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Abstract. We design and demonstrate a passive physical object whose
appearance changes to give a discrete encoding of its pose. This object is
created with a microlens array that is placed on top of a black and white
pattern; when viewed from a particular viewpoint, the lenses appear
black or white depending on the part of the pattern that each microlens
projects towards that viewpoint. We analyze different design consid-
erations that impact the information gained from the appearance of
microlens array. In addition, we introduce the process through which
the discrete microlens pattern can be turned into a viewpoint and a pose
estimate. We empirically evaluate factors that impact viewpoint and pose
estimation accuracy. Finally, we compare the pose estimation accuracy
of the microlens array to other related fiducial markers.
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1 Introduction

Fiducial markers are critical to many visual, augmented reality and robotic tasks.
Most often, fiducial markers serve to create geometric constraints that relate the
known position of the marker on the object to the observed position of the
marker in the image. Multiple fiducial markers, or larger patterns with several
observable points can be combined to constraint the relative pose of an object.

These approaches that relate the fiducial marker to the image suffer from
two shortcomings. First, the geometric constraints from a set of points on a
fronto-parallel plane are known to be sensitive to noise [1–3]. Second, for any
viewpoint, patterns or sets of markers that are collinear or nearly collinear lead
to poorly conditioned estimators for the pose estimation problem [4,5].

Some recent work attacks these limitations by designing fiducial markers
whose appearance changes depending on the direction from which they are
viewed. Images of these fiducial markers directly encode constraints on the object
rotation and therefore require fewer markers and eliminate the need for non-
collinear markers for pose estimation. Marker designs include lenticular arrays
and microlens arrays that have a moire-pattern to encode the viewing angle
and go by the name “Lentimark” [6,7] and “Arraymark” [8,9]. Other work uses
lenticular arrays that change color depending on their viewing angle [10,11].
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This paper expands this line of work. We propose the integration of a
microlens array with a random black and white pattern adhered to the back.
Because these microlenses focus parallel rays onto an approximately single point
of their back-plane pattern, they will appear either black or white. Using differ-
ent patterns behind different microlens dots means that a given viewing direction
will cause some dots to be black, some to be white, and some to be in between
because the viewpoint is on the boundary of black and white regions. The major
contributions of this work are:

– the design of a microlens based fiducial marker with a random black and white
back-plane pattern,

– a discrete, combinatorial approach to geometric inference based on images
from this fiducial marker, and

– experimental evaluation of a physical instantiation of this marker design.

2 Related Work

Fiducial markers are widely used in computer vision and augmented reality. The
most common current versions are AprilTags [12] and the ARTag [13], which
are often used within augmented reality libraries such as ARtoolkit [14]. These
tags are black and white patterns that are defined for easy detection, and which
encode an index that can be used to differentiate multiple tags that are both
visible at the same time. Larger scale calibration setups include the de-facto
standard approach by Zhengyou Zhang [15]. This method requires the use of a
large black-and-white checkerboard pattern to estimate the pose of the camera
with respect to the pattern. In all cases, however, the fiducial marker is explicitly
constructed to have a similar appearance for all possible viewing angles.

Both AprilTags and ARTags require matching a pattern, so the local orien-
tation of the fiducial marker (and not just the position) is also available as a
geometric cue. The derivation of geometric constraints that take advantage of
this cue has been done for rigid body pose estimation [16], and in the context of
geo-location where the correspondence of image points to a 3D scene model is
unknown [17].

