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Abstract. In this work, we present an adaptation of the sequence-to-
sequence model for structured vision tasks. In this model, the output
variables for a given input are predicted sequentially using neural net-
works. The prediction for each output variable depends not only on the
input but also on the previously predicted output variables. The model
is applied to spatial localization tasks and uses convolutional neural net-
works (CNNs) for processing input images and a multi-scale deconvo-
lutional architecture for making spatial predictions at each step. We
explore the impact of weight sharing with a recurrent connection matrix
between consecutive predictions, and compare it to a formulation where
these weights are not tied. Untied weights are particularly suited for
problems with a fixed sized structure, where different classes of output
are predicted at different steps. We show that chain models achieve top
performing results on human pose estimation from images and videos.
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1 Introduction

Structured prediction methods have long been used for various vision tasks,
such as segmentation, object detection and human pose estimation, to deal with
complicated constraints and relationships between the different output variables
predicted from an input image. For example, in human pose estimation the loca-
tion of one body part is constrained by the locations of most of the other body
parts. Conditional Random Fields, Latent Structural Support Vector Machines
and related methods are popular examples of structured output prediction mod-
els that model dependencies among output variables.

A major drawback of such models is the need to hand-design the structure of
the model in order to capture important problem-specific dependencies amongst
the different output variables and at the same time allow for tractable inference.
For the sake of efficiency, a specific form of conditional independence amongst
output variables is often assumed. For example, in human pose estimation, a
predefined kinematic body model is often used to assume that each body part
is independent of all the others except for the ones it is attached to.
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Fig. 1. A description of our model for the task of body pose estimation compared to
pure feed forward nets. Left: Feed forward networks make independent predictions for
all body parts simultaneously and fail to capture contextual cues for accurate predic-
tions. Right: Body parts are predicted sequentially, given an image and all previously
predicted parts. Here, we show the chain model for the prediction of Right Wrist, where
predictions of all other joints in the sequence are used along with the image.

To alleviate some of the above modeling simplifications, structured prediction
problems have been solved with sequential decision making, where all earlier
predictions influence later predictions. The SEARN algorithm [1] introduced a
very general formulation for this approach, and demonstrated its application to
various natural language processing tasks using losses from binary classifiers.
A related model recently introduced, the sequence-to-sequence model, has been
applied to various sequence mapping tasks, such as machine translation, speech
recognition and image caption generation [2–4]. In all these models the output
is a sentence - where the words of the sentence are predicted in a first to last
order. This model maximizes the log probability for output sequence conditioned
on the input, by decomposing the probability of an output sequence with the
multiplicative chain rule of probability; at each index of the output, the next
prediction is made conditioned on all previous outputs and the input. A recurrent
neural network is used at every step of the output and this allows parameter
sharing across all the output steps.

In this paper we borrow ideas from the above sequence-to-sequence model
and propose to extend it to more general structured outputs encountered in
computer vision – human pose estimation from a single image and video. The
contributions of this work are as follows:

– A chain model for structured outputs, such as human pose estimation. The
body part locations are predicted sequentially, where the prediction of each
body part is dependent on all previously predicted body parts (See Fig. 1).
The model is formulated using a neural network in which the feature extrac-
tion and prediction models are learned end-to-end. Since we apply the model
to spatial labelling tasks we use convolutional neural networks in both the
inputs and outputs. The output convolutional neural networks is a multi-scale
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deconvolution that we call deception because of its relationship to deconvolu-
tion [5,6] and inception models [7].

– We demonstrate two formulations of the chain model - one without weight
sharing between different predictors (poses in images) to allow semantic-
specific flow of information and the other with weight sharing to enforce
recurrence in time (poses in videos). The latter model is a RNN similar to
the sequence-to-sequence model.

The above model achieves top performing results on the MPII human pose
dataset – 86.1 % PCKh. We achieve state-of-the art performance for pose esti-
mation on the PennAction video dataset – 91.8 % PCK.

2 Related Work

Structured output prediction as sequence prediction. The use of sequential models
for structured predictions is not new. The SEARN algorithm [1] laid down a
broad framework for such models in which a sequence of actions is generated by
conditioning the next action on previous actions and the data. The optimization
method proposed in SEARN is based on iterative improvement over policies
using reinforcement learning.

