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Abstract. Rakuten Ichiba uses a taxonomy to organize the items it
sells. Currently, the taxonomy classes that are relevant in terms of profit
generation and difficulty of exploration are being manually extended with
data properties deemed helpful to create pages that improve the user
search experience and ultimately the conversion rate. In this paper we
present a scalable approach that aims to automate this process, automat-
ically selecting the relevant and semantically homogenous subtrees in the
taxonomy, extracting from semi-structured text in items descriptions a
core set of properties and a popular subset of their ranges, then extending
the covered range using relational similarities in free text. Additionally,
our process automatically tags the items with the new semantic informa-
tion and exposes them as RDF triples. We present a set of experiments
showing the effectiveness of our approach in this business context.

1 Introduction

Semantic technologies are not new in the e-commerce business. In particular,
ontologies (or ontology-like artifacts) have been used for a number of different
tasks that go from data integration [11] to items classification and search sup-
port [7]. Rakuten Ichiba (the largest e-commerce site in Japan) uses a large
legacy taxonomy with around 40,000 classes to organize the items and provide
the users with discovery axes relevant to their searches. In order to assist the
user with her search, the catalog team is manually extending the taxonomy and
the items with new semantic information. They start by selecting the classes
in this taxonomy that need to be improved based on profitability and difficulty
of exploration. For each of these classes, they study the domain together with
the customers shopping behavior, such as search keywords, browsed items, etc.
Based on that, they extend the taxonomy with a small set of properties deemed
helpful to the customers along with the most representative values (not necessar-
ily all) in the range of these properties. Finally, they use these properties/values
to create pages that help the users to explore the items in the class.

Being completely manual, this taxonomy extension effort currently requires
a massive amount of time and human effort. Acquiring domain knowledge and
modeling the properties alone for a single class can take days, the operation is
error-prone, and the result cannot be easily ported to other Rakuten market
places across the globe (Taiwan, France, US, Germany, etc.). As such, there is
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an important business value in automating this process, both to speed up the
completion of the project and to drastically reduce the cost of this task.

This work raises a number of questions: (i) how to automatically select rele-
vant and semantically homogenous subtrees in the taxonomy which would most
benefit from being extended with data properties; (ii) how to extract a core set
of properties from existing datasets that can effectively assist the users in their
product searches; (iii) how to extract a representative set of range values to be
displayed together with these properties; (iv) how to find for each item in each
class the corresponding property values; (v) how to provide a generalizable solu-
tion (to arbitrary taxonomies, languages, and datasets) that scales to run over
tens of thousands of classes and TB of data.

In this paper we propose answers to these questions adopting and extending
techniques from ontology-based information extraction and triple extraction,
and proposing new techniques when needed. We present an end-to-end scal-
able unsupervised approach that automatizes the process of extracting semantic
information from item descriptions and shopping behaviors to improve the user
experience. This process adds new properties to the relevant subtrees of the tax-
onomy and tags the items with this new information, exposing the outcome as
RDF triples. The pipeline of our approach is depicted in Fig. 1. In this work
when we say taxonomy/ontology we do not necessary mean OWL ones, and
when we say triples do not necessary mean RDF ones. However, we plan to use
this project to push for the use of these semantic web standards inside Rakuten.

Fig. 1. Expected outcome

Our main contributions can be summarized as follows:

– A novel technique to select relevant subtrees in the taxonomy in terms of
overall profitability, ease of product discovery and similarity of users’ shopping
behavior.

– An extension to the work presented in [23] to extract, for the relevant subtrees,
an initial set (seed) of popular property-value list from semi-structured text.
The extension includes a new technique for the aggregation of synonymous
property names, as well as an improvement in the precision of the result by
exploiting users’ shopping data.
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– An approach, based on neural networks [16], to extend the initial seed with
new relevant values using semantic similarity.

– A set of experiments to measure the precision, the coverage, and the scala-
bility of these techniques.

The remainder of the paper is organized as follows: Sect. 2 describes the busi-
ness need, and highlights the problems with the current approach. In Sect. 3 we
briefly survey other related works. In Sect. 4 we describe our approach towards
data property extraction, range extraction, and triple generation. Section 5 gives
an overview of the architecture of our current implementation of the proposed
approach. In Sect. 6 we provide a number of experiments evaluating the correct-
ness and scalability of our framework. Section 7 concludes the paper.

