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Abstract. Robust line matching across wide-baseline views is a chal-
lenging task in computer vision. Most of the existing methods highly
depend on the positional relationships between lines and the associated
textures. These cues are sensitive to various image transformations espe-
cially perspective deformations, and likely to fail in the scenarios where
few texture present. In this paper, we construct a new coplanar line-
points invariant upon a newly developed projective invariant, named
characteristic number, and propose a line matching algorithm using the
invariant. The construction of this invariant uses intersections of coplanar
lines instead of endpoints, rendering more robust matching across views.
Additionally, a series of line-points invariant values generate the similar-
ity metric for matching that is less affected by mismatched interest points
than traditional approaches. Accurate homography recovered from the
invariant allows all lines, even those without interest points around them,
a chance to be matched. Extensive comparisons with the state-of-the-art
validate the matching accuracy and robustness of the proposed method
to projective transformations. The method also performs well for image
pairs with few textures and similar textures.

Keywords: Line matching · Projective invariant · Characteristic
number

1 Introduction

Feature matching is such a fundamental task in computer vision that it has
found wide applications in photogrammetry, image mosaicking, and object track-
ing etc. [2,7]. Points and lines are prone to be mismatched due to illumination
and viewpoint changes. In the last two decades, point matching methods have
been well studied [11,14], while lines are not so popular as points due to the
higher geometric complexity. Lines usually incorporate more semantic and struc-
tural information than points, and thus it is quite important to match lines in
the scenarios where lines are abundant. The scenarios include 3D modeling and
robot navigation in manmade scenes [6,13].

Most of existing line matching methods use texture information near lines as
descriptors. Wang et al. [17] proposed a SIFT-like descriptor, the mean-standard
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deviation line descriptor (MSLD). In many images, the textures in the vicinity
of line segments are not rich enough to assemble an effective descriptor. These
textures are also quite similar, possibly generating a less distinctive descrip-
tor. Moreover, MSLD is sensitive to scale changes that is quite common in fea-
ture matching. Zhang et al. [18] utilize both local appearance and geometric
attributes of lines in order to construct the line band descriptor (LBD). This
method requires a global rotation angle between images, which is not always
accurate. Texture based methods are typically sensitive to various image trans-
formations, and may fail on images of low texture images and similar textures.

Some methods match a group of lines instead of giving each line a descriptor
in order to obtain better performance in low texture images. In [15], line groups
are matched through a feature named line signature (LS), and a multi-scale
scheme is used to enhance the performance under scale changes. Unfortunately,
this process is computationally expensive. López et al. [9] combined geometric
properties with local appearance of a pair of lines and the structural context
of their neighboring segments. Nevertheless, both methods highly rely on the
endpoints of line segments. These endpoints are prone to be mismatched when
their locations are not accurate due to various image transformations and partial
occlusions.

Different from generating descriptors for lines or line groups, researchers
resort to epipolar constraints or geometric invariants for line matching. Simi-
lar textures and inaccurate endpoints have less effects on these constraints or
invariants. Lourakis et al. [10] used two lines and two points to build a projective
invariant to match lines. However, this method can only work on images with a
single plane. Al-Shahri et al. [1] exploited the epipolar geometry and coplanarity
constraints between pairs of lines. This method performs well in wide-baseline
images, but needs to estimate the fundamental matrix via the interest point
correspondences. This estimation relies on the accuracy of the point correspon-
dences, resulting in the chicken-and-egg dilemma. Fan et al. [4,5] provide two
kinds of invariants based on the distance between matched feature points and
lines. This method performs well under various image transformations. Again,
it highly depends on the accuracy of the matched interest points.

In this paper, we propose a novel line matching method based on a newly
developed projective invariant, named characteristic number (CN) [12]. Figure 1
sketches the work flow of the algorithm. As Fig. 2 shows, the line-points geome-
tries in the neighborhood of each line construct our new line-points invariant
upon CN robust to projective transformations. Hence, we are able to obtain
well-matched neighborhoods as well as the homography between these neighbor-
hoods. Finally, we incorporate more matched line pairs using this homography
for line matching. The main contributions are:

(1) a new line-points projective invariant constructed on the intersections of
coplanar lines that are more robust than those interest points matched upon
textural information;

(2) a similarity metric between line neighborhoods given by a series of line-points
invariant values less affected by mis-matched interest points;
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Fig. 2. Overview of matching neighborhoods and selecting line pair candidates. l and
l′ are a pair of lines; red dots represent the interest points (Color figure online)

(3) accurate homography between matched line neighborhoods recovered by the
intrinsic coplanar attributes of the new line-points invariant. All the lines
in image pairs have a chance to be matched. Thus, this strategy makes it
possible to exploit more potential matched line pairs without interest points
around them.

