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Abstract. In this work we present a novel approach for single depth
map super-resolution. Modern consumer depth sensors, especially Time-
of-Flight sensors, produce dense depth measurements, but are affected
by noise and have a low lateral resolution. We propose a method that
combines the benefits of recent advances in machine learning based single
image super-resolution, i.e. deep convolutional networks, with a varia-
tional method to recover accurate high-resolution depth maps. In par-
ticular, we integrate a variational method that models the piecewise
affine structures apparent in depth data via an anisotropic total gen-
eralized variation regularization term on top of a deep network. We call
our method ATGV-Net and train it end-to-end by unrolling the opti-
mization procedure of the variational method. To train deep networks, a
large corpus of training data with accurate ground-truth is required. We
demonstrate that it is feasible to train our method solely on synthetic
data that we generate in large quantities for this task. Our evaluations
show that we achieve state-of-the-art results on three different bench-
marks, as well as on a challenging Time-of-Flight dataset, all without
utilizing an additional intensity image as guidance.

Keywords: Deep networks · Variational methods · Depth super-
resolution

1 Introduction

Over the last decade depth sensors have entered the mass market which substan-
tially improved in package size, energy consumption and price. This made depth
data an interesting and important auxiliary input for computer vision tasks,
for example in pose estimation [14,35], or scene understanding [16]. However,
current sensors are limited by physical and manufacturing constraints. Hence,
depth outputs are affected by degenerations due to noise, quantization and miss-
ing values, and typically have a low resolution.

To alleviate the use of depth data, recent methods focus on increasing
the spatial resolution of the acquired depth maps. A common approach to
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tackle this problem is to utilize a high-resolution intensity image as guidance
[12,25,29]. These methods are motivated by the statistical co-occurrences of
edges in intensity images and discontinuities in depth. In practical scenarios,
however, a depth sensor is not always accompanied by an additional camera and
the depth map has to be projected to the guidance image, which is also prob-
lematic due to noisy depth measurements. Therefore, approaches that solely rely
on the depth input for super-resolution are becoming popular [1,13,20].

In contrast to super-resolution methods for depth data, machine learning
based methods for natural images [11,33,36,37] are advancing rapidly and
achieve impressive results on standard benchmarks. Those methods learn a
mapping from a low-resolution input space to a plausible and visually pleasing
high-resolution output space. The inference is performed for small, overlapping
patches of the image independently, and are then averaged for the final output.
This is not optimal for depth data, as it is characterised by textureless, piece-
wise affine regions that have sharp depth discontinuities. In contrast, variational
methods are especially suited for this task, because the aforementioned prior
information can be exploited in the model’s regularization term. A prominent
example is the total generalized variation (TGV) [3] that is for example utilized
in [12].

In this work we propose a method that combines the advantages of data-
driven methods and energy minimization models by combining a deep convo-
lutional network with a powerful variational model to compute an accurate
high-resolution output from a single low-resolution depth map input. Deep net-
works recently demonstrated impressive capabilities in single-image super reso-
lution [22]. We utilize a similar architecture for our network, but instead of just
producing the refined depth map as output, we design the network to additionally
predict the locations of the depth discontinuities in the high-resolution output
space. Both outputs are then used as input for a variational model to refine
the high-resolution estimate. The variational model uses an anisotropic TGV
pairwise regularization that is weighted by the network output. To integrate the
variational method into our network and learn the joint model end-to-end, we
unroll all computation steps of the primal-dual optimization scheme [5] that is
used for inference with layers of a deep network. Therefore, we name our method
ATGV-Net. Finally, we deal with the problem of obtaining accurate ground-truth
data for training. The training of deep networks requires a large corpus of data.
We demonstrate that we can train our model entirely on synthetic depth data
that we generate in large quantities and obtain state-of-the-art results on four
different benchmark datasets.

Our contributions can be summarized as follows: (i) We integrate a vari-
ational model with anisotropic TGV regularization into a deep network by
unrolling the optimization steps of the primal-dual algorithm [5] and train the
whole model end-to-end (see Sect. 3). (ii) We demonstrate that our joint model
can be trained entirely on synthetic data for single depth map super-resolution
(see Sect. 4.1). (iii) Finally, we show that our method improves upon state-of-
the-art results on four different benchmark datasets (see Sects. 4.2, 4.3 and 4.4).
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2 Related Work

Depth Super-Resolution. In general, the work on super-resolution is roughly
divided in approaches that use a series of aligned images to produce a high-
resolution output, and single image super-resolution, i.e. approaches that use
only one low-resolution image as input. We focus in this related work on the
latter as our method falls into this category.