2 Business Case

Rakuten Group is one of the world’s leading Internet service companies, provid-
ing a variety of consumer and business-focused services including e-commerce,
eBooks, travel, banking, securities, credit card, e-money, portal and media, online
marketing, professional sports, etc. Currently, around 401 of the total operating
income comes from Rakuten Ichiba, the leading e-commerce website in Japan,
which is Rakuten Group’s online shopping mall where third-party merchants can
set up shops and sell their products. Rakuten Ichiba offers around 200 million
items classified in a large legacy taxonomy (there are only classes and subclass
relations between them) with around 40,000 classes. The first version of this
taxonomy was developed around 2001 (three years before the standardization
of OWL) and has been evolving since then, although it was never moved to a
well-known ontology language. Currently there are several internal projects to
shrink and improve the quality of this taxonomy, aiming to enhance the user
experience, increase the conversion rate2, and as a consequence increase the
gross merchandise sales (abbr. GMS) per class. In this work we focus on the
project that aims to extend the relevant taxonomy classes and the items with
new semantic information deemed helpful to the user.

An appeal of Rakuten Ichiba which contributed to its initial popularity is the
ease and freedom with which the merchants can register products on the plat-
form, allowing them to freely design their item descriptions in order to construct
a shop identity and a connection with the customers. As a result, any informa-
tion about the items must be found in their titles and descriptions specified by
the merchants, that is, HTML code mostly consisting of free-form text, semi-
structured text (table-like free-form text), structured text (tables) and images.
This data is therefore the primary source to extract item-specific information in
this project but it is also used to automatically acquire domain-specific knowl-
edge as it reflects the knowledge of the merchants.

1 http://global.rakuten.com/corp/investors/documents/results/.
2 Proportion of customers making a purchase within a given browsing session.

http://global.rakuten.com/corp/investors/documents/results/
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When extending the taxonomy, it is necessary to avoid extracting properties
for every single class. First, because of the legacy nature of the taxonomy, some
classes are either obsolete, or in an unintuitive branch, or too specific to be inter-
esting, therefore displaying data properties for those classes will not improve the
user experience (abbr. UX). Recall that here we are not trying to build a com-
plete model of the domain, like the work in [17], but use the ontology to improve
the UX. Second, extending the whole taxonomy would not only dramatically
increase its already massive size but also lead to unintuitive results if we extract
properties of semantically inhomogeneous classes. For instance, the class Wine
has among its subclasses Red Wine, White Wine, and Wine Accessories. Clearly
the properties for Wine and Wine Accessories are very different. Thus, trying to
extract property-values from all the items in the Wine category directly leads to
unintuitive (although correct) results, such as “yellow” for the property “color”.

Currently, the extension of the taxonomy is done manually and we aim to
reduce the human effort needed for this task, although some human work might
still be needed. A production-level system should have a precision above 80 %,
and the cost of the deployment and maintenance of the proposed solution should
not exceed the benefits from the use of the system.

3 Related Work

This work intersects mainly with two fields: Ontology-based information extrac-
tion and triple extraction. In this section we will briefly survey some of the
works in these areas and their relation with our approach. It is worth noting
that none of the articles mentioned here tackle the problem of selecting subtrees
as described in Sects. 4 and 5.

Several studies mentioned in this section rely heavily on a number of lin-
guistic resources (such as Yago, DBpedia, Wikipedia) and complex NLP tools
(such as entity/predicate disambiguation and matching [24]). These resources
and tools for languages different than English (we work with Japanese texts) are
often not as accurate, and the inaccuracies tend to accumulate and propagate
through layers. In addition, performing such analysis over terabytes of data can
be computationally expensive. Thus, in this work we only use a tokenizer to
prepare the datasets and we use data mining and machine learning to extract
relations and triples. In the future we plan to use NLP techniques to improve
the results when our techniques perform sub-optimally.

