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Abstract. In this paper we study symmetries in polynomial equation
systems and how they can be integrated into the action matrix method.
The main contribution is a generalization of the partial p-fold symmetry
and we provide new theoretical insights as to why these methods work.
We show several examples of how to use this symmetry to construct
more compact polynomial solvers. As a second contribution we present
a simple and automatic method for finding these symmetries for a given
problem. Finally we show two examples where these symmetries occur
in real applications.

1 Introduction

Polynomial systems have become an integral part of Computer Vision due to
their ability to encode many geometric constraints. Polynomial solvers have been
successfully used for many minimal problem such as absolute pose estimation
[1–3], relative pose estimation [4–6] and homography estimation [7,8]. They have
also been used for some some non-minimal problem such as PnP [9,10].

One technique for constructing polynomial solvers is the so called action
matrix method. The method reduces the polynomial system to an eigenvalue
problem for which there exist good numerical methods. For a brief introduction
to polynomial solvers in Computer Vision we recommend Byröd et al. [11].

In [12] Ask et al. considers polynomial systems, where the degree of each
monomial has the same remainder modulo p. This introduces a p-fold symme-
try into the solution set. By taking this symmetry into account they construct
smaller and more stable polynomial solvers. This work was later extended by
Kuang et al. [13] to polynomial systems where this symmetry only exists in a
subset of the variables. This type of symmetry has been used in [1,9,14–16].

In this paper we generalize the symmetry from [12,13] and provide new the-
oretical insight as to why these methods work. We show that if the system has
these symmetries the action matrix can be chosen block diagonal and by con-
sidering only a single block we can construct more compact solvers.

In [17] Corless et al. also use symmetries in the action matrix method. Their
approach is based on studying the group structure of the symmetry using tools
from linear representation theory. While the paper present theory for symmetries
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of general group structure and show a few examples with integer or rational
coefficients it is not clear how to directly apply it to build polynomial solvers
for types of problems encountered in Computer Vision. In contrast the theory
developed in this paper classifies the symmetry based on the monomial structure
in the equations. This allows the method to integrate naturally into the standard
methods for building polynomial solvers.

The main contributions in this paper are:

– We generalize the partial p-fold symmetry studied in [12,13] and show how
to exploit this symmetry to construct more compact polynomial solvers.

– We present a simple and automatic method for finding these symmetries in
polynomial systems.

– We show two examples where these symmetries occur in the polynomial sys-
tems from real applications.

1.1 Background and Notation

The set of all polynomials over C is denoted C[X]. The solutions V ⊂ C
n to a

set of polynomial equations fi(x) = 0, i = 1, 2, . . . n is called an affine variety.
The set of all polynomial combinations of fi, i.e. I = {∑i hi(x)fi(x) | hi ∈
C[X]} defines an ideal in the polynomial ring C[X]. For an ideal I we can define
the quotient ring C[X]/I, which consists of equivalence classes with respect to
I, i.e. two elements are equivalent if their difference lies in I. From algebraic
geometry it is well known that if the set of solutions to a system is finite then
the corresponding quotient ring C[X]/I is a finite dimensional vectorspace. For
an introduction to algebraic geometry we recommend [18].

Throughout the paper we use the multi-index notation for monomials, i.e.

xα = x(α1,...,αn) =
∏

k

xαk

k , so e.g. x(2,0,1) = x2
1x3.

2 Symmetries in Polynomial Equation Systems

We start with a simple example.

Example 1. Consider the following system of polynomial equations
{

x2 + y − 2 = 0,
x2y2 − 1 = 0.