The rest of this paper is organized as follows. Section 2 introduces the projec-
tive invariant of characteristic numbers and from which the line-points invariant
is derived. The line matching method is deliberated in Sect. 3. Experiments and
results are reported in Sect. 4. Section 5 concludes the paper.

2 Line-Points Projective Invariant

In this section, a newly developed projective invariant characteristic number
(CN) [12] is introduced into the construction of line-points invariant due to its
geometric flexibility, and a new line-points invariant is constructed based on it.
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2.1 Characteristic Number

Cross ratio [8] is one of the fundamental invariants in projective geometry and
is widely used in computer vision applications [3,13]. The characteristic number
(CN) extends the cross ratio in various respects, and reflects the intrinsic geom-
etry of given points. Different from cross ratio, these points do not necessarily
lie on lines. This property provides the flexibility to describe the underlying
geometries by the points on and out of lines. We give the definition of CN below.

Definition 1. Let K be a field and P
m be m-dimension projective space over

K, and P1, P2, . . . , Pr be r distinct points in P
m(K) that construct a close loop

(Pr+1 = P1). There are n distinct points Q
(1)
i , Q

(2)
i , . . . , Q

(n)
i on the line segment

PiPi+1, i = 1, 2, . . . , r. Each point Q
(j)
i can be linearly represented by Pi and Pi+1

as
Q

(j)
i = a

(j)
i Pi + b

(j)
i Pi+1 (1)

Let P = {Pi}ri=1 and Q= {Q
(j)
i }j=1,...,n

i=1,...,r , the quantity

CN(P,Q) =
r∏

i=1

⎛

⎝
n∏

j=1

a
(j)
i

b
(j)
i

⎞

⎠ (2)

is called the characteristic number of P and Q.

2.2 Construction of Line-Points Projective Invariant

Interest points and lines are used to construct the line-points projective invari-
ant. Generally, the most representative points of a line are the endpoints, but
due to various changes between images, the line extraction methods usually can-
not provide accurate endpoints. However, if two lines are located on the same
plane, the location of their intersection to the object remains unchanged under
projective transformation. We make a rough hypothesis that if the intersection
of two lines is very close to one of the endpoints, the two lines are likely to be
coplanar. Given a line l, suppose e is one of its endpoints. For all the intersec-
tions on line l, if o is the nearest intersection to e and the distance between o
and e is smaller than 0.1 ∗ length(l), o is chosen to substitute e as a key point
of l. Only in the case that there is no such intersection available near an end-
point, the endpoint itself will be a key point. Further, in order to reduce pseudo
intersections produced by collinear and parallel lines, we set a threshold for the
angle between two lines. In our experiment, if the angle is not greater than π/8,
their intersection will be abandoned. We also define the gradient of a line as
the average gradient of all points on it. As shown in Fig. 3, two black arrows
illustrate the gradient directions of lines a and b respectively. In order to keep
rotation invariant, for line a, the area directed by the line gradient is denoted as
Right(a), and the other side is Left(a). In a clockwise direction, the key point
on the edge from Left(a) to Right(a) is denoted as KP 1

a and the other is KP 2
a .
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invariant.

We use five points to construct the line-points projective invariant. As shown
in Fig. 4, KP 1

l and KP 2
l are two key points on line l, P1, P2, and P3 are three

non-collinear interest points on the same side of l. We denote the line through two
points, Pi and Pj , as PiPj and the intersection of two lines, PiPj , and PkPm, as
<PiPj , PkPm>. We can obtain several intersection points (blue dots), including
U = <KP 1

l P1,KP 2
l P3>, V = <KP 1

l P1, P3P2>, W = <P1P2,KP 2
l P3>, T =

<KP 1
l P3, P1KP 2

l >, M = <KP 1
l KP 2

l , UP2>, and N = <KP 1
l KP 2

l , UT>. Thus
we have �KP 1

l UKP 2
l with two points on every side. Thereafter, we are able

to calculate CN with P = {KP 1
l , U,KP 2

l } and Q = {P1, V,W,P3,M,N}. We
denote the CN constructed in this way as FCN(KP 1

l ,KP 2
l , P1, P2, P3).

3 Line Matching

In this section, a two-stage line matching algorithm is designed to obtain as
many matched line pairs as possible with high accuracy. In the first stage, the
similarities between line neighborhoods are calculated. In the second stage, the
homography transformations between matched coplanar neighborhoods are cal-
culated, creating some bases on which more matched line pairs can be exploited.