Natural images often contain repetitive structures and therefore, a patch
might be visible on different scales within the same image. Glasner et al. [15]
exploit this knowledge in their seminal work. For each image patch they search
similar patches across various scales in the image and combine them for a high-
resolution estimate. A similar idea is employed for depth data by Hornáček
et al. [20], but instead of reasoning about 2D patches, they reason in terms of
patches containing 3D points. The 3D points of the depth map patch can be
translated and rotated with six degree of freedom to find related patches within
the same depth map. Aodha et al. [1] search for similar patches not within
the same image, but in an ancillary database and they formulate a Markov
Random Field (MRF) that enforces smooth transition between the candidate
high-resolution patches.

More recently, machine learning approaches have become popular for single
image super-resolution. They achieve higher accuracy and are at the same time
more efficient in testing, because they do not rely on a computational inten-
sive patch search. Sparse coding approaches [40,42] learn dictionaries for the
low- and high-resolution domains that are coupled via a common encoding. To
increase the inference speed, Timofte et al. [36] replace the �1 norm in the sparse
coding step with the �2 norm, which can be solved in closed form and replace a
single dictionary by man smaller sub-dictionaries to improve accuracy. In [33],
Schulter et al. substitute the flat code-book of sparse coding methods with a ran-
dom regression forest. A test patch traverses the trees of the forest and each leaf
node stores regression coefficients to predict a high-resolution estimate. Deep
learning based approaches recently showed very good results for single image
super-resolution, too. Dong et al. [11] train a convolutional network of three lay-
ers. The input to the network is the bilinear upsampled low-resolution image and
the network is trained with the Euclidean loss on the network output and the
corresponding ground-truth high-resolution image. This idea was substantially
improved by Kim et al. [22]. They train a deep network with up to 20 convolu-
tional layers with filters of size 3× 3 and therefore, increasing the receptive field
to 41 × 41 pixel from 15 × 15 pixels of the network in [11]. Further, the network
does not output directly the high-resolution estimate, but the residual to the
pre-processed input image, aiding training of the very deep networks [19].

These learning based methods have mainly been applied to color images,
where a huge amount of training data can be easily obtained. In contrast, large
datasets with dense, accurate depth maps have only very recently become avail-
able, e.g. [17]. Therefore, most methods for depth map super-resolution are
not based on machine learning, but utilize a high-resolution intensity image as
guidance. One of the first works in this direction is by Diebel and Thrun [9].
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They apply a MRF for the upsampling task and weight their smoothness term
according to the gradients of the guidance image. Yang et al. [41] propose an app-
roach based on a bilateral filter that is iteratively applied to estimate a high-
resolution output map. Park et al. [29] present a least-squares method, that
incorporates edge aware weighting schemes in the regularization term of their
formulation. A more recent approach of Ferstl et al. [12] utilizes a variational
framework for image guided depth upsampling, where they also use the total gen-
eralized variation [3] as regularization term. One of the few machine learning based
approaches for depth map super-resolution is by Kwon et al. [25]. They collect
their own training data using KinectFusion [21] and facilitate sparse coding with
an additional multi-scale approach and an advanced edge weighting term, that
emphasizes intensity edges corresponding to depth discontinuities. Ferstl et al. [13]
use sparse coding with dictionaries trained on the 31 synthetic depth maps of [1]
to predict the depth discontinuities in the high-resolution domain from the low-
resolution depth data. Those edge estimates are then used in an anisotropic dif-
fusion tensor of their regularization term.

Deep Network Integration of Energy Minimization Methods. Energy minimiza-
tion methods, such as Markov Random Fields (MRFs), or variational methods
have a wide range of applications in computer vision. They consist of unary
terms, for example the class likelihood of a pixel for semantic segmentation, or
the depth value in depth super-resolution, and pairwise terms, which measure
the dependencies on neighbouring pixels. Recently, the integration of those mod-
els into deep networks gained a lot of attention, as deep networks jointly trained
with energy minimization methods achieve excellent results. For example, Tomp-
son et al. [38] propose the joint training of a convolutional network and a MRF
for human pose estimation. The MRF is realized by very large convolutional fil-
ters to model the pairwise interactions between joints and can be interpreted as
one iteration of loopy belief propagation. In [8,34] the authors show how to com-
pute the derivative with respect to the mean field approximation [24] in MRFs.
This allows end-to-end learning and improves results for instance in semantic
segmentation. Similarly, Zheng et al. [43] show that the computation steps of
the mean field approximation can be modeled by operations of a convolutional
network and unroll the iterations on top of their network.

