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Abstract. Multi-label learning is a challenging problem in computer
vision field. In this paper, we propose a novel active learning app-
roach to reduce the annotation costs greatly for multi-label classification.
State-of-the-art active learning methods either annotate all the relevant
samples without diagnosing discriminative information in the labels or
annotate only limited discriminative samples manually, that has weak
immunity for the outlier labels. To overcome these problems, we propose
a multi-label active learning method based on Maximum Correntropy
Criterion (MCC) by merging uncertainty and representativeness. We use
the the labels of labeled data and the prediction labels of unknown data
to enhance the uncertainty and representativeness measurement by merg-
ing strategy, and use the MCC to alleviate the influence of outlier labels
for discriminative labeling. Experiments on several challenging bench-
mark multi-label datasets show the superior performance of our proposed
method to the state-of-the-art methods.

Keywords: Multi-label learning · Active learning · Correntropy ·
Robust

1 Introduction

Active learning has been widely used in computer visions to address the samples
imbalance problem that the available labeled data is much less than the unlabeled
data [18,35]. It is an iterative loop to find the most valuable samples for the oracle
to label, and gradually improves the model generalization ability until the conver-
gence condition is satisfied [39]. There are two motivations behind the design of
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a practical active learning algorithm, namely, uncertainty and representativeness
[8,15]. Uncertainty is to improve the models’ generalization ability and represen-
tativeness is to prevent the bias of the models.

Among all the active learning based tasks, multi-label classification, which
aims to assign each object with multiple labels, may be the most difficult and
costly one [10,17,42]. In current research, active learning for multi-label learning
has become even more important, reducing the costs of the various multi-label
tasks [6,7,38,41]. State-of-the-art multi-label active learning can be classified
into three categories based on the query function used to select the valuable
samples. The first category relies on the labeled data to design a query func-
tion with uncertainty [25,28]. In such methods, the design of the query function
ignores the latent structural information in the large-scale unlabeled data, lead-
ing to a serious sample bias and an undesirable performance. To eliminate this
problem, the second category, which depends on the representativeness, has been
developed [26]. In these approaches, the structural information of the unlabeled
data is elaborately considered, but the discriminative (uncertain) information
is discarded. Therefore, a large number of samples would be required before an
optimal boundary is found. Since utilizing either the uncertainty criterion or the
representativeness criterion may not achieve a desirable performance, the third
category which combines both criteria borns naturally and it can effectively
solve these problems [8,15]. However, the approaches in the third category are
either heuristic in designing the specific query criterion or ad hoc in measur-
ing the uncertainty and representativeness of the samples. The uncertainty still
just relies on the limited labeled data. Most importantly, previous works ignore
the outlier labels that exist in multi-label classification when designing a query
model for active learning.

However, the outlier labels have significant influence on the measurement of
uncertainty and representativeness in multi-label learning. In the following, we
will discuss the outlier label and its negative influence on the measurement of
uncertainty and representativeness in details.

Figure 1 shows a simple example about the influence of outlier labels. As the
input, we annotate the image with three labels, namely tree, elephant and lion.
Hence, the feature of image is combined with three parts, the feature of tree,
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Fig. 1. The influence of outlier label in the learning process.
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the feature of elephant and the feature of lion. Intuitively, in the image feature,
the feature of tree is much more than elephant and lion, and the feature of lion
is the least. If we use the image with the three labels to learn a lion/ non-lion
binary classification model, the model would actually depend on the trees and
elephants features rather than the lions. Thus it would be a biased model for
classifying the lion and the non-lions. Given the test image where a lion covers
the most regions in the image, the trained model would not recognize it. If we
use such a model to measure the uncertainty in active learning, it may cause
error measurement for images with lion label. We name the lion label in the
input image as an outlier label.

The image is relevant to Lion
The image is irrelevant to Lion

Lion is less relevant than Elephant
Elephant is less relevant than Tree
Tree is less relevant than Grass

Fig. 2. The interface of two properties for outlier labels. Left: The outlier label (Lion)
is relevant to the image; right: the outlier (Lion) is much less relevant to the image
than the most relevant label (Tree) is.

