL document of the satellite in
order to specify the definition of numerous critical item categories in the MBSE
ontology.

As an example, the following specification defines the nature of a battery sensitive
that introduces some criticality to spacecraft with magnetic instruments on board:

Class: fdir:MagneticCriticalBattery
EquivalentTo:

mbse:Battery
and (mbse:isContainedByElement some 

(mbse:System
and (mbse:containsElement some mbse:MagneticInstrument)))

SubClassOf:
fdir:MagneticCleanlinessElement,
fdir:hasFailureEffect value fdir:MagFieldCausesMagInstrPerfDegr,
fdir:hasRiskReductionMeasure value fdir:CompensationInDataProc, 
fdir:severityLevel value fdir:Major_3

Based on the specification above, the reasoner concludes that the battery aboard the
satellite is a magnetically critical item, since it exhibits its own magnetic field and is
aboard a spacecraft that contains magnetic instruments. In order to avoid performance
degradation of scientific measurements (failure effect), data processing routines have to
be calibrated accordingly (compensatory provision).

Furthermore, the spacecraft itself is also inferred as being a magnetically critical
item, resulting in the need to use demagnetized tools, and to instate the working instruc‐
tion to keep demagnetized tools away from conventional tools. The benefits for
managing large parts of the CIL with help of a reasoner are the automated classification
of all system elements according to their criticality, the automated inference of failure
effects and of compensatory measures. In the event of architectural change of the system,
the reasoner will update the CIL accordingly. The approach of using the CIL as a
knowledge base, extending it throughout multiple projects, and applying this knowledge
to every subsequent project, improves SC4 and SC5.

Table 2 contains the evaluation results of modeling the satellite’s CIL. Across four
categories, from the original definition of 56 different critical item definitions,
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37 definitions of critical items that are applicable to a wide variety of different missions
were formalized in the ontology. 19 definitions were deemed not worth formalizing
because they were based upon highly specialized mechanisms with a low likelihood of
reuse for future missions. The amount of critical item assertions is higher than the amount
of definitions, since the satellite has different kinds of thrusters (attitude and orbit control
thrusters), different kinds of electronics, etc. aboard. A total of 67 failure effects across
all system elements have automatically been derived, along with 91 risk reductions
measures to be incorporated in the system design.

Table 2. Inference of selected critical items, failure effects, and compensatory measures

Classes in
document

Applicable
classes

Inferred critical
item assertions

Inferred total
effects

Inferred total
measures

Contamination
critical items

3 3 4 4 4

Life limited
items

12 5 6 7 13

Magnetic
cleanliness
items

10 7 11 11 10

Safety critical
items

31 22 27 45 64

Total 56 37 48 67 91

Identification of Required Tests. Across the whole design cycle of a satellite, a variety
of tests are performed. While some tests are performed in a simulated environment (e.g.
for control algorithms), others are performed in hybrid environments, while yet others are
performed on real flight hardware. For instance, every On-board Control Procedure
(OBCP) requires an Integrated System Test (IST). Every electronic equipment, as well as
the spacecraft’s Central Software, requires a hardware IST. Every item that has the space‐
craft harness connected to it requires an Electric Integration Test (ELI), etc.

Class: fv:ElementWithIST
EquivalentTo:

mbse:CentralSoftware or mbse:Equipment
SubClassOf:

fv:ElementWithTest,
fv:requiresTest value fv:IST

Class: fv:ElementWithELI
EquivalentTo:

mbse:ElementDefinition
and (el:hasFunctionalPort some el:FunctionalPort)

SubClassOf:
fv:ElementWithTest,
fv:requiresTest value fv:ELI
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Similarly to the CIL, deriving all necessary tests is also very formal work with a
potential to not achieve full coverage, that is currently performed manually. The idea
behind handling test management with OWL is that the definition of each required test
is formalized in OWL and each relation to a test to be performed is inferred by the
reasoner, helping in doing manual work and being an aid in achieving exhaustiveness.
The definition of tests also behaves as a kind of knowledge base, addressing SC4 and
SC5. Due to the fact that this structure can be adapted during system model runtime,
SC2 is also addressed.

In the example at hand, the reasoner concludes that the GPS receiver aboard is
defined to be an equipment and thus has to undergo an IST. Furthermore, the reasoner
will conclude that the GPS receiver electronics has a functional electrical port, resulting
in the necessity to perform an ELI.

Table 3 contains evaluation results for the test derivation case. Across all considered
categories, a total of 79 out of 84 tests have been identified by the reasoner. Differences
occur for the ISTs where non-standard ISTs are performed for the spacecraft’s Thermal
Control System, and its OBC’s Mass Memory Unit, splitting the original OBC IST into
two parts. The difference for OBCP ISTs results from the introduction of tests for specific
failure cases, e.g. where the nominal execution of the OBC’s power-up procedure is
tested normally, but also with intentionally provoked errors.