Most related to our work are approaches that explicitly make patterns
that change their appearance depending on their viewing direction. The use of
microlens arrays to both capture and render a complete lightfield was suggested
by Nobel Prize winner Gabriel Lippmann in 1908 [18], in the context Integral
Photography. Here “Integral” is used in the sense of complete, and the microlens
arrays create a light field pattern that changes as the viewer moves so as to create
the perspective effects that an array of microlenses captured on film by sampling
the light field. In the context of fiducial marker design, Agam Fiducials were sug-
gested in 2000 as drawings on corrugated paper where different orientations of
the paper are painted different colors so that the visible color gives a constraint
on the viewing direction [19]. Next, and more recently, the “Lentimark” [6,7]
and “Arraymark” [8,9] fiducial markers use lenticular arrays or microlens arrays
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that change appearance for different viewpoints. Using a moire encoding pattern,
this change in appearance is a bar or cross that translates relative to the rest
of the marker. This beautiful approach gives both human and machine inter-
pretable fiducial markers, but requires the fiducial to be imaged at relatively
high resolution in order for the relative position of the dark spot to be measured
accurately. Finally, a recent approach creates a lenticular pattern whose appar-
ent color depends on its relative orientation to the camera [10,11]. This avoids
the need for the fiducial marker to take up many pixels, but adds the challenge
of using color as a good measurement in mixed lighting environments.

Several additional works also create markers that explicitly look differently
from different orientations. The light-field probe is created with microlens arrays
that each cover a color wheel, creating a color coded lightfield that was used to
understand the shape of reflective and refractive objects [20–23]. Finally, the
BoKodes work uses a very small projector in the scene to transmit into the
scene a collection of QR-Codes [24]. For most camera settings this appears to
be a small point, but when the camera is defocused the projector image that
impinges on the camera lens is visible and the relative orientation of the BoKode
is inferred from which QR code is visible.

This work is most inspired by the BoKode work which creates a discrete
pattern that describes an orientation constraint. But because our signal is derived
from the spatial layout of microlens patterns it is not necessary to defocus the
camera and therefore the orientation encoding is available under standard use
cases of a camera.

3 Discrete Encoding of Viewpoint with a Microlens
Array

A microlens array is plastic sheet comprised of many small lenses, called lenslets,
that are arranged in a regular grid. To create visual effects with the microlens
array, the thickness of the sheet is set to be the same as the focal length of
the lenslet so that parallel rays are focused onto a point on the back of the
sheet. Parallel rays from different directions are focused onto different points.
Because light is reversible, the lenslet can also be thought of as a (dim) projector,
projecting the appearance of the pattern behind the lenslet out into the world.
A schematic of this is shown in Fig. 1.

Thus, the appearance of the microlens array is defined by the pattern that is
underneath each microlens. When that pattern is low frequency, the appearance
of each lenslet will change slowly as the array is rotated. For patterns with
higher frequency, the pattern will change more quickly, and if different lenslets
have different patterns the microlens array has an apparent random flickering as
each lenslet changes appearance independently of the others. Figure 1 shows two
example viewpoints of a microlens array with a texture of many small, randomly
placed black blocks. Because this texture is high contrast, the resulting microlens
appearance changes quickly for different rotations.
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Fig. 1. A microlens array placed on top of a pattern creates an image where each
lenslet magnifies a piece of the pattern below it. (Left) The microlens array is designed
so that parallel rays focus at a point on the back of the array, so that point is magnified.
(Left center) We show an example of a pattern with randomly placed black squares.
For different viewpoints, each lenslet will focus at a different location on the pattern
and thus produce the different sets of black and white appearances. (Right center and
Right) We show the appearances for two different viewpoints after being transformed
with a homography to make the images more easily comparable. The appearance of the
array changes dramatically, and the discrete measurement of which lenslets are dark
and light encodes its orientation.

By thresholding the appearance, one can limit a lenslet to 2 states to carry
a bit of information. Considered together for a single viewpoint, all lenslets on
the microlens array express a bit string that varies based on viewpoint. In an
ideal case, a microlens array with n independent lenslets, could encode 2n unique
bit strings, and thus 2n uniquely encoded appearances. With 12 lenslets giving
binary measurements, this could suffice to encode viewpoints in the viewsphere
up to 30 degrees from fronto-parallel to within 1 degree.