Furthermore, we present the formal definition of the outlier label. Denote x,
y1 and y2 as the selected instance and two relevant labels, respectively. Define y1
as the outlier label, if it has two properties. The first one is that y1 is a relevant
label to the instance x, and the second is that y1 is much less relevant to x than
y2 is. If the trained model could determine whether y1 or y2 is the outlier label to
x, it would be very useful to build a promising model for a better query. Figure 2
shows the two properties. The definition of the outlier label is consistent with the
fact that, given an image, some labels relevance to it is apparent, which can be
recognized at first glance by the oracle, and some labels relevance is veiled, which
may need much effort for the oracle to label. The definition of outlier label is also
consistent with the query types proposed in [14]. For two multi-label images, if
they have the same labels, but the outlier label is different in their labels, this
may lead to the features of the two image have a large difference, therefore, it is
very hard to diagnose the similarity between two instances with outlier labels.
In Fig. 3, we provide a simple example to show such a problem, and we present
the similarity between the sift features with Gaussian kernel [1,22,30,32], and
the labels similarity based on MCC. Intuitively, the similarity between image 1
and image 2 should be larger than the similarity between image 2 and image 3,
since the labels in image 1 and image 2 are exactly the same. However, the result
is opposite when the similarity is measured with their sift features. This because
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Fig. 3. The influence of the outlier labels for the measurement of similarity

the outlier label is lion in image 1, tree trunk and lion are two outlier labels in
image 2, and the different outlier labels largely increase the difference between
the features of the two images. In summary, the measurement of uncertainty and
representativeness would be deteriorated with the outlier labels.

To address the above problems, in this paper, we propose the robust multi-
label active learning (RMLAL) algorithm, which effectively combines the uncer-
tainty and representativeness based on the MCC [40].

As to robustness, the correntropy has proved promising in information the-
oretic learning (ITL) and can efficiently handle the large outliers [40]. In tra-
ditional active learning algorithms, the mean square error (MSE) cannot easily
control the large errors caused by the outliers [12,19,23,27,29,36]. We therefore
replace the MSE criterion with the MCC in the proposed formulation with a
minimum margin model. In this way, the proposed method is able to eliminate
the outlier samples, making the query function more robust.

As to discriminative labeling, we use the MCC to measure the loss between
the true label and the prediction label. MCC can improve the most discrim-
inative information and suppress the little useless information or unexpected
information. Hence, with MCC in the proposed method, if the label is not an
outlier label, it will play an important role in the query model construction. Oth-
erwise, the model will decrease the influence of the outlier label to measure the
uncertainty. Then the discriminative labels effects are improved and the outlier
labels are suppressed, and the discriminative labeling can be achieved.

For representativeness, we mix the prediction labels of unlabeled data with
the MCC as the representativeness. As is shown in Fig. 3, although the samples
have the same labels, their outlier labels are different, making their features dis-
tinguishing. If we just use the corresponding features to measure the similarity, it
will lead to a wrong diagnosis. Hence, we propose to use the combination of labels
and sample similarity to define the consistency between the labels and samples.
With different space measurement making up for each other [33,34,37], the com-
bination makes the measurement of representativeness more general. To decrease
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the computational complexity of the proposed method, the half-quadratic opti-
mization technique is adopted to optimize the MCC. The contributions of our
work can be summarized as follows:

– To the best of our knowledge, it is the first work to focus on the outlier labels
in multi-label active learning. We find a robust and effective query model for
multi-label active learning.

– The prediction labels of unlabeled data and the labels of labeled data are
utilized with MCC to merge the uncertain and representative information,
deriving an approach to make the uncertain information more precise.

– The proposed representative measurement considers labels similarity by MCC.
It can effectively handle the outlier labels and makes the similarity more accu-
racy for multi-label data, and also provides a way to merge representativeness
into uncertainty.

The rest of the paper is organized as following: Sect. 2 briefly introduces
the related works. Then Sect. 3 defines and discusses a new objective for robust
multi-label active learning and proposes an algorithm based on half-quadratic
optimization. Section 4 evaluates our method on several benchmark multi-label
data sets. Finally, we summarize the paper in Sect. 5.

2 Related Works

Since multi-label problem is universal in the real world, it has drawn great inter-
ests in many fields. For a multi-label object, it needs an oracle to consider all the
relevant labels, leading to the labeling of multi-label tasks is more costly than
single label learning, however, the research of active learning on multi-label is
still less.