Table 3. Inferred tests on the satellite per category

OO 10-23 OWL 10-23 Missing tests
IST 12 10 2
ELI 16 16 0
AFT 1 1 0
SFT 1 1 0
CLT 1 1 0
EMCFT 1 1 0
RFCFT 1 1 0
TVFT 1 1 0
OBCP IST 48 45 3
Total 84 79 5

Identification of Possible Test Sessions. During the integration of all satellite compo‐
nents towards a fully functional system, the majority of tests take place. Every single
test requires a specific configuration in order to be performed. For example, the Star
Tracker Integrated System Test (STR IST) requires all three Star Tracker sensors (one
for each axis) to be integrated, and at least one of the two electronics boxes. Furthermore,
the on-board computer is required for data processing and the power control and distri‐
bution unit (PCDU) for providing power. Furthermore, the spacecraft harness is required
for wiring all of these components together. Additionally, external test equipment is
required, e.g. the test caps that simulated a given view of a star field on ground. This
configuration of a satellite during integration changes very frequently, usually several
times per day. This is due to the fact that components are only procured once in the
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beginning of test campaigns, there might only be a limited number of external test
equipment available, or items might be taken out of the spacecraft for further analysis
and improvement. This situation is outlined in Fig. 6.
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Possible Test: Abbreviated Functional Test (AFT)
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Fig. 6. Configuration required for executing selected tests

This frequent change in configuration makes it difficult to keep track of what tests
can currently be performed on the available configuration. Determining what tests are
to be performed several days ahead is usually not feasible due to the random occurrence
of issues in test campaigns. Also, evaluating what tests can be performed on the current
configuration is a manual effort involving a significant amount of work.

For tackling this problem, the required configuration for a given test is specified in
the OWL model. Depending on the current spacecraft configuration, the reasoner then
evaluates what tests can be performed. This definition serves as a kind of knowledge
base as well, tackling SC4 and SC5. For the satellite example, a selected number of tests
were modeled with their configuration prerequisites specified as equivalent class axioms
and successfully tested as a proof of concept.

5 Lessons Learned

OWL 2 provides valuable functionality that can be used to significant benefit in the
context of MBSE. In particular the following capabilities have been proven helpful to
the overall MBSE process:

• The ability to apply operational knowledge from past projects to a current design.
• The ability to ensure the semantic coherence of a multi-classification environment.
• The ability to infer new knowledge on a system.
• The ability to explain made inferences.

Computational performance for the mentioned reasoning tasks was found to be not
an issue, as all required statements can be inferred on the given dataset in reasonable
time. It is expected that for significantly larger datasets that require longer this will
remain to not be an issue, as approaches such as nightly consistency checking have been
deemed a viable solution in the MBSE context.

However, there is also functionality required by the current data management
approach that was identified as being difficult to realize, or incompatible with, the
employment of OWL 2 ontologies. This includes:
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• Lack of capability to apply closed world checks and negation as failure: Many
consistency checks in the MBSE context rely on evaluating if values are present in
the model or not. Lack of this functionality imposes significant restrictions and has
to be worked around accordingly.

• Possibility to model data in an ABox that is out of scope of the TBox: The conceptual
data model in MBSE is used to specify allowed model populations, upon which
further functionality, such as importers and exporters, relies upon. OWL 2 allows to
model data on instance level that is not scoped by the data’s specification, imposing
significant challenges.

• Lack of built-in part-of/containment/aggregation relationships: Explicit hierarchical
structures are of central importance to data models in MBSE, but are not supported
by OWL. This essentially does not allow modeling these relationships with sound
semantics without resorting to workarounds.

• Shortcomings when reasoning with numeric values: Reasoning activities described
in this paper could be significantly improved by the possibility to base inferences on
numerical values. Although some rule-based approaches exist, their reasoner support
is currently inadequate.

Due to the fact that system databases in the MBSE context require functions currently
not addressed by OWL 2 ontologies, a replacement of the system model by an OWL 2
ontology as a standalone solution cannot be recommended. Instead, a solution where
the main data management activities are performed by a traditional system database on
the one hand, and a knowledge-based enhancement of the system model relying on OWL
2 on the other hand, is seen as viable solution in the industrial context. Research is
currently being pursued in exploring such hybrid architectures in more detail. Alterna‐
tives could include the re-hosting of ontological functions in the object-oriented context,
or a synchronized coexistence of a system model in both the ontology world and the
object-oriented world and are currently subject of investigation at Airbus DS.

6 Conclusions and Future Outlook

This research demonstrates that ontologies are able to solve problems that current system
databases neglect to address. Using the reasoner to infer new knowledge about the
system enables higher efficiency and better scaling of established system engineering
activities, an improved quality of the system and system model in terms of consistency,
and an improved information consolidation and reuse process. Having a knowledge base
in the background that grows from project to project improves system quality steadily
and ensures exhaustiveness in performing specific design steps. Furthermore, the prac‐
tice of tailoring, predominant in space engineering, is supported by the ability of OWL
2 ontologies to adapt the data model during runtime.

However, due to their non-conformance to existing data management requirements
in the MBSE context, ontologies cannot directly take the place of “traditional” system
databases in the near future. Instead, a solution where the main data management activ‐
ities are performed by a traditional system database on the one hand, and a knowledge-
based enhancement of the system model based on OWL 2 on the other hand, is seen as
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viable solution in the industrial context. Our research continues towards intersecting
object-oriented and ontological approaches, addressing core requirements for effective
data management, as well as those newly identified for semantic models and knowledge
management activities.
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