3.1 Similarity Between Line Neighborhoods

Neighborhood Definition. Line neighborhoods provide structural informa-
tion around each line. In this paper, the neighborhood is determined by the
length of the line to keep invariant to scale changes. As shown in Fig. 5, in
the neighborhood of line l, the distance from any interest point to l is less than
α∗length(l) and less than β∗length(l) to the perpendicular bisector line. If point
p is in the neighborhood of l, it is denoted as p ∈ LPSl. In our experiments, α
is set as 2.0 while β is set as 0.5.

As many lines are formed by the intersection of planes, points located on
different sides of a line may not be coplanar. Hence, the neighborhood is split
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l

l

l

Fig. 5. The neighborhood of a line (Color figure online)

into left one and right one according to the gradient direction, which is detailed
in Sect. 2.2 and Fig. 5. The left neighborhood is denoted as LPSL

l and the right
one is LPSR

l , which are represented in Fig. 5 in red and blue, respectively.

Neighborhood-to-Neighborhood Similarity Measure. Suppose there are
two images, I and I

′
, of the same subject from different views. The set of

lines detected in each image is denoted as L = {a1, a2, . . . , an} and L′
=

{b1, b2, . . . , bm}. The matched interest points set in the two images is denoted as
C = {(xi, yi), i = 1, 2, . . .}(some matches are not correct), where xi and yi are
matched interest points in I and I

′
respectively.

The similarity between line neighborhoods is measured by the line-points
invariant with matched interest points in the neighborhood. For line l, LPSL

l and
LPSR

l are evaluated separately. We take LPSR
l as the example in the following

steps.
Given a pair of lines a ∈ L and b ∈ L′

, the matched interest points in LPSR
a

and LPSR
b compose a set: {(xi, yi)|xi ∈ LPSR

a , yi ∈ LPSR
b , (xi, yi) ∈ C, i =

1, 2, . . . , N}, where N is the number of matched interest points. If N < 5, we
set the similarity between the two neighborhoods as 0. Otherwise, we select one
pair of points (xi, yi) as the ith base point pair each time, giving us N base
point pairs. For each base point pair, another two pairs (xj , yj) and (xk, yk) in
the remaining N − 1 pairs can be used to calculate FCN(KP 1

a ,KP 2
a , xi, xj , xk)

and FCN(KP 1
b ,KP 2

b , yi, yj , yk). We have C2
N−1 choices, which means we have

C2
N−1 FCN values to represent the relationships between each base point and

the line. The rth (r = 1, 2, . . . , C2
N−1) FCN value for the ith base point pair

is denoted as FCNa
i (r) and FCN b

i (r), respectively, and the similarity between
the two values is calculated by:

S(r) = e−||FCNa
i (r)−FCNb

i (r)||.

Then we can get C2
N−1 similarities for the ith base point pair, and the median

value is used as the similarity of the ith base point pair to reduce the effect of
mismatched points.

SIM(xi, yi) = median{S(r)}, r = 1, 2, . . . , C2
N−1.
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Finally, the similarity of LPSR
a and LPSR

b is denoted as the base point pair
with the max similarity:

SIMR(a, b) = max{SIM(xi, yi)}, i = 1, 2, . . . , N.

Finally, if in image I ′, for all the neighborhoods of lines on the right side,
LPSR

b has the max similarity with LPSR
a , and in image I, LPSR

a has the max
similarity with LPSR

b as well, then we take LPSR
a and LPSR

b as a pair of
matched line neighborhoods on the right side. The same method can be used to
get matched line neighborhoods on the left side.

3.2 Matching Lines by Homography Transformation

The property of line-points invariant indicates that if the similarity between two
neighborhoods of lines is very high, most of the interest points in the neighbor-
hoods are very likely to locate on the same plane area. Thus, the homography
H between the two neighborhoods can be calculated by matched points with
Random Sample Consensus (RANSAC). Then for each line a ∈ L in image I
and b ∈ L′

in image I ′, we can map a to a′ via a′ = Ha, and map b to b′ via
b′ = H−1b.

We then use two constrains to screen the potential matching lines, taking the
line a and the mapped line b′ in image I for example.

1. Vertical distance constraint: As illustrated in Fig. 6(a), d1 and d3 are the
distances from the endpoints of line a to line b′, while d2 and d4 are the
distances from the endpoints of line b′ to line a. The distance between line
a and line b′ is denoted as dv(a, b′) = max(d1, d2, d3, d4). If dv(a, b′) < γ,
then a and b′ satisfy the vertical distance constraint. This constraint ensures
two lines are vertically near to each other, where γ is set to 3 pixels in our
experiment.