While the latter approaches for semantic segmentation are designed for a
discrete label space, the variational approach by Ranftl and Pock [31] has a con-
tinuous output space. They show that the gradient of a loss function can be back-
propagated through the energy functional of a variational method by implicit
differentiation, if the functional is smooth enough. This approach has been
extended for depth denoising and upsampling by Riegler et al. [32]. Recently,
Ochs et al. [28] propose a technique that allows the back-propagation through
non-smooth energy functionals using Bregman proximity functions [6], but did
not demonstrate the use in combination with deep networks.

Our approach utilizes a variational method on top of a deep network, but
instead of implicitly differentiating the energy functional as in [31,32] we unroll
every step of an exact optimization scheme [5], in the spirit of [10]. This has two
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major advantages: First, we can incorporate stronger pairwise regularization
terms and second, the optimization gets more robust, allowing the successful
training of deeper networks. This is similar to [43], but instead of the mean
field approximation, we unroll the steps of the primal-dual algorithm by Cham-
bolle and Pock [5], which converges to the global optimal solution of the convex
energy functional. For parametrizing the variational method we use a 10 layer
deep network of 3 × 3 convolutions, and train on the residual similarly to [22].
Additionally, we train the network to predict the depth discontinuities in the
high-resolution output space. This output is used to weight the pairwise regular-
ization term of the variational part. Finally, we demonstrate that we can train a
deep network for this task by rendering synthetic depth maps in large quantities
with a ray-caster running on the GPU.

3 ATGV-Net

In this section we describe our method that takes a single low-resolution, prob-
ably noisy depth map as input and computes a high-resolution output. We first
introduce the notation used throughout this work and then detail our variational
model, how we integrate it on top of a deep network and finally the network itself.

In the remainder of this work we denote the low-resolution depth map input
as s

(lr)
k ∈ R

M×N . Further, for training we assume that we have for each input
sample an accurate, high-resolution ground-truth depth map tk ∈ R

ρM×ρN ,
where ρ > 1 is the given upsampling factor. The only preprocessing step in
our method is a bilinear upsampling of the low-resolution input depth map s

(lr)
k

to the size of the ground-truth target depth map. We denote this mid-level
representation of the input as sk ∈ R

ρM×ρN .
Given a training set {(sk, tk)}K

k=1 of K training pairs we follow [31,32] and
formulate the training task as the following bi-level optimization problem:

min
w

1
K

K∑

k=1

L(u∗(f(w, sk)), tk) (HL)

s.t. u∗(f(w, sk)) = arg minu E(u; f(w, sk)). (LL)

This optimization problem has an intuitive interpretation: In the higher-level
problem (HL) we want to minimize some weights w, such that the minimizer u∗ of
the energy functional E in the lower-level problem (LL), which is parameterized
by a learnable function f , achieves a low loss L over all training samples. We
provide more details on the energy functional and on the parametrization in
Sects. 3.1 and 3.2, respectively. For the loss we only impose the restriction that
we can compute the gradient with respect to u∗. For the remainder of this work
we will use the Euclidean loss:

L(u∗(f(w, sk)), tk) = ‖u∗(f(w, sk)) − tk‖22 . (1)

The authors of [31,32] have proven that the bi-level optimization problem can be
solved by implicit differentiation, if certain assumptions for the energy functional



ATGV-Net: Accurate Depth Super-Resolution 273

sk conv1 · · · convL
Dual Update

proxσF ∗(yn + σKx̄n)
Primal Update

proxτG(x
n − τK∗yn+1)

Over-relaxation
xn+1 + θ(xn+1 − xn) u∗

Fig. 1. Our model consists of a deep convolutional network with L = 10 layers (blue
rectangles) that predicts a first high-resolution depth map and depth discontinuities.
The output of the network is then feed to an unrolled primal-dual optimization algo-
rithm (red rectangles) realized by operations in a deep network that further refines the
result. This enables us to train the joint model end-to-end. Best viewed magnified in
the electronic version.

E hold. Namely, E has to be strongly convex, twice differentiable with respect
to u and once differentiable with respect to f . Further, the gradient of f has to
be computable with respect to w. The last constraint is satisfied by construction
since the parametrization f is realized by a deep network. However, the first
constraints drastically limit the choice of energy functionals and therefore, the
authors of [31,32] had to design smooth approximations. In the following we
show that this constraints can be eliminated by unrolling the optimization steps
of the lower-level problem (LL) on top of a deep network, similar to [43].

3.1 Unrolling the Optimization

For the energy functional we have the requirement that it should refine the
initial high-resolution depth estimate. Therefore, we use a TGV2-�2 variational
model [3] that favors the piecewise affine surfaces apparent in depth maps. In
addition, we incorporate an anisotropic diffusion tensor [30,39] into the reg-
ularization and name our model ATGV-Net. The optimization of the energy
functional in conjunction with a guidance intensity image already provides good
results for depth super-resolution [13]. In the following we demonstrate, how we
can significantly improve the model by parametrizing the energy functional by a
deep network and learn it end-to-end by unrolling the optimization procedure.