While this intuition of a discrete encoding of pose inspired us, random pat-
terns may not give optimal encodings, and there is value in a non-binary classifi-
cation of lenslet appearance. In the next section we consider practical approaches
to choosing patterns that are most useful and consider what is the best dis-
cretization of the apparent lenslet brightness. After that we will derive a pose
estimation approach and evaluate it with real images of a prototype.

4 Discretization and Entropy of Single Lenslet
Measurements

A single lenslet will share the same appearance for a set of viewpoints because
it is magnifying the black and white pattern directly beneath it. This magnified
view constrains the orientation at which the lenslet is being viewed. To model
this constraint, we consider a measurement of the intensity at the center of each
lenslet, and experimentally measure the response across a set of viewpoints to
create a response map. We explore thresholding the measured intensity at k
intervals. The response map characterizes the apparent intensity of each lenslet
when viewed from each orientation, and the state-map is the discretization of
that response map in k states. Section 5 describes our measurement setup and
Fig. 5 shows examples of the measured response map and discrete state maps.
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Fig. 2. The five lenslets whose discrete state map has the lowest (top row) and highest
(bottom row) entropy. Green represents the views where the lenslet is in state 0, while
red, state 1. The bottom lenslets are much more likely to be useful in estimating
orientation; the median entropy of 90 lenslets in an array covering random dots is 0.8.
(Color figure Online)

We characterize the value of a lenslet based on its entropy. The entropy H
for a given lenslet and its map from viewpoint to state is:

H = −
k∑

i

pi ∗ log2(pi) (1)

where pi is the frequency in the range (0, 1) of a lenslet being in state i for all
viewpoints.

A lenslet which is in all states equiprobably has maximum entropy, and it
should be easy to design a pattern to put underneath the microlens array which
has this property. However, challenges in accurate printing, aligning a pattern
to a lens array, and imperfectly manufactured microlenses that may be out of
focus led us to use a random pattern. As a side effect, this lets us explore several
questions. First, what is the entropy of a microlens array mounted on top of a
random dot pattern?

Using the prototype array and texture patten shown in Fig. 1 we calculate
the entropy of each lenslet. Figure 2 shows the binary response maps and entropy
measures for lenslets that are thresholded at a intensity of 100 (out of 255). We
show the 5 lenslets with the smallest entropy in the first row, and the 5 lenslets
with the highest entropy in the 2nd row. The median entropy for all lenslets is
about 0.8 indicating that most lenslets give substantial useful constraints.

On the left of Fig. 3, we show the distribution of entropies for all 90 lenslets
for optimal discretizations of 2, 3, 4, 5, and 6 states. On the right of Fig. 3,
we show these optimal thresholds. This shows two interesting features. First,
measurements of the microlens intensity are not binary and discrete states can
be selected to give a discrete encoding that maximizes the (per lenslet) entropy.
Second, when more than 2 discrete states are used, the thresholds often clump,
highlighting the value of noticing when a lenslet is changing between black and
white.
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Fig. 3. We experimentally measure the entropy in discrete measurements from a
microlens array covering a random pattern of small squares. Optimizing to choose
discretization thresholds over all lenslets gives a distribution of the measured entropy
that is close to the maximum entropy. On the right we show the optimized thresholds.
This motivates the use of a random pattern as having nearly as much information as
an optimal pattern.

5 Viewpoint Estimation with a Microlens Array

The state map can be used to characterize the discrete measurement for a lenslet
viewed from a given viewpoint. We parameterize the viewpoint with the two-
vector Θ which captures the direction of the camera rotated around the local x
and y axes, and we define ai to be the measured appearance of the lenslet. If a
lenslet can exist in k states, then the lenslet appearance, ai, is one of the first k
positive integers.

