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Abstract. Sign language recognition (SLR) is an interesting but dif-
ficult problem. One of the biggest challenges comes from the complex
inter-signer variations. To address this problem, the basic idea in this
paper is to learn a generic model which is robust to different signers.
This generic model contains a group of sign references and a correspond-
ing distance metric. The references are constructed by signer invariant
representations of each sign class. Motivated by the fact that the probe
samples should have high similarities with their own class references,
we aim to learn a distance metric which pulls the samples and their
true sign classes (references) closer and push away the samples from the
false sign classes (references). Therefore, given a group of references, a
distance metric can be exploited with our proposed Reference Driven
Metric Learning (RDML). In a further step, to obtain more appropriate
references, an iterative manner is conducted to update the references and
distance metric alternately with iterative RDML (iRDML). The effec-
tiveness and efficiency of the proposed method is evaluated extensively
on several public databases for both SLR and human motion recognition
tasks.

Keywords: Sign language recognition - Signer independent - Inter-
signer variations - Metric learning - Human motion recognition

1 Introduction

As a key technology to help breaking the communication barrier between the deaf
and the hearing, SLR has become an important research area in computer vision.
Over the last twenty years, SLR has made some progresses [1-4]. However, most
of the researches focused on signer dependent situation, in which the signer of
the probe has been seen in the training set. In real applications, the performance
will decrease dramatically when the user is new to the system. Since collecting
enough training data from each new signer to retrain the SLR model is not
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realistic, the signer independent SLR is an urgent problem for the practice of
SLR technique.

In this paper, the signer independent isolated SLR is tackled by learning a
generic model which is composed of the references for all the sign classes and
a corresponding distance metric. Given a group of references, the correspond-
ing distance metric could be learnt by constraining that each sample should be
closer to the reference of its own class than any other references. This proce-
dure is realized by our proposed Reference Driven Metric Learning (RDML)
algorithm. To obtain the appropriate references, iterative RDML (iRDML) is
adopted. In each iteration, the constraint between samples and references could
also be used to optimize the references one-by-one with current distance metric.
When the iterative optimization is convergent, the final model (references and
the distance metric) is robust to different signers because it is derived from the
multiple signers’ data and captures the generic characteristics. Since each class
is represented by a single generic reference, the probe only needs to compare
with all the references instead of the training samples. The time cost in recogni-
tion stage of our method is rather smaller than the conventional sample-based
methods.

The contribution of our work mainly lies in the following three aspects.
Firstly, a new framework for signer independent isolated SLR is proposed. In
this framework, inter-signer variations are handled by learning a generic model
which is robust to different signers. Secondly, RDML is proposed to learn a dis-
tance metric based on given references by constraining the distances between all
training samples and the references. Thirdly, we propose an iterative manner to
optimize references and distance metric alternatively so that a group of more
appropriate generic references and the corresponding distance metric could be
gotten.

The remainder of this paper is organized as follows: Sect.2 briefly reviews
the related work. Section 3 introduces our proposed method. Section 4 gives the
details of the implementation on SLR. The experimental results are presented
in Sects. 5 and 6 concludes the paper.

2 Related Work

In this section, we will briefly review the related work in two areas: signer inde-
pendent SLR and metric learning.

2.1 Signer Independent SLR

There are broadly two kinds of solutions for signer independent SLR problem.
One is signer adaptation, i.e. using the data of the new signer to adapt the pre-
vious model. The other is generic model, which means only one robust model
is used for different signers. Of course, the signer invariant feature extraction
also belongs to this category. In the first category, borrowing from speech recog-
nition, Agris et al. [5] used Maximum Likelihood Linear Regression (MLLR)
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Fig. 1. Framework of signer independent SLR with the proposed iRDML. The sign s’
stands for the nth sample for sign class i and f;* is the feature extracted from sign s7'.
r; is the reference learnt for sign class i.