(1)

The system has six solutions given by

(±1, 1), (±ϕ,−ϕ−1), (±ϕ−1, ϕ) where ϕ =
1 +

√
5

2
. (2)

Since each monomial has the x-variable raised to an even power, we can for any
solution flip the sign of x and get another solution. This type of symmetry was
studied in [12,13] and is characterized in the following definition.
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Definition 1. The polynomial f(x,y) has a partial p-fold symmetry in x
if the sum of the exponents for x of each monomial has the same remainder q
modulo p, i.e.

f(x,y) =
∑

k

akxαkyβk =⇒ q ≡ 1T αkmod p ∀k. (3)

In [13] it was shown that if we have a system of polynomials with this property
the solution set will also have a p-fold symmetry. More specifically if V is the set
of solutions then

(x,y) ∈ V =⇒ (e2πi k
p x,y) ∈ V k = 0, 1, 2, ..., p − 1. (4)

Example 2. The polynomial system
{

x3 − 1 = 0,

xy − 1 = 0
(5)

has three solutions given by

V = {(1, 1), (
1 + i

√
3

2
,
1 − i

√
3

2
), (

1 − i
√

3
2

,
1 + i

√
3

2
)}. (6)

While this system does not have any partial p-fold symmetries, the solution set
has the following property

(x, y) ∈ V =⇒ (e2πi 1
3 x, e2πi 2

3 y) ∈ V, (7)

which is similar to that in (4). In this work we consider a generalization of the
partial p-fold symmetry characterized by the following definition.

Definition 2. The polynomial f(x) has a weighted p-fold symmetry with
weights c ∈ Z

n
p if the c-weighted sum of the exponents for x of each monomial

has the same remainder q modulo p, i.e.

f(x) =
∑

k

akxαk =⇒ q ≡ cT αkmod p ∀k. (8)

Example 3. Below are three examples

f1(x, y) = x3 − x2y2 + y3, p = 3, c = (2, 1),
f2(x, y) = x5 + x3y + x, p = 4, c = (1, 2),
f3(x, y, z) = x + y2 + yz − 1, p = 2, c = (0, 1, 1).

Note that the vector c is not unique, e.g. for the first polynomial c = (1, 2) would
also work. If p is not prime then for any factor of p we also have a symmetry,
e.g. the polynomial f2 also has a 2-fold symmetry. From the last example it
becomes clear that the partial p-fold symmetry from [13] is a special case of the
weighted symmetry where the weights are binary, corresponding to the symmetry
variables.
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Similarly to (4) we will see that for any polynomial equation system with
c-weighted p-fold symmetry, the solution set has a corresponding symmetry. For
any vector c ∈ Z

n
p we define the matrix

Dc
p = diag

( {

exp(2πi
ck

p
)
}n

k=1

)

. (9)

Definition 3. A set V ⊂ C
n has a c-weighted p-fold symmetry if and only

if it is stable under Dc
p, i.e.

Dc
pV ⊂ V. (10)

The following two theorems are directly adapted from Kuang et al. [13] where
they are proved for regular partial p-fold symmetry.

Theorem 1. Let fi(x) = 0, i = 1, 2, ...,m be a polynomial system and denote
the set of solutions V ⊂ C

n. If each fi has a c-weighted p-fold symmetry then so
does the set of solutions V.

Proof. Take any x ∈ V. Consider some fi and let q be the remainder from
Definition 2. Let xβ be any monomial from fi and consider the effect of Dc

p,

(Dc
px)β =

∏

k

(e2πi
ck
p xk)βk =

∏

k

e2πi
ckβk

p xβk

k = e2πi cT β
p xβ = e2πi q

p xβ. (11)

Then if fi(x) =
∑

k akxαk we have

fi(Dc
px) =

∑

k

ak(Dc
px)αk =

∑

k

ake2πi q
p xαk = e2πi q

p fi(x) = 0, (12)

and since this holds for any i = 1, 2, . . . ,m we must have that Dc
px ∈ V. �	

Theorem 2. Let fi(x) = 0, i = 1, 2, ...,m be a polynomial system where the
solution set V has a c-weighted p-fold symmetry. Then there exist an equivalent
system where each polynomial has c-weighted p-fold symmetry.