In general, our energy functional consists of a pairwise regularization term
R and an �2 data term:

E(u; f(w, sk)) = R(u, h(wh, sk)) +
ewλ

2
‖u − g(wg, sk)‖22 . (2)

The functional is parameterized by a function f(w, sk) = [h(wh, sk),
wλ, g(wg, sk)]T that has learnable weights w and takes the mid-resolution depth
map sk as input. The functions h and g are realized as a single deep network
and described in Sect. 3.2. The parameter wλ controls the trade-off between data
and regularization term and is also learned. We take the exponential of wλ to
ensure convexity of the energy functional. For the pairwise regularization term
we utilize the total generalized variation (TGV) [3] of second order that favors
piecewise affine solutions and is therefore ideal for depth maps:

R(u, h(wh, sk)) = min
v

α1 ‖T (h(wh, sk))(∇uu − v)‖1 + α0 ‖∇vv‖1 , (3)



274 G. Riegler et al.

where α0 and α1 are user defined parameters. In the regularization term, an
anisotropic diffusion tensor T enforces a low degree of smoothness across depth
discontinuities and vice versa, more smoothness in homogeneous regions. This
anisotropic diffusion tensor is based on the Nagel-Enkelmann operator [27]:

T (h(wh, sk)) = exp(−β ‖h(wh, sk)‖γ
2)nnT + n⊥nT

⊥, (4)

with β and γ being adjustable parameters weighting the magnitude and sharp-
ness of the tensor. The gradient normal of h is given by

n =
h(wh, sk)

‖h(wh, sk)‖2
, n⊥ · n = 0. (5)

To optimize this energy functional we chose the first-order primal-dual algo-
rithm by Chambolle and Pock [5], as it guarantees fast convergence. To apply
the optimization algorithm, we first reformulate Eq. (2) as saddle-point problem
with dual variables p, q as

min
u,v

max
p,q

α1 〈T (h(wh, sk))(∇uu − v), p〉 + α0 〈∇vv, q〉 +
ewλ

2
‖u − g(wg, sk)‖22

(6)

s.t. p ∈ {
p ∈ R

2×ρM×ρN | ‖p:,i,j‖2 ≤ 1
}

, q ∈ {
q ∈ R

4×ρM×ρN | ‖q:,i,j‖2 ≤ 1
}

,
(7)

where ∇u and ∇v denote operators in the discrete setting that compute the
forward differences of u and v. A single iteration of the optimization procedure
to obtain u∗ is then given by:

pn+1 = proj(pn + σpα1(T (h(wh, sk))(∇uūn − v̄n))) (8)

qn+1 = proj(qn + σqα0∇v v̄n) (9)

un+1 =
un + τu(α1∇T

u T (h(wh, sk))pn+1 + ewλg(wg, sk))
1 + τuewλ

(10)

vn+1 = vn + τv(α0∇T
v qn+1 + α1T (h(wh, sk))pn+1) (11)

ūn+1 = un+1 + θ(un+1 − un) (12)

v̄n+1 = vn+1 + θ(vn+1 − vn) , (13)

with u0 = g(wg, sk), v0, p0, q0 = 0, σp, σq, τu, τv > 0, θ ∈ [0, 1], and proj(p) =
p

max(1,‖p‖2)
is the point-wise projection to the unit hyper-sphere:

The key observations are: (i) The single computation steps in this optimiza-
tion algorithm can be realized by operations of a deep network, i.e. individual
network layers, and (ii) given a fixed number of iterations, the algorithm can
be unrolled like a recurrent neural network, similar to [43]. This allows us to
use the back-propagation algorithm to train the optimization procedure, i.e. all
hyper-parameters, jointly with the parametrization, i.e. the deep network. See
Fig. 1 for a visualization of the concept. In the following we detail how the indi-
vidual computation steps are realised within our model. We provide a graphical
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sk Feature Map 1 · · · Feature Map 10 gr(wg, sk) + g(wg, sk)

h(wh, sk)

ReLU◦
conv1×64×3×3

ReLU◦
conv64×64×3×3

ReLU◦
conv64×64×3×3

conv64×1×3×3

conv
64×

2×
3×

3

Fig. 2. Overview of our deep network architecture. Our network consists of 10 convolu-
tional layers with 3×3 filters and 64 feature maps in the hidden layers (blue rectangles).
The input to the network (green rectangle) is the mid-resolution depth map and the
output is (i) the residual that after adding to the mid-resolution input produces the
high-resolution estimate g(wg, sk) and (ii) the estimates of the depth discontinuities
in the high-resolution output h(wh, sk) (red rectangles). Best viewed magnified in the
electronic version.

representation of a single iteration of the optimization procedure in terms of
deep network operations in the supplemental material.