[6] and Maximum A Posteriori (MAP) [7] for signer adaptation. Later, they
extended their work to continuous SLR [8] through combining the eigenvoices
[9], MLLR and MAP. Farhadi et al. [10] introduced transfer learning to sign
language recognition and addressed signer independence. They designed a com-
parative feature which is both discriminative and semantically similar based on
the assumption that segments of different signs look similar to one another.
They obtained recognition rate of 64.2% on a new signer with 90 dictionary
words. In the second category, most of them tried to address signer indepen-
dence implicitly and concentrated on the inter-signer variations caused by the
standing positions of the signers, the signers’ heights and different movement
epentheses. Zieren and Kraiss [11] used the features normalized for signer inde-
pendence and adopted HMM to classify. With six different signers, they reached
accuracy of 95.0% and 87.8% with vocabulary size of 6 and 18 respectively.
Shanableh and Assaleh [12] filtered out signer dependent information by encap-
sulating the movements of the segmented hands in a bounding box. Kong and
Ranganath [13] realized signer independent recognition on continuous sign lan-
guage. They removed movement epenthesis (ME) by using a segment and merge
approach to decrease the inter-signer variations in ME and used a two-layer CRF
classifier for recognition. The proposed method in this paper also belongs to the
second category and our target is to learn a generic model which is robust to
different signers. Our method focuses on the inter-signer variations caused by
variant movements or hand shapes when performing signs of different signers.

2.2 Metric Learning

Metric learning is widely used in many areas in machine learning, such as
image classification [14], ranking [15,16] and kinship verification [17]. It can be
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categorized into supervised metric learning, unsupervised metric learning and
semi-supervised metric learning. In supervised metric learning, most of the meth-
ods constrain the relationships between the training samples. Xing et al. [18] for-
mulated the problem as a constrained convex programming algorithm. In [19],
a Mahalanobis distance was learnt from the information-theoretic perspective
by minimizing the differential relative entropy. RCA introduced in [20] aimed to
find a transformation that amplifies relevant variability and suppresses irrelevant
variability. Weinberger et al. [21] proposed large margin nearest neighbor classi-
fication (LMNN) and the object is to pull the data with same labels closer while
pushing data with different labels far apart. Chai et al. [22] extended LMNN by
introducing local mean vectors. In unsupervised metric learning, the geometric
feature of the data is explored and preserved. The typical methods of unsu-
pervised metric learning include principal component analysis (PCA), locally
linear embedding (LLE), locality preserving projections (LPP) and Laplacian
eigenmap (LE). There are also some semi-supervised metric learning algorithms
fusing both supervised and unsupervised metric learning. Wang et al. [23] used
PCA as the unsupervised constraint term and integrated it into RCA. Baghshah
and Shouraki [24] considered topological structure of data using the idea of LLE.
Niu et al. [25] maximized the entropy on labelled data and minimized the entropy
on unlabelled data following entropy regularization.

In this paper, we propose a new supervised metric learning method. Different
from the algorithms mentioned above, the metric is learnt by constraining the
distances between the training samples and the generic references of classes.

3 Proposed Method

3.1 Basic Idea

Figurel is the framework of our signer independent SLR method. Let S =
{s1,5%,...,5%} be the training set and each s? € S is the nth training sample for
sign class i. Firstly, the features are extracted F = {f], fZ,..., f&}. In the train-
ing stage, a generic model which includes a group of references and a distance
metric is learnt with the training features. The references and the distance metric
are optimized alternately until convergence. Concretely speaking, with a given
metric, a group of references can be updated and with the given references, the
distance metric can be updated. Specifically, the algorithm learning the distance
with given references is the proposed RDML, and the iterative optimization of
distance metric and references is iRDML. In the recognition stage, firstly the
fragment-based feature f, is extracted from the probe sign s,. Then the label of
it can be predicted with the previous learnt generic model as follows:
*

¢ = argmin d(fp,7e), (1)
ce{1,...,C}

where d( fp, 7c) is the distance between f,, and a specific reference r. with distance
metric M.
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Fig. 2. Illustration of RDML.

The basic idea of our method is to learn a generic model which is robust to
different signers. In the initialization of the training stage, firstly, the reference,
i.e. a signer invariant description of each sign class is represented approximately
by a simple mean of all samples within the specific class. Once the references are
given, the generic distance metric can be optimized accordingly. To derive the
optimized metric, a constraint that all the samples from different signers should
be close to their corresponding references is considered. Concretely speaking, we
minimize the distance between the samples and the corresponding references and
maximize the distance between the samples and the other references. Actually,
the references for various signs are not predefined or accessible in sign language.
Thus we use an iterative manner to learn the appropriate sign references and
update the corresponding metric from the plenty of training samples performed
by multiple signers.