We empirically determine the measurement ai for each rotation Θ by imaging
the microlens array for a grid of viewpoints with a DLSR camera. The microlens
array is rotated with two programatically controlled motors which can change
the orientation of the microlens array to any rotation around the x and y axis.
We scanned over the dome of viewpoints that are (30,−30) degrees from fronto
parallel in 2 degree increments, yielding 677 images. We visualize the sampled
viewing dome and show the motor setup in Fig. 4.

Fig. 4. The left shows the set of viewpoints from which we image the lenticular array,
represented as points on a sphere. The right is a depiction of our image setup which
includes a DSLR camera viewing the microlens array on a 2-axis motorized mount.
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Fig. 5. For each lenslet, our calibration process characterizes the response as a function
of viewpoint. Each row shows a different lenslet. From the left, the figure depicts first
the raw, then the up-sampled response map. Third is the discrete state map where the
response map is thresholded into one of three categories. The last three maps show the
0–1 likelihood function of the orientation as a function of each of the three possible
discrete measurements.

For each image, four reference points on the corners of the microlens array are
tracked and a homography is used to warp the image to a common coordinate
system. Once warped, the center of each lenslet is sampled to create response
maps for each lenslet. We show the response map and the responses thresholded
into a trinary state map in Fig. 5.

We up-sample the response maps to have approximate measurements at every
0.5 degrees, using linear interpolation, then threshold to create the state map.
The experimental section explores the performance gains for different amounts
of up-sampling.

5.1 Inference

Using the microlens array, our task is to determine the 2D viewpoint orientation
of camera in the reference of the microlens array. We seek to find the most
probable viewpoint given the observed discrete appearance of all lenslets in the
array. We employ a simple approach where black and white appearances at each
lenslet vote for the most likely viewpoint.

Consider a lenslet at inference time with a state bi. For all the Θs in that
lenslet’s statemap with state ai that match bi, we give one vote. Each lenslet
will have a different statemap and will vote for a different set of Θs.

To estimate the viewpoint using the entire microlens array, we choose the Θ
with the maximum number of votes. In the case of ties, which normally happen
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for similar Θs, we take the average. The next section describes how to combine
this with measurements of the corner points of the microlens array to determine
the full pose of the microlens array.

6 Pose Estimation with Microlens Array

The pose estimation problem seeks to estimate the 3 × 3 rotation matrix, R, and
3× 1 translation vector T , needed to transform the camera reference frame into
the microlens array reference frame. As a result, R represents the direction of
the surface normal of the microlens array relative to the camera’s direction and
T is the vector from the camera to the origin of the microlens array.

We consider the pose estimation problem for images whose geometry is
defined by a pinhole camera model. Using the standard geometric framework,
we assume the origin of the camera coordinate system is centered at the pin-
hole, and the camera calibration is known and represented by a 3× 3 calibration
matrix K. According to this model, a point in the camera reference from P is
thus projected to the image location p represented in homogeneous coordinates,
via K:

p = KP (2)

Therefore, a reference point Q in the reference frame of the microlens array is
projected at the pixel location q′ on the image according to the following linear
projection:

q′ = K (RQ + T ) (3)

Because the viewpoint estimate derived in the former section is in spherical
coordinates, it only gives 2 of the 3 rotation parameters (because the appearance
of a microlens is invariant to rotation around the line from it to the camera).
Our approach is to use the θ and φ estimate of the rotation of the microlens
around the x and y axis from before. We construct the complete 3 × 3 rotation
matrix R parameterized by the unknown rotation around the z-axis ψ as:

R = Rz(ψ)Rx(φ)Rz(θ) (4)

where Rx,z(w) are the rotation matrices to rotate around the respective axes We
denote the transformation to determine R from θ,φ, and ψ as R(θ, φ, ψ).