Dual Update. The gradient ascent of the dual variables in Eqs. (8) and (9) con-
sists of scalar multiplication, point-wise addition and multiplication, the gra-
dient operators ∇u,∇v, and the projection. The scalar multiplication and the
point-wise operations are trivial operations and are implemented in most deep
learning frameworks. The ∇-operator is basically a convolution with two filters,
∇x = [−1, 1] and ∇y = [−1, 1]T . Therefore, it can be implemented with a stan-
dard convolutional layer that has fixed filter coefficients. Additionally, we have
to ensure a reflecting padding of the layer input, i.e. Neumann boundary con-
ditions. Finally, the proj-operator is a composition of a point-wise division, a
max-operator and the �2 norm. We implemented the max-operator as shifted
ReLU, and the �2 norm as custom layer.

Primal Update. The gradient descent of the primal variables in Eqs. (10) and (11)
consists of similar operations as the dual update, and therefore, can be imple-
mented with the same building blocks. Additional operators are ∇T

u ,∇T
v . These

operators are defined as ∇T p = ∇xpx + ∇ypy. From this definition we can see
that this operation can again be implemented with a convolutional layer that
has fixed filter coefficients. However, we have to ensure a negative symmetric
padding of the layer input, i.e. Dirichlet boundary conditions.

Over-Relaxation. The over-relaxation step of the primal variables in Eqs. (12) and
(13) can be simplified to a weighted sum of two terms, i.e. ū = (1+θ)un+1−θun

and v̄ = (1 + θ)vn+1 − θvn.

3.2 Parametrization

After we have described the variational model and how to integrate it on top
of a deep network, we now detail the parametrization functions h(wh, sk) and
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g(wg, sk). Inspired by the recent success in single image super-resolution for color
images [22], we implement g(wg, sk) as a deep convolutional neural network with
10 convolutional layers. Each convolutional filter has the size of 3 × 3 and each
hidden layer of the network has 64 feature maps. As g(wg, sk) is used in the
data term of our energy functional it should provide a good initial estimate of
the high-resolution depth map. However, the output of this network is not the
estimate of the high-resolution depth map itself, but the residual gr(wg, sk), such
that g(wg, sk) = gr(wg, sk)+ sk. Learning the residual instead of the full output
aids the training procedure of the network [22], and has been applied before in
other super-resolution methods [33,36,37].

The parameterization function h(wh, sk) is used for weighting the pairwise
regularization term. As we argued before, the regularization should be small
near depth discontinuities and high in smooth areas. Therefore, we implemented
h(wh, sk) as an additional network output of size 2 × ρM × ρN and train it to
estimate the gradient of the high-resolution target ∇tk. This method has two
benefits: First, we get more accurate estimates for the depth discontinuities than
what we would get from the gradient of the high-resolution estimate g(wg, sk).
Secondly, the joint training of both objectives in a single deep network improves
the performance of both tasks, because the weights wh and wg share the major-
ity of parameters and only the parameters of the last layer, the output, differ.
A graphical depiction of our deep network parametrization is shown in Fig. 2.

3.3 Training

In the previous sections we presented the description of our model. In this section
we detail how we train it given a large set of training samples {(sk, tk)}K

k=1. The
training procedure is two-fold: In a first step we initialize the deep convolutional
network, i.e. the functions g and h. Therefore, we train the network by mini-
batch gradient descent with momentum term on the following loss function:

Lp({(sk, tk)}K
k=1) =

1
K

K∑

k=1

‖g(wg, sk) − tk‖22 + ‖h(wh, sk) − ∇tk‖22 . (14)

In the following evaluations we set the learning rate to 0.001 and the momentum
parameter to 0.9 for the initializing of the network. With this setting we train
the network for 30 epochs on non-overlapping patches of size 32 × 32 pixel.

In the second step of the training procedure we add the unrolled primal-dual
optimization algorithm as introduced in Sect. 3.1 on top of the network. Then, we
train the joint model end-to-end on the Euclidean loss stated in Eq. (1) with mini-
batch gradient descent. We set the learning rate to 0.001 and the momentum
parameter 0.9 to train the whole model for 5 epochs on non-overlapping patches
of size 128×128 pixel. In contrast to the method of implicit differentiation [31,32],
our method is still robust if we use a high learning rate, and as a consequence
converges in fewer training iterations. Further, it enables us to optimize the
parameter wλ, as well ass all hyper-parameters of the optimization procedure.
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(a) rendered high-resolution ground-truth (b) corresponding mid-resolution input

Fig. 3. Examples of our generated depth maps. (a) visualizes the high-resolution
ground-truth data. By resampling those depth maps with a scale factor ρ and adding
depth dependent noise we create the low-resolution input. (b) shows the mid-resolution
input, which is the bilinear upsampled low-resolution data. Best viewed magnified in
the electronic version.