A similar class of models are the more recent sequence-to-sequence mod-
els [2,8] that map an input sequence to an output sequence of fixed vocabulary.
The models produce output variables, one at a time, conditioned on inputs and
previous output variables. A next-step loss function is computed at each step,
using a recurrent neural network. Sequence-to-sequence models have been shown
to be very effective at a variety of language tasks including machine transla-
tion [2], speech recognition [3], image captioning [4] and parsing [9]. In this
paper we use the same idea of chaining predictions for structured prediction on
two vision problems - human pose estimation in individual frames and in video
sequences. However, as exemplified in the pose estimation case, since we have a
fixed output structure we are not limited to using recurrent models.

In the pose prediction problem, we used a fixed ordering of joints, that is
motivated by the kinematics of the human body. Prior work in sequential mod-
elling has explored the idea of choosing the best ordering for a task [10–12]. For
example, Vinyals et al. [10] explored this question and found that for some prob-
lems, such as geometric problems, choosing an intuitive ordering of the outputs
results in slightly better performance. However for simpler problems most order-
ings were able to perform equally well. For our problem, the number of joints
being predicted is small, and tree based ordering of joints from head to torso to
the extremities seems to be the intuitively correct ordering.

Human pose estimation. Human pose estimation has been one of the major
playgrounds for structured prediction models in computer vision. Historically,
most of the research has focused on graphical models, starting with tree-based
decompositions [13–16] motivated by kinematic models of the human body.
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Fig. 2. A visualization of our chain model. Left: single image case. Right: video case.
In both cases, an image is encoded with a CNN (CNNx). At each step, the previous
output variables are combined with the hidden state, through the sequential modules.
A CNN decoder (CNNy) makes predictions each step, t. There are two differences
between the two cases: (i) for video CNNx receives at each step a frame as an input,
while for single image there is no such input; (ii) for video CNNy share parameters
across steps, while for single image the parameters are untied.

Many of these models assume conditional independence of a body part from
all other parts except the parent part as defined by the kinematic body model
(see pictorial structure model [13]). This simplification comes at a performance
cost and has been addressed in various ways: mixture model of parts [17]; mix-
tures of full body models [18]; higher-order spatial relationships [19]; image
dependent pictorial structures [20–23]. Like these above approaches, we assume
an order among the body parts. However, this ordering is used only to decompose
the joint probability of the output joints into a particular ordering of variables in
the chain rule of probability, and not to make assumptions about the structure
of the probability distribution. Because no simplifying assumptions are made
about the joint distribution of the output variables it leads to a more expressive
model, as exemplified in the experimental section. The model is only constrained
by the ability of neural networks to model the conditional probability distribu-
tions that arise from the particular ordering of the variables chosen. In addition,
the correlations among parts are learned through a set of non-linear operations
instead of imposing binary term constraints on hand-designed image features
(e.g. RGB values, location) as done in CRFs.

It is worth noting that there have been models for pose estimation where
parts are sequentially refined [24–27]. In these models an initial prediction is
made of all the parts; in subsequent steps, all part predictions are refined based
on the image and earlier part predictions. However, note that the predictions
are initially independent of each other.
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3 Chain Models for Structured Tasks

Chain models exploit the structure of the tasks they are designed to tackle by
sequentially predicting their outputs. To capture this structure each output pre-
diction is conditioned on all outputs predicted already. This philosophy has been
exploited in language processing where sentences, expressed as word sequences,
need to be predicted [2,8] from inputs. In recent automatic image captioning
work [4,28], for example, a sentence Y is generated from an image X by maxi-
mizing the likelihood P (Y |X). The chain rule is applied, consecutively to model
each output Yt (here a word) given the image X and all the previous outputs
Y<t in the output sequence.

In computer vision, recognition problems, such as segmentation, detection
and pose estimation, demonstrate rich structure with complex dependencies. In
this work, we model this structure with a simple and efficient recognition machine
that makes little to no assumptions about the structure, other than the ability
of a neural network to model complex, incremental conditional distributions.