Proof. Let x ∈ V. Then for any fi we have

fi

(
(Dc

p)kx
)

= 0, k = 0, 1, 2, ..., p − 1. (13)

Decompose fi into fi(x) = g0(x)+g1(x)+ ...+gp−1(x) such that each monomial
in gq has the c-weighted remainder q modulo p, i.e.

gq(x) =
∑

k

akxγk =⇒ cT γk ≡ qmod p. (14)

Then if we denote ω = e2πi 1
p we have

fi(x) = g0(x) + g1(x) + ... + gp−1(x), (15)

fi(Dc
px) = g0(x) + ωg1(x) + ... + ωp−1gp−1(x), (16)

. . .

fi((Dc
p)p−1x) = g0(x) + ωp−1g1(x) + ... + ωgp−1(x). (17)
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Since each fi((Dc
p)kx) = 0 we can rewrite this as

⎡

⎢
⎢
⎢
⎣

1 1 1 . . . 1
1 ω ω2 . . . ωp−1

...
...

...
. . .

...
1 ωp−1 ωp−2 . . . ω

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

g0(x)
g1(x)
g2(x)

...
gp−1(x)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= 0. (18)

Since the matrix is non-singular we must have gk(x) = 0 for k = 0, 1, 2, . . . , p−1.
By definition each gk will have a c-weighted p-fold symmetry and by replacing
each equation fi(x) = 0 by the equations {gk(x) = 0}p−1

k=0 it is clear that we get
an equivalent system where each polynomial has the correct symmetry. �	
Corollary 1. Take any polynomial f ∈ I = 〈f1, f2, . . . , fm〉 where each fi has
c-weighted p-fold symmetry and decompose

f(x) = g0(x) + g1(x) + ... + gp−1(x), (19)

such that each monomial in gq has the c-weighted remainder q modulo p, then
each component gq is a polynomial in I.

Proof. This is a consequence of the proof of the previous theorem. �	
Theorem 3. Let fi(x) = 0, i = 1, 2, ...,m be a polynomial system with c-
weighted p-fold symmetry and B be a monomial (linear) basis for C[X]/I. Let
Bq ⊂ B be the set of basis monomials with c-weighted exponent remainder
q modulo p. Then any element [h(x)] ∈ C[X]/I where h(x) has a c-weighted
symmetry can be expressed in the quotient ring as a linear combination of the
basis elements with the same remainder, i.e.

[h(x)] ∈ [span Bq] (20)

for some q.

Proof. Since B is a linear basis for C[X]/I there exist coefficients ak such that

[h(x)] =

[
∑

k

akbk(x)

]

where bk ∈ B. (21)

Since the ideal vanishes on V we have

h(x) =
∑

k

akbk(x) x ∈ V. (22)

But this means that (h(x) −∑k akbk(x)) ∈ I and from Corollary 1 we know
that we can split this into p terms with different c-weighted remainders, which
all belong to I. In particular if h(x) has c-weighted remainder q we have,

h(x) =
∑

bk∈ Bq

akbk(x) x ∈ V, (23)
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which is sufficient to show [h(x)] =
[∑

bk∈ Bq
akbk(x)

]
since the elements in

C[X]/I are uniquely determined by their values on V. �	
Corollary 2. For any action polynomial a(x) ∈ C[X] with c-weighted remain-
der zero the corresponding action matrix becomes block diagonal.

Proof. If a(x) has c-weighted remainder zero then all polynomials in a(x)Bq will
have remainder q. From Theorem 3 we get [a(x)Bq] ⊂ [span Bq] and the result
follows.

2.1 Solving Equation Systems with Symmetries

Once the symmetries have been identified they can be used to construct more
compact polynomial solvers. From Corollary 2 we know that if we choose our
action polynomial a(x) ∈ C[X] to be invariant with respect to the symmetry
the corresponding action matrix will be block diagonal. The idea is then to only
consider a single block of the matrix, i.e. we only consider the action of a(x) on
a subset of the basis monomials B. Next we show two concrete examples where
we construct the partial action matrix and use it to recover the solutions.