In multi-label learning, one instance is corresponding to more than one labels.
To solve a multi-label problem, it is a direct way to convert it to several binary
problems [21,31]. In these approaches, the uncertainty is measured for each
label, and then a combining strategy is adopted to measure the uncertainty
of one instance. [21] trained a probabilistic binary logistic regression classifier
with different levels, and combined them with level switching strategy for adap-
tive selection. [31] converted the SVM margin to a probability score to select
the instance for query. Recently, [26] selected the valuable instances by mini-
mizing the Expected Error Reduction. Other works have done by combining the
informativeness and representativeness together for a better query [8,20]. [20]
combined the label cardinality inconsistency and the separation margin with a
tradeoff parameter. [8] incorporated the data distribution in the selection process
by using the appropriate dissimilarity between pairs of samples with sparse mod-
eling representative selection for query. All the above algorithms were designed
to query all the labels of the query instances. Another approaches have been
developed to query the label-instance pairs with relevant label and instance at
each iteration [14,16]. [14] queried the instance with relevant labels based on the
types. [16] selected label-instance pairs based on a label ranking model. In these
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approaches, some important labels may be lost. In this study, considering the
combination of informativeness and representativeness is very effective in active
learning, we adopt this strategy.

No matter selecting the instance by all the labels or by the label-instance
pairs, most of the active learning algorithms only selected the uncertain instance
based on very limited samples, and ignored the labels information. For example,
given all the labels to one instance, if the outlier labels are too much in label
ranking, such instance may decrease the performance of the task. Moreover,
given the relevant labels to one instance, some relevant labels may be lose with
the limited query labels. To address these problems, we use the prediction labels
of unlabeled data to enhance the uncertain measurement and adopt the MCC to
consider the much relevant labels as much as possible except the outlier labels.
As far to our knowledge, it is the first time to adopt the MCC in multi-label
active learning with data labels for query.

3 Methodology

Suppose we are given a multi-label data set D = {xi, x2, . . . , xn} with n
samples and C possible labels for each sample. Initially, we label l samples
in D. Without loss of generality, we denote the l labeled samples as set
L = {(x1, y1), (x2, y2), . . . , (xl, yl)}, where yi = (yi1, yi2, . . . , yiC) is the labels
set for sample xi, with yik ∈ {−1, 1}; and the remaining u = n − l unlabeled
samples are denoted as set U = {xl+1, xl+2, . . . , xl+u}. It is the candidate set
for active learning. Moreover, we denote xq as the query sample in the active
learning process. In each iteration, we select xq ∈ U . And we use the bold symbol
to denote the matrix or vector. In the following discussion, the symbols are used
as above.

3.1 Maximum Correntropy Criterion

In multi-label classification tasks, the outlier labels pose a great challenge to
train a precise classifier, mainly due to the unpredictable nature of the errors
(bias) caused by these outliers. In active learning, in particular, the limited
labeled samples with outliers easily lead to great bias. Since in active learning
the supervised information is limited, it is hard to avoid the influence of the
outlier labels when building the supervised model. This directly leads to the bias
of uncertain information, furthermore makes the query instances are undesirable
or even leads to bad performance.

Recently, the concept of correntropy was firstly proposed in ITL and it had
drawn much attention in the signal processing and machine learning community
for robust analysis, which can effectively handle the outliers [13]. In fact, cor-
rentropy is a similarity measure between two arbitrary random variables a and
b [13], defined by

V̂σ (a, b) = E [Kσ (a, b)] (1)
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where Kσ(·) is the kernel function and E[·] is the expectation operator. We can
observe that the definition of correntropy bases the kernel method, so it also has
the same advantages that the kernel technique owns. However, different from
the conventional kernel based methods, correntropy works independently with
pairwise samples and has a strong theoretical foundation. With such a definition,
the properties of correntropy are symmetric, positive and bounded.

Since the joint probability density function of a and b in practice is unknown,
and the available data {ai, bi}n

i=1 are usually finite, the sample estimator of
correntropy is usually adopted by

V̂σ (a, b) = E[Kσ (a, b)] (2)

where Kσ(x1, x2) = exp(−||x1 − x2||2)/2σ2). According to [13], the correntropy
between a and b is given by

max
p′

1
n

n∑

i=1

Kσ (ai, bi) (3)

The objective function (3) is called maximum correntropy criterion (MCC) [13],
where p

′
is the auxiliary parameter to be specified in Proposition 1. Compared

with mean square error (MSE), which is a global metric, the correntropy is a
local metric. That means the correntropy value is mainly determined by the
kernel function along the line A = B [11].