Mathematically, let Y = {Yt}T−1
t=0 be the T objects to be detected. For exam-

ple, for the pose prediction problem, Yt is the location of the t-th body part. In
video prediction problems, Yt is the location of an object in the t-th frame of a
video. Using the chain rule we decompose P (Y = y |X) as follows:

P (Y = y |X) = P (Y0 = y0 |X)
T−1∏

t=1

P (Yt = yt |X, y0, ..., yt−1) (1)

From the above equation, we see that the likelihood of assigning value yt
to the t-th variable is given by P (Yt = yt |X, y0, ..., yt−1), and depends on both
the input X as well as the assignment of previous variables. In this work, we
model the likelihood P (Yt = yt |X, y0, ..., yt−1) with a convolutional neural net-
work (CNN). The direct dependence of the current prediction on the ground
truth values of previous variables allows for the model to capture all necessary
relationships without making any assumption about the joint distributions of all
the variables, other than assuming that each successive conditional distribution,
P (Yt = yt |X, y0, ..., yt−1), can be computed with a neural network.

3.1 Chain Models for Single Images

In the case of single images, the input X is the image while the t-th variable Yt

can be, for example, the location of the t-th object in image X (see Fig. 2).
The probability of each step in the decomposition of Eq. (1) is defined through

a hidden state ht at step t, which carries information about the input as well as
states at previous steps. In addition it incorporates the values y<t from previous
steps. The final probability for variable Yt is computed from the hidden state:

ht = σ(wh
t ∗ ht−1 +

t−1∑

i=0

wy
i,t ∗ e(yi)) (2)

P (Yt = yt |X, y0, ..., yt−1) = Softmax(mt(ht)) (3)
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In the above equation, the previous variables are first transformed through a
full neural net e(·). Parameters wh

t and wy
i,t then linearly transform the previous

hidden state and a function of previous output variables, e(·), and a non-linearity
σ is then applied to each dimension of this output. The nonlinearity σ of choice
is a Rectified Linear Unit. Finally, ∗ denotes multiplication. In image applica-
tions, however, the hidden state h can be a feature map and the prediction y
a location in the image. In such cases, ∗ denotes convolution and e is a CNN.
Note that, as long as we feed in just the last variable yt−1 in this equation,
the recurrent equation insures that we condition on the entire history of joints.
However feeding in more of the previous joints makes it easier for the model to
learn the conditional distributions directly. In the computation of the conditional
probability of yt from ht we use another neural net mt, which produces scores
for potential object location. By applying a softmax function over these scores
we convert them to a probability distribution over locations.

The initial state h0 is computed based solely on the input X: h0 = CNN(X).
This formulation is reminiscent of recurrent networks (RNNs), the equations

define how to transform a state from one step to the next. We differ, however,
from RNNs in one important aspect, the parameters in Eqs. (2–3) are not neces-
sarily tied. Indeed, parameters wh

t and wy
i,t are indexed by the step. This design

choice is appropriate for tasks such as human pose estimation where the number
of outputs T is fixed and where each step is different from the rest. In other
applications, e.g. video, we tie these parameters: wh

t = wh
0 and wy

i,t = wy
i,0, ∀i, t.

3.2 Chain Models for Videos

For videos, the input is a sequence of images X = {Xt}T−1
t=0 (Fig. 2). Predictions

are made at each step, as the images are fed in. At each step t, we make predic-
tions for the image Xt at that step, using the past images, and the past output
variables. Thus, we modify the equation for the hidden state as follows:

ht = σ(wh
t ∗ ht−1 + CNN(Xt) +

t−1∑

i=t−TH

wy
t−i,t ∗ e(yi)) (4)

where we add features extracted from image Xt using a CNN. The final proba-
bility is computed as in Eq. (3).

In videos we often need to predict the same type of information at each step,
e.g. location of all body joints of the person in the current frame. As such, the
predictors can have the same weights. Thus, we tie the parameters wh

t , wy
i,t, and

mt together, which results in a convolutional RNN.
As before, the connections from hidden state at the previous step guarantees

that the prediction at each time step uses output variables from all previous
steps, as long as the previous output variable Yt−1 is fed in at time t. However,
feeding in a larger time horizon TH leads to an easier learning problem.
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3.3 Improved Learning with Scheduled Sampling

So far, we have described the method as using the input and only ground truth
values of the previous output variables when making a prediction for the next
output variable. However, it has previously been observed that for sequence-to-
sequence models overfitting can be mitigated by probabilistically substituting
ground truth values of previous output variables with samples from the proba-
bility distribution predicted by the model [29]. One challenge that arises in this
is that, at the start of the training, the predicted probability distributions are
wildly inaccurate and thus, feeding in samples from the distribution is counter-
productive. The authors of [29] propose a method, called scheduled sampling,
that uses an annealing schedule that feeds in only the ground truth outputs at
the start of the training and increases the rate of sampling from the predic-
tions of the model towards the end of the training. We use the idea of scheduled
sampling in our paper and find that it leads to improved results.