We solve for the rotation parameter ψ and the translation vector T by using
the known pixel and local locations of the 4 reference points used to rectify
images of the microlens array and θ and φ estimated previously. Using a non-
linear optimization, we solve for these four parameters via reprojection error:

min
ψ,T

4∑

i

∥∥qi − K
(
R(θ, φ, ψ)Qi + T

)∥∥2

2
(5)

where qi is the measured pixel location of a reference point, θ and φ are
known and held constant, Qi is the location of the reference point in the local
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reference frame, and ‖.‖2 denotes the euclidean norm. After optimizing for ψ,
we can recover the full R matrix using R(θ, φ, ψ).

The estimated R and T fully capture the orientation and position of the
microlens array relative to the camera. In the next section, we explore the per-
formance of using a microlens array to estimation viewpoint and pose.

7 Experimental Design and Evaluation

We explore the performance of using microlens arrays for viewpoint and full
pose estimation. First, we explore how different design and environmental factors
affect viewpoint estimation. Second, we explore how the number of lenslet states
and the number of lenslets affect viewpoint estimation. Finally, we show pose
estimation experimental results and compare these to other recent work with
fiducial markers whose appearance depends on the viewpoint.

7.1 Experimental Setup

For the experiments evaluating viewpoint estimation, we test on 88 images ran-
domly sampled from the dome of viewpoints 30 degrees from fronto parallel.
These images are taken with the microlens array on the programmable motor-
ized stage, but with Θ values that are randomly selected, and not at the same
location as calibration images, but known so that there is ground-truth to com-
pare to. We use a microlens array with a 9× 10 regular grid of lenslets, and
unless otherwise stated, we use all constraints from all 90 lenslets for viewpoint
estimation.

In assessing the accuracy of our viewpoint estimations, we calculate the angu-
lar difference between a vector in the direction of the estimated viewpoint direc-
tion and a vector in the direction of the true viewpoint. We show summary
statistics for all 88 random views as a boxplot. Each boxplot shows the median
error in red, a box that shows the range from the 25 percentile to 75 percentile.
Red crosses depict outliers, and have values more than 2.7 σ away from the
mean, where σ is computed assuming that the data are normally distributed.

7.2 Design and Environmental Factors

We first characterize the effect of design and environmental factors on viewpoint
estimation. These factors affect estimation regardless of the number of states
the lenslets can occupy. Therefore, to simplify this first set of experimentation,
we employ binary (2-state) measurements and threshold at an intensity value of
100. This threshold reflects general observations that that “white” lenslet have
intensities above 120 and “black” lenslets had intensities below 50.

We first look at performance gains from up-sampling the response map. Sec-
ond, we explore the effect of the number of lenslets on viewpoint estimation.
Finally, we test the microlens arrays in varying lighting environments.
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Response Map Precision. We build response maps for each lenslet by sam-
pling rotations of the microlens array in 2 degree increments. How much can we
improve our rotation estimates by up-sampling these response maps? We create
increasingly more up-sampled response maps and assess their orientation esti-
mation performance. Figure 6 shows that at the initial resolution, the microlens
array constrains the orientation to a median error of 0.7 degrees. Increasing the
precision of the response maps to 0.5 degrees (upsampling and interpolating the
response maps by a factor of 4) gives a substantial improvement, and further up-
sampling the response maps has little additional benefit. We use this precision
for the rest of the paper.

Number of Lenslets. Section 3 discusses the potential of combinatorial encod-
ings of orientation, with the claim that in an ideal case 14 binary lenslets is suf-
ficient to uniquely encode 1

2 degree increments in a viewing dome of 30 degrees.
This section gives an experimental evaluation of the correlation between estima-
tion performance and number of lenslets. In this experiment, we randomly select
k number of lenslets, and then perform orientation estimation. Figure 6 shows
results using 20–90 lenslets in increments of 10 on the left, as well as a finer
grain analysis with 10–20 lenslets in increments of 1 on the right. With 20 of
the total 90 lenslets, we achieve orientation estimation accuracy with a median
error below 1 degree. With fewer lenslets, the performance degrades. With less
than 14 lenslets, the maximum error surpasses 10 degrees of error, anecdotally
we see that sometimes in these cases there are far apart viewpoints that have
very similar discrete encodings. To achieve a median viewpoint estimation error
of 0.5 degrees, about 30 randomly chosen lenslets are necessary.