OBIE: In Ontology-based information extraction (abbr. OBIE) [25] the ontology
is used to drive the information extraction process. In [21], the authors describe
an OBIE application (GATE) for e-business. In this approach, the properties are
already given and the concepts are selected manually with the help of domain
experts. The work in [1] extracts properties names using an NLP approach, but
the extraction process relies on a predefined (manually by experts) semantic lex-
icon, and on a manually created set of rules. Another NLP approach for OBIE
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is the one in [2], where the extracted relations have to be mapped to an existing
(manually created) list of properties. [22] presents a system called RelExt for
relation extraction. They use semi-structured text to map terms to concepts,
and linguistic analysis to automatically find relations between those terms. In
addition, they use a number of statistical metrics to score the popularity of
the triples. [19] presents a system called DOGMA for relation extraction from
free text. This system first finds verbs-objects in the text, then builds seman-
tics sets by clustering the verbs and the terms, and finally finds the relations
between those sets of terms. Unlike our work (and [22]) they make no use of
semi-structure data, but the precision reported is rather low (around 11 %). [9]
introduces opal, an ontology-based web pattern analysis approach that extracts
semantic information (such as properties, values, and classes) from web forms
exploiting a number of prolog rules. The classification step (that maps terms
to concepts) requires terms in the domain to be annotated to create a set of
ground facts, such as, City(London). [13] tackles the same problem but instead
of having a logic-based approach, they use a machine learning approach (they
use Bayesian classifiers). Some manual labor is also required to build the train-
ing sets of the classifiers. [17] presents the never-ending learning paradigm for
machine learning, that endlessly extends a small original ontology (Tbox) with
new classes, properties, and facts (Abox) from the web.

It is worth noticing that in the works mentioned above, the authors start
from text, and then they populate the classes/relation in the ontology. In our
scenario, we start from the ontology, and look for its instances in text.

We also include under the OBIE discussion the extraction of attributes and
values such as the works presented in [4,6,12,14,23]. Although they do not con-
stitute an ontology, the same techniques can be applied to extract ontological
properties (in fact, that is what we do). These studies propose similar unsu-
pervised frameworks that extract a set of properties and values from HTML
semi-structure data. After this core set has been extracted, in [4,23], they use
machine learning (Conditional Random Fields) to expand the set of values by
extracting values from free text. [4] takes into account the popularity of the
properties, as we do, but they use user reviews instead of user’s queries. [12]
extracts first an initial seed of property-values from user queries, and then it
uses distant supervision to extend it. [23,26] also present methods to aggregate
semantically equivalent property names, in Sect. 5 we discuss the differences
with our approach. [18] uses supervised learning to classify HTML fragments,
and then combines two techniques to extract the property-values: the first strat-
egy is similar to the one in [23], and the second one is based on the outcome of
a number of noisy annotators that rely on manually labeled data.

Triple Extraction from Text: Works in this field aim to detect semantic relations
between instances in the text. [24] presents two complementary approaches to
extract relations: a rule-based approach and a machine learning approach. Their
rule-based approach provides high precision but it requires manual work to build
the rules. The ML based approach relies heavily on a number of NLP tools. The
systems presented in [8,14] follow a similar approach to extract triples from
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unstructured text. In particular, [14] is a plugin for [21]. Observe that their goal,
in all the cases above, is different from ours. They aim to discover as many
relations as they can (+7000 in [24]). Here we aim to extract a small set of
“helpful” properties for and from an automatically selected taxonomy subtree.

4 Overview of the Solution

In this section we describe the different steps of our approach. These steps are
depicted in Fig. 2. Observe that this solution is general, and it does not depend
on any Rakuten-specific artifact, therefore in this section we only explain what
each step should do. In Sect. 5 we describe how we implemented each of these
steps in the case of Rakuten Ichiba. Also note that the production of the formal
OWL ontology and RDF triples is not mandatory in this process. Although in
our implementation we do output the ontology in this format (c.f. Sect. 5.2),
the adoption of W3C standards for these artifacts in Rakuten is still under
consideration, and this work represents the first steps towards it. We will make
use of Description Logics (DL) terminology, but if the reader is not familiar with
this formalism s/he can skip these parts.

Fig. 2. Extracting semantic information to extend an ontology

User Preference Extraction: Since the end goal is to assist the users in their
purchases, the first step is to extract relevant information about their shopping
behavior. What data is needed here depends on the particular implementation
of the following steps, but query logs and browsed items are some examples of
the type of data that can be used.