2. Horizontal distance constraint: As illustrated in Fig. 6(b), the distance
between the midpoint of line a and line b′ is denoted as dh. If dh <
(length(a)+length(b′))/2, then the two lines satisfy the horizontal constraint.
This constraint ensures two lines are horizontally near to each other.

If a and b′ satisfy both constraints while the corresponding lines a′ and b also
satisfy both constraints, then line a and b are regarded as a pair of candidates. In
practice, there may be one line in one image satisfying the constraints with sev-
eral lines in another image, and the candidates calculated from different matched
neighborhoods may also be different. In order to pick out the best-matched line
pairs, a weighted voting strategy is used.

We construct a voting matrix V with size n ∗ m, where n and m are the
number of lines in images I and I ′, respectively. All elements are initialized by
0, which will be updated by the matched neighborhoods.

For a pair of matched neighborhoods LPSR
a and LPSR

b , we suppose they
are well matched with similarity SIMR(a, b). As the accuracy of the candidate
selection is affected by the accuracy of H, and H is calculated by the matched
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Fig. 6. Two constraints to obtain matching lines

points in LPSR
a and LPSR

b , we take the similarity between two matched neigh-
borhoods into account. For example, if ai ∈ L and bj ∈ L′

are regarded to be a
pair of candidates based on H as calculated from LPSR

a and LPSR
b , then V is

updated by Vi,j = Vi,j + SIMR(a, b).
After all the matching neighborhoods in image I and I ′ are used to update

V, if Vi,j is greater than 0.9 and is the maximum between both the ith row and
the jth column, then line ai and line bj are regarded as matched lines.

4 Experiments

To evaluate the performance of our method, another two state-of-the-art line
matching methods are used for comparison: LP [4,5] and CA [9]. Both imple-
mentations are provided by their authors, and they are selected due to their
good performance dealing with a wide range of image transformations. In order
to follow the same protocol, we use the line detection method LSD [16] when
comparing with LP, while taking the detector used in [9] when comparing with
CA. In addition, the interest points used in our method and in LP are detected
and matched by SIFT [11]. We test the proposed method in four conditions to
verify its robustness to different changes: rotation, scaling, occlusion, and view-
point changing. Most of the images used in our experiments are the same as [4,5].
In the viewpoint change experiment, we test the proposed method on both low
texture images and high but similar texture images to illustrate the robustness
of our methods to interest points changing on number and quantity.1

The results of the proposed method are shown in Figs. 7, 8, 9, 10, 11 and 12,
where the matched lines are labeled in red with the same number. The statistical
results are listed in Tables 1 and 2. The first column is the label of image pairs,
and the second column is the number of lines detected from the image pair.
The last two columns show the correct matched lines/total matched lines, and
the correct rates of our method and the compared method. Besides the correct
rates, the count of total matches also weighs the performance as more candidates
of matched lines are likely to render robustness to subsequent processing such
1 The source code of the proposed method is available at https://github.com/

dlut-dimt/LineMatching.

https://github.com/dlut-dimt/LineMatching
https://github.com/dlut-dimt/LineMatching
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Fig. 7. Results under rotation changes (Color figure online)

as stereo reconstruction and panorama stitching. Also, the more total matches
there are, the more difficult it is to generate correct matches.

Rotation changes: In rotation transformation, the length of lines, angles and
relative positions between lines are kept. Our result is shown in Fig. 7, and
the details are shown in the first row of Tables 1 and 2. We can see that the
matching precision of the three methods are all 100 % for all the methods are
rotation invariant. However, the proposed method gets 4 more correct matched
pairs than LP, and 53 more correct matched pairs than CA.

Scale changes: As shown in Fig. 8, the length of lines are changed in scale
changes, resulting in some lines disappearing. Both LP and our method perform
well with the number of correct matched lines are 121 and 131, respectively. The
accuracy for both the proposed method and LP are more than 98 %, while the
accuracy for CA is less than 70 % for CA depends on the position relationship
between lines. The lines may disappear in large scale changes which badly affects
the result.

Further, we test our method on the images with both rotation and scale
changes, as shown in Fig. 9. As shown in Tables 1 and 2, our method outper-
forms other methods with accuracy of 93 %, while the accuracy of LP drops
to 88.9 % and CA cannot get any correct matches for most lines disappear, as
shown in Fig. 9. The results indicate that our method is robust in sever image
transformations with the number of lines and interest points changing.