Light Environments. Related work uses hue to encode orientation with lentic-
ular arrays [10], and one motivation of this work is use discrete measurements of
black and white patterns to avoid problems that arise with varying lighting envi-
ronments. We test the sensitivity of binary microlens arrays to different lighting
environments and exposure settings by exploring 3 different lighting conditions.
The first lighting environment is inside under overhead lights. This is the lighting
environment used to generate the response maps for all lenslets and is used for
all other of the experiments in this paper. The second lighting environment is
similar to the first, but with an additional, strong white directional light. The
third lighting environment has the scene lit entirely by 2 blue directional lights.
In Fig. 7, we show the estimation results of these 3 different lighting environ-
ments. The common office environment with overhead lights achieves the lowest
error with a median error of 0.3 degrees. However, even with the very extreme
lighting environment of only blue directional light, the microlens array is able
to estimation orientation with a median error of 0.6 degrees. This experiment
suggests that even extreme lighting environments have a minimal effect on the
binary encoding of orientation giving by the microlens arrays.
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Fig. 6. (Left) Orientation estimation accuracy, as a function of the angular spacing of
the response maps. The original measurements have an angular spacing of 2 degrees;
all other data is based on up-sampling and interpolating this response map. (Center
and Right) As fewer lenslet provide orientation cues, estimation accuracy goes down.

Fig. 7. Orientation estimation error as a function of lighting environment. Overhead
lights match the calibration environment, and adding a spotlight light source has mini-
mal impact. Lighting the scene with strong blue lights increases the median estimation
error by about half a degree.

7.3 Measurement Discretization and Lenslet Selection

Here we explore choices driven by the entropy in the discrete state space for
each lenslet. First we experiment with the number of discretized states using all
lenslets, and then we determine the effect of using the most informative lenslets.

Number of States. In Sect. 4, we showed that individual lenslets with more
states had a larger maximum entropy, and that by optimizing the threshold value
allows a random texture to create appearances that have entropies approaching
the maximum. In this section, we validate whether there is a corresponding
improvement in viewpoint estimation by optimizing for high entropy. From the
same response maps, we create state maps with 2,3,4,5, and 6 states. We use
the same optimal thresholds for these state maps as described in Fig. 2. We
also create a second binary statemap, but using a threshold of 100, as used
in Sect. 7.2. To differentiate between the two binary conditions, we label one
“2 opt” to indicate use of a threshold that maximizes entropy. With each choice
of our discretization we get different state maps, and we use these to estimate
the viewpoint. We report error versus the known true viewpoint.

The results of using all 90 lenslets are shown on the left in Fig. 8. In all cases,
the median error is less than 0.5 degrees. There is no discernible trend, except
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Fig. 8. The effect of the number and choice of lenslets on orientation estimation. Left,
using all 90 lenslets, the median orientation error is less then 0.5 degrees across all
discretization choices. The middle and right show the same plot at two scales. They
highlight that using the 9 lenslets with highest entropy gives plausible results, and when
using fewer lenslets it is especially important to go beyond a binary classification.

that a binary threshold at the entropy maximizing cutoff is worse than a default
threshold of 100, perhaps because 100 was hand-chosen to be as far as possible
from the appearance of completely white and completely black lenslets.

Using Minimal Lenslets. With 90 lenslets, there is a wealth of information.
In order to test the limits of a the number of lenslets, we tested the viewpoint
estimation with the same conditions of the previous section, but only using 9
lenslets. The 9 lenslets used were the lenslets with the highest entropy state
maps. The middle of Fig. 8 shows these results. With fewer lenslets, and less
information, the trend suggests that more states results in better estimates.
In addition, using an optimal threshold with 2 states shows advantages with
few lenslets. The left of Fig. 8 shows results that magnifies the y axis in order to
better analyze estimation results for state maps with more than 2 states. Having
more than 2 states results in median errors less than 1 degree. A statemap with
6 states results in the best performance, with 0.6 degrees of median error. These
empirical results corroborate that, when a limited number of lenslets can be
used, using more states results in better viewpoint estimation performance.