Example 4. Consider again the system in Example 1,
{

x2 + y − 2 = 0,
x2y2 − 1 = 0.

(24)

We saw earlier that this system has six solutions and a 2-fold partial symmetry
in the x variable, or equivalently a (1, 0)-weighted 2-fold symmetry. For this
system the quotient ring C[X]/I is spanned by the monomials

B = {1, x, y, xy, y2, xy2}. (25)

We can group these into two sets, based on their (1, 0)-weighted remainder
modulo 2,

B0 = {1, y, y2} and B1 = {x, xy, xy2}. (26)

Now instead of working with the entire basis B we will only consider the sub-
set B0. If we choose x2 to be our action polynomial (note that this has (1, 0)-
remainder zero) we have the following multiplication maps 1

Tx2 [1] = x2 = 2 − y, Tx2 [y] = x2y, Tx2 [y2] = x2y2 = 1. (27)

Since one of the monomials was not in the span of B0 we need to generate more
equations. Multiplying the first equation by y we get

x2y + y2 − 2y = 0 =⇒ Tx2 [y] = x2y = 2y − y2 ∈ span B0. (28)

1 Tα : C[X]/I → C[X]/I is the linear map corresponding to multiplication by α(x).
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Finally we can construct our action matrix,
⎡

⎣
0 0 1

−1 2 0
0 −1 2

⎤

⎦

⎡

⎣
y2

y
1

⎤

⎦ = x2

⎡

⎣
y2

y
1

⎤

⎦ . (29)

Even though the system has six solutions we only have to solve a 3×3 eigenvalue
problem. From each eigenvector we can construct two solutions with different
signs for x.

Next we show a similar example but where the equation system has multiple
symmetries.

Example 5. Consider the equation system
{

x2 + y2 − 2 = 0,

xy2 − x = 0.
(30)

This system has a 2-fold partial symmetry in the x variable and 2-fold partial
symmetry in y, or equivalently two 2-fold symmetries with weights c1 = (1, 0)
and c2 = (0, 1). The equation system has six solutions and a basis for the quotient
ring C[X]/I is given by

B = {1, x, y, xy, y2, y3}. (31)

Grouping the basis monomials based on their ck-weighted remainders modulo 2:

B0,0 = {1, y2}, B0,1 = {y, y3}, B1,0 = {x}, B1,1 = {xy}. (32)

Let us choose to work with B0,0. By multiplying the second equation with x
we get that all the monomials in the system have the same remainder as our
monomial basis, {

x2 + y2 − 2 = 0,

x2y2 − x2 = 0.
(33)

Choosing again the action polynomial as x2 we get the following multiplications

Tx2 [1] = x2 = 2 − y2 ∈ span B0,0, Tx2 [y2] = x2y2 = x2 = 2 − y2 ∈ span B0,0,
(34)

which allows us to construct a 2 × 2 action matrix
[−1 2
−1 2

] [
y2

1

]

= x2

[
y2

1

]

. (35)

This matrix has eigenvalues 0 and 1 with corresponding eigenvectors
(

2
1

)

,
(

1
1

)

.

The two eigenpairs give us the following possibilities
{

y2 = 2
x2 = 0

and

{
y2 = 1
x2 = 1

. (36)
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The first eigenvector gives two solutions (0,
√

2) and (0,−√
2) and the second

gives four solutions (1,±1), (−1,±1). In this example we chose the basis B0,0

but we could also have used B0,1 to recover the solutions. However the other two
choices would not have allowed us to recover the complete solution set.

3 Revealing Hidden Symmetries

In the previous section we have studied symmetries which depend on the expo-
nents of the monomials. These properties are however not preserved under a
linear change of variables and for some problems there can exist weighted sym-
metries which only appear after a change of variables.