4 Experimental Evaluation

To evaluate the proposed model, we apply it on human pose estimation, which
is challenging and of great interest due to the complex relationship among body
parts. In the single image case, we use the chain model to capture the structure
of pose in space, i.e. how the location of a part influences others. For the videos,
our model captures the constraints and dynamics of the body pose in time.

Tasks and Datasets. For our single image experiments we use the MPII
Human Pose dataset [30], which consists of about 40 K instances of people per-
forming various actions. All frames come with a maximum of 16 annotated joints
(e.g. Top Head, Right Ankle, Left Knee, etc.). For the task of pose estimation in
video we use the Penn Action dataset [31], which consists of 2326 video sequences
of people performing various sports. All frames come with a maximum of 13
annotated joints. During evaluation, if a joint prediction lies within a predefined
distance, proportional to the size of the person, from the ground truth location
it is counted as a correct detection. This metric is called PCK [30,32].

Our model is illustrated in Fig. 2. We experiment with two choices for CNNx,
the network which encodes the input image. First, a shallow CNN which consists
of six layers each followed by a rectified linear unit [33] and Batch Normaliza-
tion [34]. The first four layers include max pooling with stride 2, leading to an
effective stride of 16. This network is described in Fig. 3. Second, we experiment
with a deeper network of identical architecture to inception-v3 [35]. We discard
the last convolutional layer of inception-v3 and connect the output to CNNy.

The CNNy network decodes the hidden state to a heatmap over possible
locations of a single body part. This heatmap is converted to a probability
distribution over locations using a softmax. The network consists of two tow-
ers of deconvolutional layers each of which increases the width and height of
the feature maps by a factor of 2. Note that the deconvolutional towers are
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multi-scale - in one layer, different filter sizes are used and combined together.
This is similar to the inception model [7], with the difference that here it is
applied with the deconvolution operation, and hence we call it deception.

4.1 Pose Estimation from a Single Image

In this application case, we use the chain model to predict the joints sequentially.
The sequence with which the joints are processed is fixed and is motivated by the
marginal distributions of the joints. In particular, we sort the joints in descending
order according to the detection rates of an unchained feed forward net. This
allows for the easy cases to be processed first (e.g. Torso, Head) while the harder
cases (e.g. Wrist, Ankle) are processed last, and as a result use the contextual
information from the joints predicted before them.

Inference. At test time, we use beam search to infer the optimal location of the
joints. Note that exact inference is infeasible, due to the size of the search space
(a total of (HW )T possible solutions, where H × W is the size of the prediction
heatmap and T are the number of joints). At each step t, the best B predictions
are stored, where each prediction is the sequence of the first t joints. The quality
of a full body pose prediction is measured by its log-probability, which is the
sum of the log-probabilities corresponding to the individual joint predictions.

An exact implementation of chain rule conditions on predictions made at
every step. Alternatively, one could skip the non-differentiable sampling opera-
tion and use the probability distributions directly. Even though this is not an
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Fig. 3. Description of the components of our network, CNNx and CNNy. Each box
represents a convolutional or deconvolutional layer, where w×h× f denotes the width
w, the height h of the filters and f denotes the number of filters. In each layer the filter
is applied with stride 1 if not noted otherwise. Finally, in each layer after the filtering
operation a ReLU and batch normalization are applied.
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exact application of the chain rule, it allows for the gradients to flow back to
the output of each task. We found that this approximation led to very similar
performance - it slowed down training time by a factor of 3 and sped up inference
by a factor of B.

Learning Details. We use an SGD solver with momentum to learn the model
parameters by optimizing the loss. The loss for one image X is defined as the
sum of losses for individual joints. The loss for the k-th joint is the cross entropy
between the predicted probability Pk over locations of the joint and the ground-
truth probability P gt

k . The former is defined based on the heatmap hk output by
CNNy for the k-th joint: Pk(x, y) = ehk(x,y)

∑
(x′,y′) e

hk(x′,y′) . The latter is defined based

on a distance r – all locations within radius r of the ground-truth joint location
are assigned same nonzero probability P gt

k (x, y) = 1/N , all other locations are
assigned probability 0. N is a normalizer guaranteeing P gt

k is a probability.