3.2 The Proposed Approach

Usually, the uncertainty is measured according to the labeled data whereas the
representativeness according to the unlabeled data. In this paper, we propose a
novel approach to merge the uncertainty and representativeness of instances in
active learning. Minimum margin is the most popular and direct approach to
measure the uncertainty, which chooses the unlabeled sample by its prediction
uncertainty [15]. Let f∗ be the classifier that is trained by the labeled samples,
and the sample xq that we want to query in the unlabeled data based on the
margin can be found as follows:

xq = arg min
xi∈U

|f∗ (xi)| (4)

Generally, with the labeled samples, we can find a classification model f∗ for a
binary class problem in supervised approach with the following loss function:

f∗ = arg min
f∈H

∑
xi∈L

� (Yi, f (xi)) + λ ‖f‖2H (5)

where H is a reproducing kernel Hilbert space endowed with kernel function
K(·), �(·) is the loss function and Yi belongs to {1,−1}. Following the works of
[15], the criterion of the minimum margin can be written as

xq = arg min
xj∈U

max
Yj±1

min
f∈H

∑

xi∈L

� (Yi, f (xi)) + λ ‖f‖2H + � (Yj , f (xj)) (6)
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Yj is a pseudo label for the unlabeled sample xj . Since it is a binary class
problem, Yj is 1 or −1. Hence, we define Yj = −sign(f(xj)). In previous works,
the loss function is adopted with quadratic loss for MSE, but it is not robust for
the occasion of outliers. To overcome this problem, considering the properties
of MCC, we introduce the MCC as the loss function. Different from MSE by
minimizing the loss to solve minimization problem, MCC solves the minimization
problem by maximizing the loss, presented by

arg max
xq∈U,Yq=±1,f∈H

∑

xi∈L

exp

(
−‖Yi − f (xi)‖2

2σ2

)
−λ ‖f‖2H+exp

(
−‖Yq − f (xq)‖2

2σ2

)

(7)
where σ is the kernel width. Following the minimum margin approach, the objec-
tive function (7) is equal to (4). In our work, we extend multi-label classification
as several binary classification problems with label correlation [15]. For simple,
we assume the label correlation is independent by learning one classifier for each
label independently. Then, we use the summation as minimum margin in multi-
label learning and use fi as the classifier between ith label and the other labels.
The multi-label active learning to query the sample with minimum margin app-
roach based on MCC with the worst case is given by

L(xq, f, L) = arg max
xj∈U,fk∈H:k={1,2,..C}

∑

xi∈L

C∑

k=1

exp

(
−‖yik − fk (xi)‖2

2σ2

)

−λ

C∑

k=1

‖fk‖2H +
C∑

k=1

exp

⎛

⎝−
(
1 + 2 |fk (xq)| + fk(xq)

2
)

2σ2

⎞

⎠
(8)

The labeled samples in L are very limited, so that it is very important to
utilize the unlabeled data to enhance the performance of active learning. Since
the labels of the unlabeled data are unknown, it is hard to add the unlabeled
data in the supervised model. For the purpose to enhance the uncertain informa-
tion, we merge the representative information into the uncertain information by
prediction labels of unlabeled data. However, the current similarity is difficult to
use the unlabeled data to enhance the uncertain information just with features.
To overcome this problem, and considering the outlier labels influence, we take
the prediction labels of unlabeled data into consideration for similarity measure-
ment. We define a novel consistency between labels and sample similarity with
sample-label pairs based on MCC as

s ((xi, yi) , (xj , yj)) = exp

(
−‖yi − yj‖22

2σ2

)
wij (9)

where wij is the similarity between two samples with kernel function. Let S =
[sij ]u×u denote the symmetric similarity matrix for the unlabeled data, and sij

is the consistency between xi and xj sample-label pairs points. With such a
consistency matrix, the representativeness is to find the sample that can well
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represent the unlabeled data set. To do so, [8] proposed a convex optimization
framework by introducing variables pij ∈ [0, 1] which indicates the probability
that xi represents xj . In our consistency measurement based on MCC, if xi can
represent the point xj , and it cannot represent the point xt, there will be sij �
sit. Such a consistency measurement has already made the difference between
representatives and non-representatives large. Therefore, we define that if xi

is the representative one, the probabilities pij , j = 1, 2, ..u between xi and the
other unlabeled samples are 1, otherwise pij , j = 1, 2, ..u are 0. Equally, we define
d = [dij ]u×l and z = [zij ]u×l as the consistency matrix and probability between
the unlabeled data and the labeled data respectively. By querying a desirable
sample, which can not only represent the unlabeled data and but also not overlap
the information in labeled data, we maximize the expectation operator and use
a tradeoff parameter β to measure and balance the representative information
in unlabeled data and labeled data