7.4 Pose Estimation

The unique appearance of a microlens array results in low error viewpoint esti-
mations. It is therefore useful to use microlens arrays for pose estimation as
well. In the next section, we determine the poses of a new set of images. In these
images, we place the microlens array ≈ 1 m away and rotate it around the ver-
tical axis from fronto-parallel to 30 degrees in 1 degree increments. We compare
pose estimation to the standard fiducial marker, ARToolkit. After, we use these
results to compare against other published results of a similar experiment.

Direct Comparison to ARToolkit. In Fig. 9, we show pose estimation results
of using the microlens array. As a comparison, we also include results of using
just the 4 reference points as used by ARToolkit [14] to estimate pose. In the
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left 2 plots of Fig. 9, we show the rotation estimation errors per axis using the
microlens array (leftmost) and using just 4 reference points (left-center). The
rotation error is defined as the angular difference between the unit axes using
the true and estimated rotations. The translation error is defined as the euclidean
distance between the true and estimated position. For each plot, the title shows
the median errors over all frames for the axes in x, y, z order.

For all views, the microlens array is able to determine rotations accurately.
In contrast, the standard “4 corner method” suffers from the well understood
ambiguity of points on a fronto-parallel plane [1–3]. Since the microlens array
gives orientation cues directly from the viewpoint estimation, our method does
not suffer from this ambiguity.

In the right 2 plots of Fig. 9, we show the translation estimation errors per
axis using the microlens array (right-center) and using just 4 reference points
(rightmost). For both methods, there is some systematic error in the Z-axis while
the X and Y axes have almost no error. For the ARToolkit method, the error
could be a consequence of error in the rotation estimation. The images were
taken at a long focal length (≈300 mm), so the systematic errors may also be a
consequence of errors in calibrating the K matrix.

Indirect Comparison Against Related Work. In the final experiment, we
share a comparison of our rotation estimation results from above with the results
reported in work that uses “Chromo-coded Markers” [10], the “Lentimark” [6],
and the “Arraymark” [8]. All three papers perform a similar rotation estima-
tion experiment that rotates the object around a single axis. In addition, all
three papers also report the rotation error for the x,y, and z local axes. Table 1
summaries results reported for the “Chromo-coded Markers”, “Lentimark”, and
“Arraymark” against our experiments done above in this section. The previ-
ous works and our method have comparably low rotation errors. However, our
microlens array has slightly superior rotation estimation error for estimating the
z axes.

Fig. 9. We compare the rotation and translation estimation accuracy of our result with
the method employed by the popular ARToolkit. In contrast to most position based
fiducial markers like those used with the ARToolkit, our fiducial marker does not suffer
from the well-known ambiguities of points that lie on a plane near fronto-normal
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Table 1. The microlens array has similar or better accuracy than other work based
on fiducial markers whose appearance is viewpoint dependent.

Lentimark Chromo-coded marker Arraymark Microlens array

x 0.372 0.910 0.63 0.488

y 1.359 0.703 0.47 0.469

z 0.324 1.222 0.61 0.269

8 Conclusion

We present a novel type of fiducial marker whose appearance is designed to give
a combinatorial encoding of its orientation. This combinatorial encoding has the
advantage over previous approaches that it can take on different form factors
(including those where lenslets are disjointly spread across a plane), and it is
insensitive to variations in the color of the scene lighting. We derive an approach
to solve for the rotation of this new micro-lens based fiducial marker show that it
improves pose estimation when combined with standard location based fiducials.
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