Table 1. PCKh performance on the MPII validation set. Rows 1 and 2 show results
for 9-layered CNN models, with multi-scale (deception) and single scale deconvolu-
tions. Row 3 show results for a 24-layer model with deception, but without chained
outputs. Row 4 shows results for our chain model with comparable depth and number
of parameters as the 24-layer model, but with chained predictions. We observe clear
improvement over the baselines. The performance is further improved using multiple
crops of the input at test time, at row 5. Row 6 shows the performance of the oracle,
where the correct values of previous output is fed into the network at each step. Row 7
and 8 show the performance for a base and chain model when inception-v3, pre trained
on ImageNet, is used as the encoder network. Using a deeper architecture leads to
substantially improved results across all joints.

PCKh (%) Torso Head Shldr Elbow Wrist Hip Knee Ankle Mean

Base Network 86.8 91.9 85.8 74.5 69.0 71.1 61.4 50.6 73.9

Base Net. w/single
deconv.

86.0 91.7 85.1 72.9 68.0 69.4 59.7 48.5 72.6

Very Deep Base
Network

88.1 92.0 86.1 74.1 67.7 73.7 64.7 58.0 75.6

Chain Model 86.8 93.2 88.3 79.4 74.6 77.8 71.4 65.2 79.6

Chain Model
w/multi-crop

88.7 94.4 90.0 82.6 78.6 80.2 74.8 68.4 82.2

Oracle Chain Model 87.2 95.9 93.4 83.3 82.3 95.2 77.6 72.3 85.9

Inception Base
Network

91.1 95.0 90.2 81.0 77.4 77.2 73.7 64.6 81.3

Inception Chain
Model

91.7 95.7 92.2 85.3 82.2 82.9 80.0 72.4 85.3
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The final loss for X reads as follows:

L({hk}T−1
k=0 ) =

T−1∑

k=0

∑

(x,y)

P gt
k (x, y) log Pk(x, y) (5)

We use batch size of 16; initial learning rate of 0.003 that was decayed every
100 K steps (50 K for the inception model); radius of r = 0.01× (W +H)/2. The
model was trained for 120 K iterations (55 K for the inception model). Our images
are rescaled to 224 × 224 (299 × 299 for the inception model). The weights of
the network are initialized by sampling from a normal distribution of zero mean
and 0.01 standard deviation. For the inception model, we initialize the weights
of CNNx with weights from an ImageNet model.

Results. Table 1 shows the PCKh performance on the MPII validation set of
our chain model and our baseline variants.

Rows 1, 2 & 3 show the performance of pure feed forward networks for the
task in question. The 1st row shows the performance of a 9-layer network, shallow
CNNx + CNNy, which we call base network. The 2nd row is a similar network,
where each deconvolutional tower, which we call deception, in CNNy is replaced
by a single deconvolution. The difference in performance shows that multi-scale
deconvolutions lead to a better and very competitive baseline. Finally, the 3rd
row shows the performance of a very deep network consisting of 24 layers. This
network has the same number of parameters and the same depth as our chain
model and serves as the baseline which we improve upon using the chain model.

Row 4 shows the performance of our chain model. This model improves sig-
nificantly over all the baselines. The biggest gains are observed for Wrists and
Ankles, which is a clear indication that conditioning on the predictions of previ-
ous joints provides cues for better localization.

Row 5 shows the performance of the chain model with multi-crop evaluation,
where at test time we average the predictions from flipping and jittering of the
input image.

Row 6 shows the performance of an oracle chain model. For this model, at
each step t we use the oracle (ground truth) locations of all previous joints. This
model is an estimate of the upper bound performance of our chain model, as
it predicts the location of a joint given perfect knowledge of the location of all
other joints which precede it in the sequence.

Row 7 shows the performance of the inception base network, CNNx + CNNy,
where CNNx is the inception-v3 [35]. We observe significant gains when using
the inception-v3 architecture compared to a shallower 6-layer network for the
encoder network, at the expense of more computations.