Example 6. For α ∈ (−√
2,

√
2) consider the following family of polynomial sys-

tems {
x2 + y2 = 1
x + y = α

. (37)

Clearly the solution set is stable under the transform which switches x and y
since the equation system is unchanged. But in this formulation the system does
not have any weighted p-fold symmetries. Performing a change of variables

{
x̂ = x + y

ŷ = x − y
=⇒

{
1
2 x̂2 + 1

2 ŷ2 = 1
x̂ = α

(38)

reveals a 2-fold symmetry in the ŷ variable.

The previous example showed a polynomial system which was invariant to a spe-
cific linear transform. After a change of variables the symmetry was transformed
into a weighted p-fold symmetry as in Sect. 2. The following theorem shows that
under some weak assumptions this can be done in general.

Theorem 4. Let fi(x) = 0, i = 1, 2, . . . ,m be a polynomial system with a finite
number of solutions. If there exist an invertible matrix A �= I such that the
solution set V = {x | f(x) = 0} ⊂ C

n is stable under A, then the polynomial
system exhibits a c-weighted p-fold symmetry after a linear change of variables.

Proof. We start by noting that we can without loss of generality assume that
spanV = C

n. If this does not hold it will be sufficient to consider the restriction
of A to the span of V, i.e. A|V : spanV → spanV.

Since V is finite and A injective we have that AV = V. This means that
A acts as a permutation on the elements of V. It follows that there must exist
p ∈ N such that

Aps = s ∀s ∈ V, (39)

since there are only a finite number of possible permutations. This implies

Ap = I, (40)
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since the elements of V span C
n. This is a sufficient condition for A to be

diagonalizable and that the eigenvalues of A are p:th roots of unity, i.e. λk =
e2πi

ck
p . Let S be the matrix which diagonalizes A, then

A = SDS−1 = Sdiag
(
{e2πi

ck
p }n

k=1

)
S−1. (41)

Note that by definition D = Dc
p for c = (c1, c2, . . . , cn) ∈ Z

n
p and if we perform

the change of variables x̂ = S−1x the solution set instead becomes stable under
Dc

p and thus the system has a c-weighted p-fold symmetry. �	
If the system has multiple symmetry matrices we can use all of them if we

are able to diagonalize them simultaneously. It is a well-known fact from linear
algebra that a set of diagonalizable matrices can be simultaneously diagonalized
if and only if they commute.

4 Finding Symmetries in Practice

Unless there is some problem specific knowledge it can be difficult to find the
change of variables which reveals the symmetry. In this section we present a sim-
ple and automatic method for determining if a given problem has any symmetries
of the type presented in this paper.

Assume that we are given a family of polynomial systems {fi(x,a) = 0},
which depends on some data a ∈ C

m, i.e. for fix a each fi(x,a) is polynomial
in x. To find the symmetries we do the following:

1. Take some instance a0 ∈ C
m and solve the problem {fi(x,a0) = 0} using any

method. This can for example be accomplished by selecting some a0 where
the solutions are known, or by using some numerical solver (e.g. PHCPack
[19]). Denote the solutions s0

k, k = 1, 2, . . . , N .
2. Next we generate a sequence of polynomial systems by updating data in

small increments, at+1 = at + ε. For each solution s0
k we generate a solution

trajectory by tracking the solution using non-linear refinement methods (e.g.
Newton-Raphson). So to find st+1

k we solve {fi(x,at+1) = 0} by starting
non-linear refinement at st

k. This is repeated until the matrices

Sk =
[
s0

k s1
k . . . st

k

] ∈ C
n×t, k = 1, 2, ..., N (42)

are all of full rank and t > n.
3. For each pair, i �= j, we try to find a matrix Aij ∈ C

n×n such that

AijSi = Sj . (43)

Since the system is overdetermined and the solution matrices Si might have
some small errors we solve (43) in a least square sense. If the residuals are
sufficiently close to zero, we add the matrix Aij to a list of possible symmetry
matrices.