E [xq, U, L] = max
xq

∑

xq∈U

⎡

⎣

⎛

⎝ 1
u

∑

xj∈U

sqjpqj

⎞

⎠ − β

⎛

⎝1
l

∑

xj∈L

dqjzqj

⎞

⎠

⎤

⎦ (10)

In current research, it has proved that the combination between uncertainty
and representativeness is very effective in active learning [8,15]. In our approach,
we also combine them with a tradeoff parameter, given by

L(xq, f, L) + β0E[xq, U, L] (11)

To merge the representative part into uncertain part, we use the prediction
labels of unlabeled data. For each classifier fk, we define fk(x) with a linear
regression model in the kernel space as fk(x) = ωT

k Φ(x) for each label, where
Φ(x) is the feature mapping to the kernel space. In (11), the specific point xq can
be queried from the unlabeled data, but exhaustive search is not feasible due to
the exponential nature of the search space. To solve such a problem, we use the
numerical optimization-based techniques. An indicator vector α is introduced,
which is a binary vector with u length. Each entry αj denotes whether the
corresponding sample xj is queried as the query sample. If xj is queried as xq,
αj is 1, otherwise, αj is 0. Then the objective function can be defined as

arg max
ω;αT 1=1,αi∈{0,1}

∑
xi∈L

C∑

k=1

exp

(
−

∥∥yik − ωT
k Φ (xi)

∥∥2

2σ2

)
− λ

C∑

k=1

‖ωk‖2

+
∑

xj∈U

αj

C∑

k=1

exp

⎛

⎝−
(
1 + 2

∣∣ωT
k Φ (xj)

∣∣ +
(
ωT

k Φ (xj)
)2)

2σ2

⎞

⎠

+β1

∑

xj∈U

αj

(
1
u

) ∑

xi∈U

exp

(
−

∥∥ωT [I ⊗ Φ (xj)] − ωT [I ⊗ Φ (xi)]
∥∥2

2

2σ2

)
wji

−β2

∑

xj∈U

αj

(
1
l

) ∑

xi∈L

exp

(
−

∥∥ωT [I ⊗ Φ (xj)] − yi

∥∥2

2

2σ2

)
wji

(12)
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where ω = {ω1, ω2, . . . , ωC} is the multi-label classifier. I is the identify matrix
of size C × C, and ⊗ is the kronecker product between matrices. Although the
objective function (12) is neither convex nor linear, we derive an iterative algo-
rithm based on half-quadratic technique [11,13] with the alternating optimiza-
tion strategy [2] to solve it efficiently. Based on the theory of convex conjugated
functions [3], we can easily derive the following proposition [40].

Proposition 1. A convex conjugate function ϕ is exiting to make sure
g (x) = exp

(
− x2

2σ2

)
= max

p′

(
p′ ‖x‖2

σ2 − ϕ (p′)
)

where p′ is the auxiliary variable, and with a fixed x, g(x) reaches the maximum
value at p′ = −g(x).

According to the Proposition 1, the objective function (12) can be formulated as

arg min
ω;αT 1=1,αi∈{0,1}

∑
xi∈L

C∑

k=1

[
mik

∥∥yik − ωT
k Φ (xi)

∥∥2
]

+ λ

C∑

k=1

‖ωk‖2

+
∑

xj∈U

αj

C∑

k=1

[
njk

(
1 + 2

∣∣ωT
k Φ (xj)

∣∣ +
(
ωT

k Φ (xj)
)2)]

−β1

∑

xj∈U

αj

(
1
u

) ∑

xi∈U

hji

∥∥ωT [I ⊗ Φ (xj)] − ωT [I ⊗ Φ (xi)]
∥∥2

2
wji

+β2

∑

xj∈U

αj

(
1
l

) ∑

xi∈L

vji

∥∥ωT [I ⊗ Φ (xj)] − yi

∥∥2

2
wji

(13)

where mik, njk, hji, and vji are the auxiliary variables, with

mik = exp

(
−

∥∥yik − ωT
k Φ (xi)