Subtree Selection: Intuitively, relevant subtrees are those that: (i) have high busi-
ness impact ; (ii) can benefit from new discovery axes, i.e. from a UI perspective,
they need some navigational assistance; and (iii) are semantically homogeneous
from the user perspective. A class has a high need for navigational assistance
(NNA) if it is “sufficiently far” from purchases, that is, the purchases occur in
one of its non-immediate subclasses, or the diversity of the class in terms of the
number of popular items is high. A class has a high business impact (BI) if the
items in the class contribute significantly to the GMS. For instance, Water is
a class with high BI but with low NNA because it contains few popular items
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which amount to a large sales volume. On the other hand, Red Wine has both
high BI and high NNA because the large sales volume of the class is distributed
over a high number of moderately popular items. A subtree of the taxonomy
is semantically homogeneous from the user perspective (UH) if users associate
the classes in the subtree with similar terms. For instance, although American
whisky and wine are semantically similar (alcoholic drinks), these classes are
reached in different ways. Most searches leading to American whisky (in Japan)
are very specific, such as “Old Crow”; on the other hand, searches leading to
red wine, white wine, and even Champagne tend to be more general and often
overlap, for instance “French wine” (non-alcoholic wine would be in a differ-
ent subtree). Observe that this way of splitting the tree does not only consider
the semantics of the class, but also the behavior of the shoppers. In our exam-
ple, shoppers buying American whisky will tend to have (statistically) a better
background in that domain, while shoppers buying wine are more diverse. This
process is illustrated in Fig. 3.

Fig. 3. Subtree selection process

Property-Value Extraction: This step consists of extending a subtree, T , selected
in the previous step, with a relevant set of data property. The definition of
relevant depends on the particular goal, but in any case it must align with the
requirements of the particular use-case. The domain of these new properties is
the union of the classes in T \ root(T ), that is, all the classes in T minus the
root. Formally, let C be the root of the tree representing the subclass relation,
D1 . . . Dn the subclasses of C in T , and R a new relation, then the ontology
(Tbox) is extended with the following OWL 2 DL axiom (in DL notation for
succinctness): ∃R ≡ D1 � · · · � Dn.

Once the ontology for the subtree T has been extended with the set of rele-
vant properties R1 . . . Rn, the next step is to find a fragment of the range of these
properties (literals) that is popular among the users that browse the tree T , and
that will be used to generate the triples. In this work we focus on data proper-
ties, but this work can be extended to object properties using the approaches
described in [9,13,17].
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Triples Generation: The final step is to link the items in T with the properties
and values which have been extracted. Observe that depending on the scenario, a
confidence score might be attached to each triple (s, p, o) indicating how certain
the system is that the item s has the property p with value v. In such case, one
would need to reify the tuples using the standard technique [3].

5 Architecture

In Sect. 4 we described the general flow of the approach. In this section we present
how we implemented the different steps in Rakuten. The architecture, which is
illustrated in Fig. 4, can be divided in four different layers: (i) the inputs, i.e.,
artifacts such as the Rakuten taxonomy, the search logs, etc.; (ii) the compu-
tational framework on which we run the different modules of the system; (iii)
the processing layer, in charge of generating the intermediate artifacts from the
input: sets of subtrees, tokenized item descriptions, word2vec models, etc.; (iv)
the extension layer, in charge of extending the taxonomy using the intermediate
artifacts and exposing the output as RDF. First we briefly describe the input
layer and the computational framework and then we give closer looks to the
processing and extension layers.

Fig. 4. System architecture

Input Layer: The system takes the following artifacts as input:

– Rakuten Taxonomy: The Rakuten taxonomy contains 38,167 classes: 35 with
depth 1, 405 with depth 2, 3,790 with depth 3, 15,849 with depth 4, and the
remaining classes with depth 5. Each class has exactly one parent except for
the root. Unfortunately it is not formalized in a well-known ontology language.
The intended semantics behind the parent-child relation is the same one as
owl:subclass.
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– Search and Browsing Logs: This dataset (2TB per year) contains information
about all the search queries executed by users of Rakuten Ichiba: keywords,
class being browsed, items browsed after the query, etc.

– Item Descriptions: This dataset (800GB per year) contains the HTML pages
describing each item sold in Rakuten Ichiba, together with the class in which
they belong and other metadata irrelevant for this project.

Computing Framework: Given the size of the datasets, the system relies on
distributed computing frameworks to perform computations at the level of the
full taxonomy, i.e. computations which require considering all the classes. A Hive
cluster with 1000 nodes is used to pre-process and analyze the query logs then
score the search keywords. A Spark cluster with 200 nodes is used to select the
subtrees for which the taxonomy needs to be extended. On the other hand, the
processing of the individual subtrees is independent and bounded in memory
and computational requirements for each instance. Therefore, the subtree-level
pipeline, which consists of a series of Python scripts, is run on a standard cluster
and does not require a particular computing framework to scale.

5.1 Processing Layer

Subtree Selector. This modules selects the subtrees in the Rakuten taxonomy
that will be extended. Next we give concrete definition of the different abstract
concepts listed in Sect. 4.