Occlusion: In the condition of occlusion, the endpoints and the length of lines
are greatly changed, and methods based on such attributes may fail. We give
our result in Fig. 10 and the 4th rows of Tables 1 and 2. The proposed method
has a matching precision of 100 %, while LP and CA are 98.6 % and 95.8 %,
respectively. The proposed method gets 9 and 24 more correct matches than
LP and CA, respectively. In particular, the correct matched lines are twice that
of CA. This result validates the robustness of our method as regards endpoints
changing.

Viewpoint changes: Viewpoint changes are very common in reality. We test
two groups with three images in each group. In each group, the first image
is regarded as the reference image and the other two are query images, thus
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Fig. 8. Results under scale changes (Color figure online)
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Fig. 9. Results under scale changes plus rotation (Color figure online)
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Fig. 10. Results under occlusion (Color figure online)

providing us two pairs of images for each group. The first group contains three
low texture images, while the second group has high texture images, and many
local parts of which are similar. Both groups are very challenging.

Our results on the first group are shown in Fig. 11 and are detailed in the
5th and 6th rows of Tables 1 and 2. The proposed method and LP get all the
matches correct, but CA gets only 91.1 % in the first pair and failed to get any
matches again in the second pair under larger viewpoint changes. We also get
26 and 16 more correct pairs than LP, and 19 and 22 more pairs than CA. Our
results on the second group are shown in Fig. 12 and are detailed in the last two
rows of Tables 1 and 2. The matching precision of LP and CA are about the
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Fig. 11. Results on low texture images with viewpoint changes (Color figure online)

same as the proposed method, however, we get 25 and 28 more correct matches
than LP and get 35 and 38 more correct matches than CA.

The experiments show that the proposed method is robust in projective trans-
formation. In addition, LP [4,5] used an affine invariant with 1 line and 2 points
in [4], while [5] used an additional projective invariant with 1 line and 4 points.
Let N is the number of lines and M is the number of points in both images,
the complexity of LP is O(N2M2) to be invariant to affine transformations
and is O(N2M4) to be invariant to projective transformations. The proposed
method is invariant to projective transformations with complexity O(N2M3)
only. Although LP can also be projective invariant, it depends on the accuracy
of matched interest points. When there are few interest points in low texture
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Fig. 12. Results on high texture images with viewpoint changes (Color figure online)
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Table 1. Comparison of the proposed method and LP

Images Extracted Proposed method LP

Figure 7(a)–(b) (272, 237) (194/194, 100 %) (190/190, 100 %)

Figure 8(a)–(b) (315, 225) (131/133, 98.5 %) (121/122, 99.2 %)

Figure 9(a)–(b) (540, 202) (53/57, 93.0 %) (40/45, 88.9 %)

Figure 10(a)–(b) (210, 153) (77/77, 100 %) (68/69, 98.6 %)

Figure 11(a)–(b) (94, 78) (56/56, 100 %) (30/30, 100 %)

Figure 11(c)–(d) (94, 101) (38/38, 100 %) (22/22, 100 %)

Figure 12(a)–(b) (247, 234) (148/154, 96.1 %) (123/126, 97.6 %)

Figure 12(c)–(d) (247, 233) (126/141, 89.3 %) (98/112, 87.5 %)

Table 2. Comparison of the proposed method and CA

Images Extracted Proposed method CA

Figure 7(a)–(b) (196, 181) (137/137, 100 %) (84/84, 100 %)

Figure 8(a)–(b) (241, 202) (97/101, 96.0 %) (41/59, 69.5 %)

Figure 9(a)–(b) (386, 123) (18/20, 90.0 %) (0/0, 0 %)

Figure 10(a)–(b) (169, 134) (47/47, 100 %) (23/24, 95.8 %)

Figure 11(a)–(b) (92, 87) (50/50, 100 %) (41/45, 91.1 %)

Figure 11(c)–(d) (92, 101) (22/22, 100 %) (0/0, 0 %)

Figure 12(a)–(b) (217, 219) (93/99, 93.9 %) (58/62, 93.5 %)

Figure 12(c)–(d) (217, 209) (91/95, 95.8 %) (53/55, 96.4 %)

images or a large number of mismatched interest points in high texture images
with similar parts, the accuracy significantly declines.

5 Conclusion

In this paper, a new line-points projective invariant is proposed, which is used
to compute the similarities between line neighborhoods. An extending matching
strategy is also adopted to exploit more potential matching lines. Experiment
results show that the proposed method is robust against many distortions, and
can achieve better performance than some existing state-of-the-art methods,
especially in images with low texture and large viewpoint changes. Moreover, the
proposed method is based on the planar projective invariant, so the performance
for non-planar scenes may not be as good as planar scenes.
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