∥∥2

2σ2

)
, xi ∈ L, yik ∈ yi

njk = exp

⎛

⎝−
(
1 + 2

∣∣ωT
k Φ (xj)

∣∣ +
(
ωT

k Φ (xj)
)2)

2σ2

⎞

⎠ , xj ∈ U

hji = exp

(
−

∥∥ωT [I ⊗ Φ (xj)] − ωT [I ⊗ Φ (xi)]
∥∥2

2

2σ2

)
, xi, xj ∈ U

vji = exp

(
−

∥∥ωT [I ⊗ Φ (xj)] − yi

∥∥2

2

2σ2

)
, xj ∈ U, yi ∈ y

The objective function (13) can be solved by the alternating optimization strat-
egy. Firstly, we fix α, and the objective function is to find the optimal classifier
ω. It can be solved by the alternating direction method of multipliers (ADMM)
[4,24]. Secondly, we fix ω that is obtained in the first step, the objective function
becomes

arg max
αT 1=1,αi∈{0,1}

αT a + β1α
T b − β2α

T c (14)
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where

aj =
C∑

k=1

exp

⎛

⎝−
(
1 + 2

∣∣ωT
k Φ (xj)

∣∣ +
(
ωT

k Φ (xj)
)2)

2σ2

⎞

⎠

bj =
1
u

∑

xi∈U

exp

(
−

∥∥ωT [I ⊗ Φ (xj)] − ωT [I ⊗ Φ (xi)]
∥∥2

2

2σ2

)
wji

cj =
1
l

∑

xi∈L

exp

(
−

∥∥ωT [I ⊗ Φ (xi)] − yi

∥∥2

2

2σ2

)
wji

To solve (14), as in [5], we relax αj to a continuous range [0, 1]. Thus,
the α can be solved with a linear program. The sample corresponding to the
largest value in α will be queried as xq. The RMLAL algorithm is summarized
in Algorithm 1.

Algorithm 1. Robust Multi-label Active Learning
Input: Labeled data set L and unlabeled data set U , the tradeoff parameters β1

and β2, and initial variables and parameters.
1: repeat
2: Fixed α, calculate the function (13) with ADMM strategy to obtain the values

of ω in kernel space with ωk =
∑

xi∈L θkiΦ(xi), where θk = [θk1, θk2, . . . , θkl]
T

are auxiliary variables.
3: With the values of ω, calculate the indicator vector α by solving(14), and select

the sample that is corresponding to the largest value in α.
4: until the tolerance is satisfied
Output: The query index of unlabeled samples.

4 Experiments

4.1 Settings

In this section, we present the experimental results to validate the effectiveness
of the proposed method that compares with the prior methods on 9 multi-label
data sets from Mulan project1. The characteristics of data sets are described in
Table 1. To demonstrate the superior of our method, several methods are listed
as follows as competitors.

1. RANDOM is the baseline which randomly selects instance label pairs.
2. AUDI [16] combines label ranking with threshold learning, then exploits both

uncertainty and diversity in the instance space as well as the label space.
3. Adaptive [20] combines the max-margin prediction uncertainty and the label

cardinality inconsistency as the criterion for active selection.

1 http://mulan.sourceforge.net/datasets-mlc.html.

http://mulan.sourceforge.net/datasets-mlc.html
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4. QUIRE [15] provides a systematic way for measuring and combining the infor-
mativeness and representativeness of an unlabeled instance by incorporating
the correlation among labels.

5. Batchrank [5] selects the best query with an NP-hard optimization problem
based on the mutual information.

6. RMLAL: Robust Multi-label Active Learning is the proposed in this paper.

LC is the average number of label for each instance in the data set. For each data
set, we randomly divide it into two equal parts. One is regarded as the testing
data set. For the other part, we randomly select 4 % samples as the initial labeled
set, and the remaining samples of this part are used as the unlabeled data set
for active learning. In the compared methods, AUDI and QUIRE query the rel-
evance of an instance-label pairs in each iteration. We can notice that querying
all labels for one instance is equal to query C label-instance pairs. Hence, for fair
comparison, we query C label-instance pairs as one query instance in AUDI and
QUIRE. For the method Batchrank, in the original paper, the tradeoff parame-
ter sets as 1. For a fair comparison, we choose the tradeoff parameter from a
candidate set that is the same in the proposed method. The parameters of other
methods are all set as the same in original papers. For the kernel parameters,
we adopt the same value for all methods.