Need for Navigational Assistance: To measure the need for new discovery axes
of a subtree, we compute its GMS diversity, defined as exp(−∑

i pi ln pi) where
the sum is over the items in the subtree and pi is the proportion of the total
GMS of the subtree which is due to the item i. This is the exponential of the
Shannon entropy of the subtree’s item-level GMS which intuitively represents
the effective number of items in a subtree making up its GMS. A subtree is said
to have a high need for navigational assistance (NNA) if its effective number
of items is more than Z1 = 215. It is said to have a low NNA, and is therefore
discarded, if its effective number of items is less than Z2 = 27. These values for
Z1 and Z2 are based on an initial exploration of the data and the final values
will be decided by the catalog team.

Business Impact: The business impact is not used in addition to the NNA
requirement as we found in practice that subtrees not discarded by the previous
requirement have high enough business impact. Indeed, a counter-example would
necessitate a large number of items with very low and almost evenly distributed
sales volumes, which is not found in our datasets.

Semantic Homogeneity: We use search query logs to measure how semantically
homogeneous a given subtree t1 is. For each node with depth 1 in t1, we compute
the set of search keywords leading to that node (class). A keyword is said to lead
to a class if a user searching for this keyword clicked on an item of this class



282 B. Charron et al.

Fig. 5. Subtree selection and bootstrapping algorithms

immediately after the query. Then the subtree is said to be homogeneous if the
number of such keywords is larger than Z3 = 30, a value determined empirically.

In Fig. 5(A) we show the algorithm that we use to find the subtrees in the
taxonomy. For the sake of clarity we use a number of functions that we will
informally define next. Let T a tree, C a class in R, and M a model built as
explained above, and S a set of classes. Then T (i) returns the set of classes in
T with depth i; children(C, T ) returns the children of C in T ; subtree(C, T )
returns the subtree of T “hanging” from C; subtree(C, T, S) returns the subtree
T1 of T hanging from C but restricting the nodes with depth 1 in T1 to those
in S; nna(T ) returns the effective number of items in T ; hom(S) returns the
homogeneity of T .

Property-Value Seed Extraction. We extract the initial set of properties and
values (PV) from HTML tables and semi-structured text inputted by merchants
in the items descriptions as these are easy to parse, quite accurate and reflect
the domain knowledge of the merchants. There are several approaches in the
literature to extract information from HTML tables [6,10,23], here we adopt
the one used in [23] (Sect. 4.1.1) and use a slightly modified version of their
implementation. Intuitively, the property names are first extracted from the
headers of HTML tables in the item descriptions, and the associated values are
found as the adjacent keywords either in the tables or in semi-structured text.
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Model Training. The initial PV list obtained only from HTML tables and
semi-structured text can lack a number of popular values, depending on the
class. To increase the coverage of the property range we bootstrap the list using
neural models of context similarity (word2vec). This module is in charge of
training these models on the set of item descriptions within a given subtree.

We use word2vec’s CBOW model with negative sampling to find words which
appear in item descriptions within similar contexts. The item descriptions are
first stripped from non-text features such as HTML tags and URLs. Then, they
are tokenized using Mecab, a Japanese language morphological analyzer of which
only the tokenizing part is used. Two models are trained on the resulting data.
The first one is directly trained on the tokenized descriptions seen as bags of
words. The second one is trained on the tokenized descriptions after performing
collocation using popular search keywords extracted previously (by the Keyword
Ranker). Collocation is done in two steps due to the specificities of the Japanese
language. The first step is to join adjacent tokens into popular “words”. Indeed,
as the words are usually not separated by spaces or punctuation in Japanese,
the tokenizer may cut words into several tokens. The second step is to join the
resulting words into popular ngrams (up to trigrams).

After training we obtain two models trained on slightly different representa-
tions of the item descriptions. This module relies on the word2vec implementa-
tion of the library gensim.

5.2 Extension Layer

Seed Cleaning. The initial PV list extracted in the processing layer has usually
a fairly high precision but is not usable as is. The first issue is the existence of
redundant property names, meaning that the merchants use different words to
identify the same concept. Redundant property names can either be (i) different
terms, such as (manufacturer) and (maker), or (ii) the same term written in
different alphabets or combinations thereof such as and (grape variety)3. Another
issue is the existence of values that are not useful as discovery axes, such as
expiration date, model numbers or long ingredient lists. It is critical to point
out that this information might be accurate but is not deemed relevant for the
purpose of this project. This is why we do not aim to obtain a complete model
of the domain, but to extract the core fragment that is relevant to the users.