4 Evaluation

In this section we present an exhaustive experimental evaluation of the pro-
posed ATGV-Net. First, we show how we generate a huge amount of training
data with accurate ground-truth needed to train the deep network. Then, we
demonstrate evaluation results on four standard benchmark datasets for depth
map super-resolution: Following [1,13,20], we evaluate our method on the noise-
free Middlebury disparity maps Teddy, Cones, Tsukuba and Venus. Additionally,
we show results for the Laserscan dataset as proposed in [1]. In a second evalu-
ation we compare our results on the noisy Middlebury 2007 dataset as proposed
in [29] and finally, we demonstrate the real-world applicability of our method on
the challenging ToFMark dataset [12].

We set the initial parameters of our model to α1 = 17, α0 = 1.2 for the
regularization term, β = 9, γ = 0.85 for the anisotropic diffusion tensor, and
wλ = 0.01 for all experiments. Further, we fix the number of iterations of the
primal-dual algorithm to 10.

4.1 Training Data

One challenge in training very deep networks is the need for a huge amount
of training data. In [1,13] the authors use a small set, i.e. 31 depth maps, of
synthetic rendered images for training and in [32] the authors trained and tested
their method on the synthetic New Tsukuba dataset [26]. Only very recently
larger datasets with accurate depth maps have been released [17], or have been
added to existing benchmarks [4]. In our method we also make use of syntheti-
cally rendered data, but produce them in a much larger quantity.

For this purpose we implemented a ray-caster [2] that runs on the GPU and
enables us to generate thousands of synthetic depth maps of high quality in a
few minutes. For each image we randomly place between 24 and 42 rectangular
cuboids and up to 3 spheres in a predefined volume. Further, we randomly scale
and rotate each solid to achieve an infinitely number of possible constellations.
Then, we place a virtual camera at the origin of the coordinate system and cast
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Table 1. Results on the noise-free Middlebury and Laserscan data. We report the error
as root mean squared error (RMSE) in pixel disparity for the Middlebury data and in
mm for the Laserscan data, respectively. We highlight the best result in boldface and
the second best in italic.

×2 ×4 ×4

Cones Teddy Tsukuba Venus Cones Teddy Tsukuba Venus Scan21 Scan30 Scan42

NN 4.3772 3.2596 9.7968 2.1408 6.1236 4.5168 13.3248 2.9432 0.0177 0.0163 0.0396

Bicubic 3.8392 2.7668 8.3648 1.8192 4.9544 3.5744 10.6960 2.3504 0.0132 0.0125 0.0326

Diebel and Thrun [9] 2.9588 2.1060 6.4208 1.3624 4.5624 3.2040 8.7840 1.9408 − − −
Ferstl et al. [12] 2.8240 2.1408 7.0592 1.2840 3.6372 2.5068 10.0128 1.4624 − − −
Zeyde et al. [42] 2.7680 1.9616 6.1936 1.3200 3.8468 2.7812 8.7632 1.7592 0.0100 0.0093 0.0246

Timofte et al. [36] 2.7872 1.9816 6.1280 1.3328 3.0256 3.0256 9.6304 1.9616 0.0106 0.0101 0.0264

Aodha et al. [1] 4.5076 3.2988 9.6192 2.2088 6.0168 4.1036 13.3328 2.6920 0.0175 0.0170 0.0452

Hornáček et al. [20] 3.9744 3.1640 9.2832 2.0592 5.5944 4.7828 11.6352 3.6008 0.0205 0.0179 0.0299

Ferstl et al. [13] 2.4988 1.7588 5.6064 1.1464 3.7336 2.6680 7.8416 1.8096 0.0085 0.0083 0.0190

CNN only 1.0275 0.8201 2.3610 0.2266 3.0015 1.5330 6.4361 0.4219 0.0083 0.0082 0.0120

CNN + ATGV-L2 1.0145 0.8374 2.3197 0.2720 2.9832 1.5175 6.4223 0.4124 0.0084 0.0083 0.0120

ATGV-Net 1.0021 0.8155 2.3846 0.1991 2.9293 1.5029 6.6327 0.3764 0.0081 0.0081 0.0117

a ray for each pixel of the camera image. For each ray we compute the distance
between the image plane and the closest surface it hits, or in the case it does
not hit any surface, we return a maximum distance value for the background. In
Fig. 3 we illustrate two random examples of the more than 40,000 depth maps
that we have generated with this method.