Row 8 shows the performance of the inception chain model. For both the
inception base and chain model we use multi-crop evaluation. In both cases, the
inception-v3 parameters were initialized with weights from an ImageNet model.
The inception chain model leads to significant gains compared to its base network
(row 7). The improvements are more evident for the joints of Wrist, Knee, Ankle.
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Fig. 4. Error analysis of the predictions made by the base network (blue), the very
deep model (red) and our chain model (green), for Wrist and Ankle. Each figure shows
the error rates, categorized in three classes, localization error, confusion with other
joints and confusion with the background. (Color figure online)

Error Analysis. Digging deeper into the models, we perform an error analysis
for the base network CNNx + CNNy, the very deep network and our chain
model. For this analysis, the 6-layer encoder network CNNx is used for all models.
Similar to [36], we categorize the erroneous predictions into the three distinct
classes: (a) localization error, i.e. the prediction is within [α, β] × HeadSize of
the true location, (b) confusion with other joints, i.e. the prediction is within
α×HeadSize of a different joint, and (c) confusion with the background, i.e. the
prediction lies somewhere else in the image. According to PCKh, a prediction is
correct if it falls within 0.3 × HeadSize. We set β = 0.5.

Figure 4 shows the error analysis for the hardest joints, namely Wrist and
Ankle. Each plot consists of three sets of bars, the rates for error localization,
confusion with other joints and confusion with background. According to the
plots, the chain model reduces the misses due to confusion with other joints
and the background. For Wrists, the confusion with other joints is the dominat-
ing error mode, and further analysis shows that the main source of confusion
comes mainly from the opposite wrist and then the nearby joints. For Ankles, the
biggest error mode comes from confusion with the background, which is not sur-
prising since lower legs are usually heavily occluded and lack strong appearance
cues.

Figure 5 shows some examples of our predictions on the MPII dataset.

Fig. 5. Examples of predictions by our chain model on the MPII dataset.
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Table 2. Performance on the MPII test set. A comparison of our chain model, with a
shallow 6 layer and an inception-v3 encoder, with leading approaches in the field.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total

Carreira et al. [26] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3

Tompson et al. [38] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0

Hu and Ramanan [39] 95.0 91.6 83.0 76.6 81.9 74.5 69.5 82.4

Pishchulin et al. [40] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4

Lifshitz et al. [41] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0

Wei et al. [27] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5

Newell et al. [37] 97.6 95.4 90.0 85.2 88.7 85.0 80.6 89.4

Chain model 93.8 91.8 84.2 79.4 84.4 77.9 70.7 84.1

Inception Chain Model 97.9 93.2 86.7 82.1 85.2 81.5 74.0 86.1

Comparison to Other Approaches. We evaluate our approach on the MPII
test set and compare to other methods on the task of pose estimation from
a single image. Table 2 shows the results of our approach and other leading
methods in the field. We show the performance of both versions of our chain
model, using a shallow 6-layer encoder as well as the inception-v3 architecture.
For the shallow chain model, we ensemble two chain models trained at different
input scales. For the inception chain model, no ensembling was performed.

The leading approaches by Wei et al. [27] and Newell et al. [37] rely on
iteratively refining predictions. In particular, predictions are made initially for
all joints independently. These predictions, which are quite poor (see [27]), are
fed subsequently into a network for further refinement. Our approach produces
only one set of predictions via a single chain model and does not refine them
further. One could combine the two ideas, the one of chained predictions and
the one of iterative refinement, to achieve better results.

4.2 Pose Estimation from Videos

Our chain models in time are described in Eq. 4 and illustrated in Fig. 2. Here, the
task is to localize body parts in time across video frames. The output variables
from the joints of the previous frames are used as inputs to make a prediction
for the joints in the current frame. We apply the chaining in two different ways
- first, only in time, where each joint is predicted independently of the other
joints (as in our baseline models), but chaining is done in time, and second, with
chaining both in time and in joints.

Pose Estimation in Time. As shown in Fig. 2, the chain model sequentially
processes the video frames. The predictions at the previous time steps are used
through a recurrent module in order to make a prediction at the current time
step. Again, we use a heatmap to encode the location of a part in the frame.
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Table 3. PCK performance on the Penn Action test set. We show the performance
of our chain model for two choices of the time horizon TH and compare against the
per-frame model, with and without temporal smoothing, and a baseline convolutional
RNN model. The chain model with TH = 3 improves the localization accuracy across
all joints. The method by Nie et al. [42] is shown for comparison.