Properties Aggregation: We first remove redundant property names. For this we
develop the following score function. Let P1 and P2 be two properties in the
seed, m1 and m2 their respective range sizes and n the size of the intersection
of their ranges. Their similarity score function is defined as:

L(P1, P2) = Lconf

(
n

min(m1,m2)

)
× Lsize

(
min(m1,m2)
max(m1,m2)

)
− Lerror

(
1
n

)

3 The Japanese language has three different alphabets: Hiragana, Katakana, and
Kanji.
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where Lconf is an increasing function representing the naive confidence that two
properties are similar if they share many values respective to the maximum num-
ber of shared values, Lsize is a decreasing function which tempers that confidence
if the properties have comparable range sizes and Lerror is an increasing function,
with value 0 at 0, that increases as the number of shared values decrease, mod-
elling the uncertainty over the score computed by Lconf and Lsize. In practice
we use Lconf(x) = x, Lsize(x) = exp(−ax) and Lerror(x) = bx, with the ad-hoc
parameters a = 0.33 and b = 0.1. Two properties are considered similar if their
similarity score is larger than 0.1 and the equivalence classes for this relation
are computed. For each of these classes, we pick the representative that occurs
more often in item descriptions as final property name.

Observe that [23,26] also performs an aggregation step. Intuitively, in [23]
two properties are aggregated into a vector if they have a popular value (among
merchants) in common. Two vectors are aggregated if the cosine similarity is
above a given threshold. We empirically observed that the score function pre-
sented here can more accurately single out synonym properties since it does not
depend on a single value occurring multiple times, but on the set of shared val-
ues and on the property sizes. In [26] they use cosine similarity the aggregate
property names, again, in our experiments (using word2vec) we obtained better
results using the score function presented here. As in [23], two properties are not
aggregated if both are found to appear in the same item description during the
seed extraction.

Values Filtering: The next step is to clean the properties’ ranges by discarding
any non-popular value, measured by their frequency in the search queries logs
(obtained by the Keyword Ranker). The result of these two steps is a small
list of property-values pairs with low redundancy and high precision which is
representative of the interests of the users.

Bootstrapping. We then expand the coverage of the PV seed obtained so far.
The bootstrapping algorithm, simplified for the sake of presentation, is shown
in Fig. 5(B). We use two models, described in the previous subsection, to mit-
igate spurious high similarity between words that are not semantically similar
as caused by the text pre-processing and tokenizing errors (particularly relevant
for Japanese). Another use of the two similar models is to introduce a natural
stopping condition to the bootstrapping algorithm. For each property, we only
consider the 10 words most similar to the current range for each model then
intersect the two outputs. This overcomes the problem of setting a meaningful
threshold on similarities provided by word2vec.

The algorithm iterates over the property list, P , adding new values to the
range of each property, SPi

, until no more new values are found (newValues
reaches a fixed point). For a new keyword x to be added to the property range
SPi

two conditions must hold: (i) all the models (two in this case) must agree
that x is similar to SPi

(lines 8–9); (ii) there should not be another property
Pj such that x is more similar to SPj

than to SPi
(line 12). Observe that if x is



Extracting Semantic Information for e-Commerce 285

added to SPi
and also belongs to a less similar SPj

, then x is removed from SPj

enforcing the disjointness of values in the property ranges.
Intuitively, the function most similar finds the top n words in the vocabulary

that are most similar to the words in the range of the property P . More specif-
ically, it finds the top n vectors that maximizes the multiplicative combination
of the cosine similarities (originally proposed in [15]) between the given set of
vectors, SPi

, and the candidate vector in the model vocabulary V \ SPi
:

scoreSP

Mi
(candidate) = Πv∈SP

cos(candidate,v)

Triple Generator. This modules takes all the items titles/descriptions in a
given subtree t1, and the bootstrapped property-value list for t1. For every item
I and every property P , it first look for the values of P in the HTML tables
and semi-structured text of the description of I, if it cannot find it looks for the
values in the title of I, and finally it looks for the value in the free text in the
description of I. If two different values for P appear together in one of the three
steps above, it ignores them and moves to the next step. Once it finds a value
v, for P in I, it generates the triple (I, P, v).