Given this generated depth maps as noise free ground-truth, we create the
low-resolution depth maps s

(lr)
k = ↓ρ tk for the network training by resampling

the generated ground-truth depth maps tk by the scale factor of ρ that is used in
the evaluation. Depending on the dataset, we additionally add depth-dependent
noise η(s(lr)k ) to the low-resolution depth map. Finally, we upsample this low-
resolution, probably noisy depth maps with bilinear interpolation to obtain our
mid-level representation sk = ↑ρ (s(lr)k + η(s(lr)k )).

4.2 Clean Middlebury and Laserscan

In this first experiment we evaluate the performance of our proposed method
on the images Teddy, Cones, Tsukuba and Venus of the Middlebury dataset as
in [1,13,20]. The disparity is interpreted as depth and we test upsampling factors
of ×2 and ×4. Additionally, we evaluate on the Laserscan dataset images Scan21,
Scan30 and Scan42 with an upsampling factor of ×4 as in [1,13]. We compare
our results to simple upsamling methods, such as nearest neighbor and bicubic
upsampling, as well as to state-of-the-art depth upsampling methods that rely
on an additional guidance image as input [9,12]. Further, we show the results of
recent sparse coding based approaches for single image super-resolution [36,42],
two approaches based on a Markov Random Field [1,20] and a recent variational
approach that uses sparse coding to estimate edge priors [13]. To demonstrate
the effect of our variational model on top of the deep network, we show the
results of the high-resolution estimates of the network only (CNN only), the
results, where we add the variational model, but without joint training (CNN +
ATGV-L2), and the results after end-to-end training (ATGV-Net).
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(a) Input & GT (b) Timofte et al. [36] (c) Ferstl et al. [13] (d) CNN only (e) ATGV-Net

Fig. 4. Qualitative results for the noise-free Middlebury image Tsukuba, ρ = 4.
(a) depicts the ground-truth and the input data. (b) and (c) show the results of state-
of-the-art methods. (d) and (e) present the results of the deep network only and our
proposed model trained end-to-end. Best viewed magnified in the electronic version.

The results in terms of the root mean squared error (RMSE) are summa-
rized in Table 1.1 We can clearly see that the deep network already achieves a
significant performance improvement compared to the other methods on both
datasets and upsampling factors. Interestingly, we obtain even better results as
the methods [9,12] that utilize an additional guidance image for the upsampling.
This is especially pronounced in test samples with structures that are well simu-
lated in the training data, such as Venus. Further, the variational model on top
of the network slightly increases the performance and training the whole model
end-to-end gives the overall best results. One exception is the Tsukuba sample,
where the results get slightly worse after end-to-end training. An explanation
might be that fine, elongated structures, e.g. near at the lamp of Tsukuba, are
not well represented in the training data. In the qualitative results, see Fig. 4,
we can further observe that the deep network with 10 layers achieves already
very good results with sharper depth discontinuities compared to other methods.
However, the improvement of the variational model on top of the deep network
is hardly visible. This becomes more apparent in the next experiment.

4.3 Noisy Middlebury

In this experiment we evaluate our method on the Middlebury disparity
maps Art, Books and Moebius with added depth dependent Gaussian noise
to simulate the acquisition process of a Time-of-Flight sensor, as proposed
by Park et al. [29]. Therefore, we add to our low-resolution synthetic training
data s

(lr)
k depth dependent Gaussian noise of the form η(x) = N (0, σs

(lr)
k (x)−1),

with σ = 651. Exemplar training images are depicted in Fig. 3. We report quan-
titative results in Table 2 and visualize qualitative results in Fig. 5.

We again compare our method to simple upsampling methods, such as nearest
neighbor and bilinear interpolation. We compare our proposed method to other
approaches that utilize an additional intensity image as guidance. Those methods
include the Markov Random Field based approach in [9], the bilateral filtering
with cost volume in [41], the guided image filter in [18], the noise-aware bilateral
filter in [7], the non-local means filter in [29] and the variational model in [12].

1 Note that we present our results over the full disparity range [0, 255], as opposed to
e.g. [13], where the disparities are scaled to a narrower range.
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Table 2. Results on noisy Middlebury data. We report the error as RMSE in pixel
disparity and highlight the best result in boldface and the second best in italic.