4. For each matrix Aij we check if the solution set is stable, i.e. if for each k
there exist � �= k such that AijSk = S�. The matrices which satisfy this are
the symmetry matrices.

5. Finally we generate new instances and check if the symmetry matrices work.
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5 Weak Perspective-n-Points

In this section we show a practical example where we can construct a more com-
pact polynomial solver by exploiting a symmetry in the problem. We consider
the problem of estimating a weak perspective camera (also known as scaled
orthographic camera) from n 2D-3D point correspondences. We find the pose
which minimizes the squared reprojection error. By eliminating the translation
and performing a change of variables the problem can be reduced to (see sup-
plementary material)

min
s,R

∥
∥
∥
∥R diag (a1, a2, a3) −

[
b11 b12 b13
b21 b22 b23

]∥
∥
∥
∥

2

F

s.t. RRT = s2I2, (44)

where a1 ≥ a2 ≥ a3 ≥ 0.

5.1 Parameterizing the Constraints

We use the unconstrained quaternion parametrization of the scaled 2×3 rotation,

R(q) =
[
q21 + q22 − q23 − q24 2(q2q3 − q1q4) 2(q1q3 + q2q4)
2(q1q4 + q2q3) q21 − q22 + q23 − q24 2(q3q4 − q1q2)

]

, (45)

where q = (q1, q2, q3, q4) and ‖q‖2 = s. In this parametrization the problem in
(44) becomes unconstrained and the cost function

f(q) = ‖R(q)A − B‖2F . (46)

is a quartic polynomial in the elements of q. Since each element in R(q) is of
degree two we have that f(q) only contains monomials of degrees 0, 2 and 4.

We find the optimal pose by studying the first-order necessary conditions
for (46). Since the problem is now unconstrained in the unscaled quaternion
representation we simply solve for the critical points, i.e.

g(q) = ∇qf(q) = 0. (47)

Since f(q) only contains even terms, this equation system g(q) = 0 can only
contain odd terms (degree 1 or 3). Thus we can directly see that the equation
system will have at least a two-fold symmetry. This symmetry correspond to the
sign ambiguity of the quaternion representation, i.e. R(q) = R(−q).

5.2 Additional Symmetries in the Solutions

The quaternion parametrization is inherently ambiguous since the sign of the
quaternion does not matter. But it turns out that there is a further ambiguity
which comes from the fact that the third row of the rotation matrix is ignored.
By studying (45) we can see that R(q1, q2, q3, q4) = R(iq4, iq3,−iq2,−iq1) holds
for all q ∈ C

4. For the full 3 × 3 rotation matrix this corresponds to changing
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sign of the third row. Together these ambiguities introduce a four-fold symmetry
into the solution set which can be described by the matrices

A1 =

⎛

⎜
⎝

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟
⎠ and A2 =

⎛

⎜
⎝

0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

⎞

⎟
⎠. (48)

To diagonalize the matrices we perform the change of variables,

q̂ =
1√
2

⎡
⎢⎢⎣

0 −i −i 0
−1 0 0 1
i 0 0 i
0 −1 1 0

⎤
⎥⎥⎦ q. (49)

In these new variables the rotation matrix becomes

R(q̂) =
[

q̂21 − q̂22 − q̂23 + q̂24 −iq̂21 − iq̂22 + iq̂23 + iq̂24 2(q̂1q̂2 + 2q̂3q̂4)
−iq̂21 + iq̂22 − iq̂23 + iq̂24 −q̂21 − q̂22 − q̂23 − q̂24 2i(q̂3q̂4 − q̂1q̂2)

]

.

(50)
Note that the only mixed terms are q̂1q̂2 and q̂3q̂4. This leads to one 2-fold
symmetry in (q̂1, q̂2) and one 2-fold symmetry in (q̂3, q̂4).