PCK (%) Head Shldr Elbow Wrist Hip Knee Ankle Mean

Nie et al. [42] 64.2 55.4 33.8 24.4 56.4 54.1 48.0 48.0

Base Network 94.1 90.3 84.2 83.5 88.7 87.2 87.7 87.5

Base Network
w/smoothing

93.1 91.8 85.7 78.8 90.2 91.9 91.1 88.6

RNN 95.3 92.5 87.9 87.5 91.1 89.8 90.1 90.1

Chain Model, TH = 1 95.8 93.2 88.9 89.6 91.3 89.8 91.2 91.0

Chain Model, TH = 3 95.8 94.1 90.0 90.2 91.3 90.6 91.8 91.7

Chain Model in time &
joints, TH = 3

95.6 93.8 90.4 90.7 91.8 90.8 91.5 91.8

The details of our learning procedure are identical to the ones described for
the single image case. The only difference is that each training example is now a
sequence of images X = {Xt}T−1

t=0 each of which has a ground-truth pose. Thus,
the loss for X is the sum over the losses for each frame. Each frame loss is defined
as in the case of single image (see Eq. (5)).

We train our model for 120 K iterations using SGD with momentum of 0.9,
a batch size of 6 and a learning rate of 0.003 with step decay 100 K. Images are
rescaled to 256 × 256. A relative radius of r = 0.03 is used for the loss. The
weights are initialized randomly from a normal distribution with zero mean and
standard deviation of 0.01.

Table 3 shows the performance on the Penn Action test set. For consistency
with previous work on the dataset [42], a prediction is considered correct if it
lies within 0.2 × max(sh, sw), where sh, sw is the height and width, respectively,
of the instance in question. We refer to this metric as PCK. (Note that this is
a weaker criterion than the one used on the MPII dataset). We show the per
frame performance, as produced by a base network CNNx + CNNy trained to
predict the location of the joints at each frame. We also provide results after
applying temporal smoothing to the predictions via the Viterbi algorithm where
the transition function is the Euclidean distance of the same joints in two neigh-
boring frames. Additionally, we show the performance of a convolutional RNN
with wy

i,t = 0, ∀i, t in Eq. 4. This model corresponds to a standard convolutional
RNN where the output variables of the previous time steps are not connected to
the hidden state. All networks have roughly the same numbers of parameters,
to ensure a fair comparison. For our chain model in time, we show results for
two choices of time horizon TH . Namely, TH = 1, where predictions of only the
previous time step are being considered and TH = 3, where predictions of the
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Fig. 6. Examples of predictions on the Penn Action dataset. Predictions by the per
frame model (top) and by the chain model (bottom) are shown in each example block.

past 3 frames are considered at each time step. Finally, we show the performance
of a chain model in time and in joints, with a time horizon of TH = 3.

We compare to previous work on the Penn Action dataset [42]. This
model uses action specific pose models, with shallow hand-crafted features, and
improves upon Yang and Ramanan [32].

We observe a gain in performance compared to the per frame CNN as well as
the RNN across all joints. Interestingly, chain models show bigger improvement
for arms compared to legs. This is due to the fact that the people in the videos
play sports which involve big arm movements, while the legs are mostly un-
occluded and less kinematic. In addition, we see that TH = 3 leads to better
performance, which is not surprising since the model makes a decision about the
location of the joints at the current time step based on observation from 3 past
frames. We did not observe additional gains for TH > 3. Chaining in time and
in joints does not improve performance even further, possibly due to the already
high accuracy achieved by the chain model in time.

Figure 6 shows examples of predictions by our chain model on the Penn
Action dataset. We also show the predictions made by the per frame detector.
We see that the chain model is able to disambiguate right-left confusions which
occur often due to the constant motion of the person while performing actions,
while the per frame detector switches very often between erroneous detections.

5 Conclusions

In this paper, motivated by sequence-to-sequence models, we show how chained
predictions can lead to a powerful tool for structured vision tasks. Chain models
allow us to sidestep any assumptions about the joint distribution of the output
variables, other than the capacity of a neural network to model conditional
distributions. We prove this point experimentally by showing top performing
results on the task of pose estimation from images and videos.
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