Semantic Gate. The semantic gate is in charge of exposing the triples through
a SPARQL end-point, and moving the new extended ontology into OWL 2 (DL).
Recall that the existing taxonomy is not available in any well-known ontology
language. For the SPARQL end-point we use Sesame Workbench4 and Ontop5.
Ontop implements an ontology-based data access (OBDA) approach. Interested
readers can look at [5,20]. We decided to use OBDA since it is a non-invasive
way to introduce semantic standards (RDF/OWL/SPARQL) to the different
business units in Rakuten, and it still allows the different departments to access
the data through standard SQL, in which they are already proficient.

5.3 Limitations

The current implementation has two major limitations that we will work on in
the future. The first one is that it only handles words as property values. Thus,
alphanumeric values such as 100 ml or 2 kg cannot be handled at the moment,
and therefore properties such as size are discarded. Extending our approach
to handle this does not present any technical challenge but it requires time to
implement it in such a way that it is not detrimental for performance. The second
limitation of this implementation is that we only consider subtrees with a root
with depth at most 3.

4 http://rdf4j.org/sesame/2.8/docs/articles/workbench.docbook?view.
5 http://ontop.inf.unibz.it/.

http://rdf4j.org/sesame/2.8/docs/articles/workbench.docbook?view
http://ontop.inf.unibz.it/
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6 Experiments

At a high level, the system divides the taxonomy extension into the independent
extension of subtrees. As such, we will use a two-fold approach to assess the
system capabilities. First we look into the division of the taxonomy in relevant
subtrees. Second we analyze the precision and coverage of the extension of the
subtrees.

6.1 Subtree Selection

Our system selected 1,251 subtrees from the taxonomy. There is no way to
quantitatively evaluate the correctness of the subtree extraction without putting
the results in production and A/B testing to check the response of the users.
Thus we will only briefly discuss the results of this process looking at the selected
subtrees with a non-empty intersection with the subtrees hanging from either of
these two dissimilar classes: wine and small fashion items.

In both cases the selected subtrees are found to hang from classes at depth 2,
meaning that any class above that was too diverse. Our algorithm selects 4 sub-
trees containing classes related to wine. The largest subtree, denoted Tw below,
includes red wine, white wine, sparkling wine, wine sets and “other wines”. The
other wine-related classes at depth 3 (rosé wine, non-alcoholic wine, wine acces-
sories) are separated in the remaining 3 subtrees. The height of these subtrees
varies between 2 and 3, therefore containing classes of depth up to 4 or 5 in
the original tree. For classes related to small fashion items, all classes at depth 3
(neckties, belts, handkerchiefs, key cases, etc.) are separated in different subtrees.
The subtree containing neckties is denoted Tn below.

In the case of the wine-related classes, the fact that non-alcoholic wines and
wine accessories are separated from the others is consistent with the fact that
they are semantically different. However, it could be argued that rosé should
belong to the same subtree as red wine, etc. An explanation would be that
shoppers searching for rosé wine are more knowledgeable of the domain and
therefore use more specific terms in their searches, compared to more mainstream
red, white or sparkling wines. Therefore, this separation allows to provide more
specific properties to the shoppers browsing the rosé wine class. On the other
hand, the classes related to small fashion items are very semantically diverse and
would not benefit from being aggregated.

Subtree Extension. The extension of the taxonomy at the subtree-level con-
sists of first extracting core properties and values (PV), then linking these to
the items to generate triples. We evaluate these two steps separately.

Comparison to manual work: The PV extraction is currently done manually
by domain experts, which we aim to supersede with our automated approach. A
first quality criterion to compare both approaches is the recall, in this case the
ability to discover all the relevant properties for a given subtree. The catalog
team provided us with the outcome of the manual work on rice and beef, corre-
sponding respectively to subtrees Tr and Tb below, which we used to summarize
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Subtree M \ A M ∩ A A \ M

Tr 1 3 3
Tb 2 3 6

Subtree count overall max median mean min

Tr 6 0.92 1.00 0.97 0.81 0.20
Tb 9 0.86 1.00 0.88 0.83 0.50
Tw 9 0.91 1.00 0.81 0.77 0.20
Tn 8 0.88 1.00 0.85 0.70 0.00

)B()A(

Fig. 6. Results for the property-value extraction

the overlaps of the extracted properties for both approaches in the Table (A) in
Fig. 6.

The properties missed by the automated process (M\A) are: for rice, Size,
which was discarded due to the alphanumeric values; for beef they are Brand,
which was discarded due to the infrequency of the values, and Intended Use,
which did not appear in the semi-structured text and is arguably not a property
of the items. The automated process, on the other hand, found several properties
that where missed by humans (A\M). In the case of rice, Shipping fee, Country
of production and Composition. In the case of beef, Shipping fee, Ingredient,
Product Name, Processing area, Country of production and Allergens.