5.3 Constructing a Polynomial Solver

By studying the problem in Macaulay2 [20] and Maple [21] we find that the
system has 33 solutions. Ignoring the trivial solution, the rest of the solutions can
be grouped into eight groups of four solutions. Using the method from Sect. 2.1
we constructed a polynomial solver. We used the following eight basis monomials,

B0,0 = {q̂1q̂2, q̂22 , q̂23 q̂
2
4 , q̂23 , q̂3q̂

3
4 , q̂3q̂4, q̂44 , q̂24}, (51)

which have the weighted remainder zero for both symmetries. For our action
polynomial we used a(q̂) = q̂1q̂2, which also has zero remainder.

5.4 Experimental Evaluation

In this section we experimentally evaluate the polynomial solver from the pre-
vious section. Using the same method we also constructed a solver which only
uses the partial 2-fold symmetry present in the original formulation. For com-
parison we also used the automatic method from Kukelova et al. [22] to generate
a polynomial solver. This solver does not take any symmetry into account. The

Table 1. Size of the elimination template and action matrix for the three solvers.

2x2-sym 2-sym Kukelova et al. [22]

Elimination template 104 × 90 234 × 276 243 × 276

Action matrix 8 × 8 16 × 16 33 × 33
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Fig. 1. Histogram over the residuals for 1000 random instances.
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Fig. 2. Percentage of successful instances (all residuals smaller than 10−6) when the
structure is close to planar, i.e. a3 ≈ 0 (Left) and when there are two almost equal
singular values, i.e. a2 ≈ a3. (Right)

sizes of the elimination templates and action matrices for the three methods can
be seen in Table 1.

We evaluated the three solvers on synthetic instances. Figure 1 shows the dis-
tribution of the residuals over 1000 random instances. The automatically gener-
ated solver and the solver using only the partial 2-fold symmetry has very similar
performance, while the solver utilizing the full symmetry performs slightly bet-
ter. The average runtimes for the instances were 11.2 ms for the 2-sym solver
and 2.7 ms for the 2x2-sym solver. For the automatically generated solver the
average runtime was 2.1 s.2

Degeneracies. Under some conditions the problem changes nature and the
polynomial solvers break down. For this problem we empirically found that this
happens when either the structure is planar (a3 = 0) or if two of the singular
values are equal (a1 = a2 or a2 = a3). Close to these configurations the solvers
become numerically unstable. We compare the performance of the polynomial
solver on random instances close to these degeneracies. We generated random
instances where the third singular value approached zero and instances where
|a2 − a3| approached zero. Figure 2 shows the percentage of successful instances

2 The large runtime is due to use of the MATLAB function rref for performing the
elimination. In principal this could replaced by a faster implementation, which most
likely would yield runtimes similar to the 2-sym solver.
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(defined as all residuals less than 10−6) as we approach the degenerate configura-
tions. For the planar degeneracy the automatically generated solver has slightly
better performance while for the other degeneracy the results are comparable.

6 Absolute Pose with Unknown Focal Length

In this section we show another practical example, where symmetry occurs nat-
urally in the polynomial systems. We consider the absolute pose problem with
unknown focal length. The problem has 7 degrees of freedom and requires at
least 3.5 points to be determined. We consider the (almost) minimal problem of
estimation from four 2D-3D point correspondences.

The normalized image points xk should satisfy the projection equations

λkxk = λk

(
xk yk f

)T = RXk + t, k = 1, 2, 3, 4. (52)

This means that the four vectors λ1x1, λ2x2, λ3x3 and λ4x4 differ only by a
rigid transformation from the 3D points Xk. We form the vectors from the first
point to the others, i.e.