×2 ×4

Art Books Moebius Art Books Moebius

NN 6.55 6.16 6.59 7.48 6.31 6.78

Bilinear 4.58 3.95 4.20 5.62 4.31 4.56

Yang et al. [41] 3.01 1.87 1.92 4.02 2.38 2.42

He et al. [18] 3.55 2.37 2.48 4.41 2.74 2.83

Diebel and Thrun [9] 3.49 2.06 2.13 4.51 3.00 3.11

Chan et al. [7] 3.44 2.09 2.08 4.46 2.77 2.76

Park et al. [29] 3.76 1.95 1.96 4.56 2.61 2.51

Ferstl et al. [12] 3.19 1.52 1.47 4.06 2 .21 2 .03

CNN only 2.02 1.27 1.50 3.55 2.41 2.68

CNN + ATGV-L2 1 .93 1 .14 1 .37 3 .40 2.24 2.51

ATGV-Net 1.84 1.13 1.24 2.98 1.72 1.95

To evaluate the influence of the variational model on top of the deep network, we
report the results of the network only (CNN only), results with the variational
model on top of the network, but without joint training (CNN + ATGV-L2),
and the results after end-to-end training (ATGV-Net).

From the quantitative results in Table 2 we observe that the CNN only
already performs better than state-of-the-art methods that utilize an additional
guidance input for most images and upsampling factors. Further, the variational
model on top of the deep network slightly improves the results, but end-to-end
training of the whole model results in significant improvement. This improve-
ment of ATGV-Net over the network only is also apparent in the qualitative
results (Fig. 5). We observe less noise in homogeneous areas in the ATGV-Net
estimates, especially in the background, compared to the CNN only estimates.
The results of [12] look also very sharp, but produce errors near depth disconti-
nuities and in-between fine structures. In contrast, our method preserves those
finer structures. We refer to the supplemental material for additional qualitative
results, as well as quantitative results in terms of mean absolute error (MAE).

4.4 ToFMark

In our final experiment we evaluate our method on the challenging ToFMark
dataset [12]. This dataset consists of three time-of-flight (ToF) depth maps of
three different scenes. For each scene there exists an accurate high-resolution
structured-light scan as ground-truth. The ToF depth maps have a resolution of
120 × 160 pixel and the target resolution, given by the guidance intensity image
(that we do not use in our method) is 610 × 810 pixel. This corresponds to an
upsampling factor of approximately ρ = 5. As the target high-resolution depth-
map is given in the camera coordinate system of the structured light scanner, we
prepare our training data accordingly. We project our high-resolution synthetic



ATGV-Net: Accurate Depth Super-Resolution 281

(a) Input & GT (b) He et al. [18] (c) Ferstl et al. [12] (d) CNN only (e) ATGV-Net

Fig. 5. Qualitative results for the noisy Middlebury image Moebius, ρ = 4. (a) depicts
the ground-truth and the input data. (b) and (c) show the results of state-of-the-art
methods. (d) and (e) present the results of the deep network only and our proposed
model trained end-to-end. Best viewed magnified in the electronic version.

Table 3. Results on real Time-of-Flight data from the ToFMark benchmark dataset.
We report the error as RMSE in mm and highlight the best result in boldface and the
second best in italic.

Books Devil Shark

NN 30.46 27.53 38.21

Bilinear 29.11 25.34 36.34

Kopf et al. [23] 27.82 24.30 34.79

He et al. [18] 27.11 23.45 33.26

Ferstl et al. [12] 24.00 23 .19 29 .89

ATGV-Net 24 .67 21.74 28.51

training depth maps to the ToF coordinate system using the provided projection
matrix. In the low-resolution depth maps we add depth dependent noise and back
project the remaining points to the target camera coordinate system. This yields
a very sparse depth map that we subsequently inpaint with bilinear interpolation
to obtain our final mid-resolution training inputs.

We compare our results to simple nearest neighbour and bilinear interpola-
tion, and three state-of-the-art depth map super-resolution methods that utilize
an additional guidance image as input. The quantitative results are shown in
Table 3 as RMSE in mm. Please see the supplemental material for qualitative
results. Even on this difficult dataset we are at least on par with state-of-the-art
methods that utilize an additional intensity image as guidance input.

5 Conclusion

We presented a combination of a deep convolutional network with a variational
model for single depth map super-resolution. We designed the convolutional net-
work to compute the high-resolution depth map, as well as the depth discontinu-
ities. The network output was utilized in our variational model to further refine
the result. By unrolling the optimization procedure of the variational model, we
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were able to optimize the joint model end-to-end, which lead to improved accu-
racy. Further, we demonstrated the feasibility to train our method on a massive
amount of synthetic generated depth data and obtain state-of-the-art results on
four different benchmarks. Our model is especially useful if the low-resolution
depth map contains noise, which is the case for most consumer depth sensors. In
future work we plan to extend our model to depth data that contain larger areas
of missing pixels, e.g. from structured light sensors. This is straight-forward by
setting wλ = 0 for areas where depth measurements are missing.
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