For the properties which were extracted by both processes (M ∩ A), the
total number of values for rice was 47 for the manual process and 102 for the
automated process, while it was respectively 18 and 43 for beef. This, combined
with the accuracy discussed below shows that the automated process increases
the coverage by a large margin.

Accuracy of PV pairs: A second quality criterion for the PV extraction is
the accuracy of the property-value pairs. Assuming naturally that the manual
extraction by domain experts has a satisfying accuracy, we independently assess
the accuracy of our automated process by manually annotating its results and
checking a business minimal requirement of 80 %. In the Table (B) in Fig. 6 we
analyze the accuracy in PV pairs extracted for the four subtrees Tw, Tn, Tr

and Tb described previously. The table shows for each subtree: the number of
properties, the overall accuracy of the pairs, and the distribution of the accuracies
by property (max, median, mean, min). Observe that the overall accuracy is
above 80 % in each subtree and the median property accuracies are also high. The
properties with minimal accuracies in Tr, Tb, and Tw are properties with small
initial ranges which were erroneously extended in the bootstrapping process. In
Tn there is an ambiguous property that we could not evaluate its correctness
and therefore assumed that all its values were wrong.

Analysis of triples: The triples are evaluated by annotating 50 randomly
drawn triples for each subtree. Each triple was annotated with one of the three
following labels: (i) “Correct” if the property and value are correct for the item;
(ii) “Wrong pair” if the property and value would be incorrect for any item in
the subtree; (iii) “Wrong linking” if the property and value would be correct for
some other items in the subtree but not for the current item. We summarize the
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proportions of these labels in the Table (A) in Fig. 7. As we can see, the accuracy
is not consistently above our target of 80 %.

However, in the context of the business implementation of this work, a manual
step will ultimately be added to identify the incorrect pairs in the PV extraction
step (which is a limited amount of work, due to the moderate number of pairs),
so that the final accuracy of the triples would be above 80 %.

Subtree correct wrong pair wrong linking

Tr 0.74 0.08 0.18
Tb 0.68 0.16 0.16
Tw 0.86 0.12 0.02
Tn 0.78 0.10 0.12

Property #values eff. #values coverage

Place of Origin 60 26.4 0.75
Country of Origin 15 2.3 0.24
Rice Variety 35 9.6 0.79
Composition 5 3.4 0.65
Category 7 3.9 0.57
Shipping Fee 4 2.5 0.53

)B()A(

Fig. 7. Results for the triples generation

We then compute the coverage for each property as the proportion of the
items in the subtree with a triple containing this property. Another interest-
ing measure is the effective number of values for a property. It is computed
as exp(−∑

v pv ln pv) where the sum is over the values of the property (plus
a catch-all “Unknown” value) and pv is the proportion of the items linked to
this property and the value v (for the “Unknown” value it is the proportion of
items not covered by the property). In Fig. 7(B) we show these measures for rice
(Tr) as well as the number of value per property. The coverage is found to be
substantial with several properties over 50 %. Note how the property Country
of Origin has 15 values but only an effective number of values of 2.3 as most of
rice sold in Rakuten Ichiba is from Japan; the effective values being Japan and
“Unknown” as most merchants do not feel the need to mention Japan, which is
reflected in the low coverage of the property.

7 Conclusion

In this work we propose an end-to-end unsupervised approach that automatizes
the process of extracting semantic information from text to: (i) extend the rele-
vant fragments of a taxonomy with data properties deemed helpful to the user;
and (ii) tag the items with this new information by generating the correspond-
ing triples. We presented a novel technique to select relevant subtrees in the
taxonomy in terms of overall profitability, ease of product discovery and simi-
larity of users’ shopping behavior, as well as a number of techniques to clean
the text sources, aggregate equivalent properties and extend the range of the
properties through text mining of semantic similarity. The approach presented
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here can be easily ported to other scenarios beyond Rakuten Ichiba since it is
language/data/technology independent. We provided a number of experiments
showing the effectiveness of our approach in terms of precision and coverage.

In the future we plan to work on extracting object properties and axioms,
lift the limitations discussed in Sect. 5, extract information from images, and
trying to make publicly available an SPARQL endpoint with information about
Rakuten Ichiba products.
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