V =
[
(X2 − X1), (X3 − X1), (X4 − X1)

]
, (53)

v =
[
(λ2x2 − λ1x1), (λ3x3 − λ1x1), (λ4x4 − λ1x1)

]
. (54)

Since rigid transformations preserve lengths and angles we must have

VT V = vT v, (55)

which gives six independent equations in the five unknowns: f, λ1, λ2, λ3 and λ4.
In this formulation the problem has two 2-fold symmetries, corresponding to

the sign ambiguities in the focal length and the projective depths λk. Together
these introduce a four-fold symmetry in the solution set.

Since the problem is overconstrained we cannot use all equations from (55).
Using Macaulay2 [20] we found that if we discard one of the off-diagonal equa-
tions (VT

i Vj = vT
i vj) the remaining system has 40 solutions. However if we

discard one of the diagonal equations (‖Vi‖2 = ‖vi‖2) we get 24 solutions. By
exploiting the symmetry we only have to find 10 and 6 of these solutions respec-
tively.

Using the method from Sect. 2.1 we construct a polynomial solver for the
case with 24 solutions. The solver uses both symmetries and only has to find 6
solutions. We used a(x) = λ1λ2 as our action polynomial and as our monomial
basis we used

B0,0 = {1, λ1λ4, λ2λ4, λ2
3, λ3λ4, λ

2
4}. (56)

The elimination template is of size 139 × 185 and the resulting action matrix is
6 × 6. Note that neither the action polynomial nor the monomial basis contain
the focal length f . However this does not pose any problem, as once the lengths
λi are recovered the equations in (55) reduce to a second degree polynomial in f
which can be easily solved. Figure 3 show two examples where we have applied
the solver to pose estimation problems from real images.
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Fig. 3. Examples of pose estimation from real images.

6.1 Experimental Evaluation

We compare the polynomial solver with the most accurate solvers from Buj-
nak [23] based on the ratio and distance constraints (denoted Best-Ratio and
Best-Dist). We also compare with the more recent method from Zheng et al.
[10] (denoted Zheng in the experiments). In 2015 Wu [2] presented another min-
imal solver for this problem. We do not include a comparison with this method
since we were unable to find any implementation, but in their paper the per-
formance is similar to that of [10]. For the experiment we generated 3D points
uniformly in the box [−2, 2] × [−2, 2] × [4, 8] in the camera’s coordinate system.
The cameras were then randomly generated with focal length f = 1000. Figure 4
shows the reprojection error for 1000 random instances, both with and with-
out random noise added to the image coordinates. We can see that the solver
has comparable performance to current state-of-the-art methods. The average
runtimes for the four methods were 149 ms (Best-Dist), 4.44 ms (Best-Ratio),
4.65 ms (Zheng) and 3.90 ms for our solver.

−20

−10

0

BestDist BestRatio Zheng Our
−5

0

5

BestDist BestRatio Zheng Our

Fig. 4. The squared reprojection error for 1000 random instances. If there are multiple
solutions we take the smallest error. Left: No noise added. Right: Gaussian noise with
5 px standard deviation added to the image points.

7 Conclusions

In this paper we have presented new techniques for using symmetry in the action
matrix method. The theory relies on a generalization of the partial p-fold sym-
metry from [13]. However in contrast to [13] our method allows us to handle
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multiple independent symmetries, resulting in even more compact polynomial
solvers. Furthermore, we have shown that these symmetries are not restricted to
theoretical examples, but occur in real problems from Computer Vision.
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6. Kuang, Y., Solem, J.E., Kahl, F., Åström, K.: Minimal solvers for relative pose
with a single unknown radial distortion. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 33–40. IEEE (2014)

7. Kukelova, Z., Heller, J., Bujnak, M., Pajdla, T.: Radial distortion homography. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 639–647 (2015)

8. Brown, M., Hartley, R.I., Nistér, D.: Minimal solutions for panoramic stitching. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1–8. IEEE (2007)

9. Zheng, Y., Kuang, Y., Sugimoto, S., Åström, K., Okutomi, M.: Revisiting the
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