Fig. 4. Comparison of different active learning methods on fifteen benchmark datasets.
The curves show the micro-F1 accuracy over queries, and each curve represents the
average result of 5 runs.
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Without loss of generality, the liblinear2 is adopted as the classifier for all
methods [9], and micro-F1 is used to evaluate the performance [5], which is
a commonly used performance measurement in multi-label learning. For each
data set, we repeat each method for 5 times and report the average results.
The querying process stops when 100 iterations are reached and one instance is
queried at each iteration.

4.2 Results

For each data set, we reported the average results in Fig. 4. From all these results,
we could observe that the proposed method performs the best on most of the data
sets. It achieved the best results in almost the whole active learning process. In
general, QUIRE and AUDI were two methods to query the label-instance pairs
for labeling. They almost showed the superior performance to the Batchrank
and Adaptive, which queried all labels for the instance. This demonstrated that
querying the relevant labels was more efficient than querying all labels for one
instance. But for our methods, it achieved the best performance with querying
all labels for one instance than querying the relevant label-instance pairs. The
reason may be that although the Batchrank and Adaptive queried all the labels,
they could not avoid the influence of the outlier labels, leading to the query
samples undesirable. For QUIRE and AUDI methods, some labels information
lost when they just queried the limited relevant labels, and they need much
samples to achieve a better performance. The results demonstrated the proposed
method not only could achieve discriminative labeling but also could avoid the
influence of the outlier labels. To put in nutshell, the proposed method merging
the uncertainty and representativeness with MCC can solve the problems in
multi-label active learning effectively as stated above.

4.3 Evaluation Parameters

In the proposed method, the kernel parameter σ is very important for the MCC.
There are two tradeoff parameters on the uncertain part and representative part
respectively. For conveniently, in our experiments, we defined kernel size γ =
1/(2 ∗ σ2), and we fixed the kernel size as 1/C in the label space. For the fea-
ture space, we fixed the kernel size as 1/dim in feature space, where dim is the
dimension of feature space. To discover the influence of the kernel size for the pro-
posed method, we evaluated the kernel size for MCC in label space. We reported
the average results when the kernel size was set as {γ, 2γ, 4γ} respectively on two
popular benchmark datasets emotions and scence [5], which had the same number
of labels but with different LC. For the tradeoff parameters, we chose them from
a fixed candidate set {1, 10, 100} respectively, and we also reported the average
results on the two data sets. The other settings were same to the previous experi-
ments. Figure 5 showed the average results with the kernel size changing. We can
observe that the results are not very sensitive to the kernel size. This may be that

2 https://www.csie.ntu.edu.tw/∼cjlin/liblinear/.
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(a) Scence (b) Emotions

Fig. 5. Comparison of different γ on
two data sets

(a) Scence (b) Emotions

Fig. 6. Comparison of different trade-
off parameter pairs (β1, β2) on two data
sets

the changing of the parameter γ just changes the relative value of the discrimi-
native labels and outlier labels with MCC, but the value of discriminative labels
with MCC are always larger than that of outlier labels. Relatively, we can set the
kernel size as double of γ for a better selection. Figure 6 showed the results with
different pairs of the tradeoff parameters. For these results, we can observe that
uncertain information and representative information have a big influence on the
results. However, the better results are obtained in contrast on the two data sets.
The scence data obtains the good results when β1 is small and β2 is large, while
the emotions data obtained the good results when β1 is large and β2 is small. This
may be that the LC of scence is small than the emotions data, leading to the ini-
tial labeled information of scence is less. With so little supervised information,
the labeled data become important to build a query model. When LC is large, the
supervised information may be redundant, and the unlabeled data become impor-
tant. Therefore, the tradeoff parameters can be adopted according to the different
data sets adaptively with LC.

5 Conclusion

Outlier labels are very common in multi-label scenarios and may cause the super-
vised information bias. In this paper, we propose a robust multi-label active
learning based on MCC to solve the problem. The proposed method queries the
samples that can not only build training models with a good generalization ability
but also represent the similarity well for multi-label data. With MCC, the super-
vised information of outlier labels will be suppressed, and that of discriminative
labels will be expanded. It outperformed state-of-the-art methods in most of the
experiments. The experimental analysis also reveals that it is beneficial to update
the trade-off parameter that balances the uncertain and representative informa-
tion during the query process. We plan to develop an adaptive mechanism to tune
this parameter automatically to make our algorithm more practical.
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