3.2 RDML

Let X = {Xi,Xs,..,X¢c} be the labeled training data and X; =
{zi1,%i2,...,Tin,} are the training samples of ith class. For each class i =
1,2,...,C, it is assumed that there exists a generic reference r;. Then the goal of
our reference driven metric learning (RDML) is to seek a good metric d(xz; ;, %)
so that the distance from a data point ; ; to its reference r;(d(z; j,7;)) is smaller
than the distances to other references ri(d(x; j, %), k # 7).

Figure 2 is the illustration of the objective function. In Fig. 2, the stars stand
for the references and the circles are the training samples. The red and blue
colors represent different classes. z;; is the jth sample of ith class and r; is
the reference of ith class. In the original space, for some training samples, such
as x;m and xy p, the distance to its corresponding reference is larger than the
distances to some other references. The goal of our proposed method is to pull
the samples closer to their true references and push them away further from the
false references.

The distance metric d could be formulated with a square matrix M:

d(wi g, ) = (w35 — i) M(2i 5 — 1), (2)
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where M is an m x m square matrix and m is the dimension of z; ;. So the
RDML becomes an optimizing problem with the following objective function:

min f(M) = f1(M) + f2(M), 3)

where term f1(M) is to pull the samples to their corresponding references as
close as possible and the term fo(M) tries to push the samples far away from
the false references.

The first term is to minimize the within-class distance, which is defined as
the distance between the samples and their true references. It can be directly
formulated as the sum of all these kinds of distances:

C n;
FM) =373 " d(wsj,m). (4)

i=1 j=1

The second term constrains that each sample should be closer to the true
reference than the references of other classes. So only those samples which violate
this rule are penalized. Here we use hinge loss [z]4 = maxz(z,0) in our loss

function:
C N, C

F(M) =N "N [ d(wi i) — d(@i g, me)l- (5)

i=1 j=1 k=1

So the final objective function is

mIViInf(M) =f1(M) + f2(M)

C n; c n; C

=D d@ig,r) + YYD [+ d(ig, i) = d(wig, )]+
i=1 j=1 i=1 j=1 k=1
C ny

=> > (@i —ri) M(ziy — 1)

i=1 j=1

Cc n; C
+ Z Z Z [1 + (Iﬂi,j — Ti)TM(fiJ‘ — Ti) —(1’1'7]' — Tk)TM(Jii,j — rk)]

i=1 j=1k=1 +

(6)

To optimize Eq. (6), gradient descent algorithm is adopted. Let C{fj = (2 —
r6)(zi; — k)T, Eq. (6) can be rewritten as:

n, C

C n; C
FOD =33 "tr (MO )+ YY) [+ tr(MCL ) — tr(MCF)]s. (7)

i=1 j=1 i=1 j=1k=1

Here we define an active triplet set S,, so that (i,4,k) € S, could trigger the
hinge loss of fo(M) in Eq. (5), i.e.,

1+d($i,ja7ﬁi) > d($i7j,7“k). (8)
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So the gradient G of f(M) is

o= Y S Y (k) (9)

i=1j=1 (i,5,k)ESa

The optimization of RDML is shown in Algorithm 1, and the initial input dis-
tance metric M can be the identity matrix I or any predefined square matrix.

Algorithm 1. Optimization of RDML.
Require: Initial distance metric M, Training set X, References R
Ensure: Distance metric M

1: while not converged do

2:  update S, based on Equation (8)
3:  compute G based on Equation (9)
4: M «—— M — stepsize x G

5: end while

6: return M
3.3 iRDML

In above mentioned RDML, the references are assumed to be known already.
However, in many situations, the references are not well defined or accessible.
Although the center of each class can be used as approximate reference, it does
have the difference with the real generic reference for involving many noisy ele-
ments. So in this paper, we try to learn more appropriate references in an iter-
ative manner for subsequent modelling and classification.

With a given distance metric M, Eq. (6) can be seen as a function of refer-
ences R:

min f(R) =f1(R) + f2(R)

c
DN WIS

i=1 j=1

Uz

c (10)
Z 1+d(zij,mi) — d(wij,me)]+-

1j=1k=1

This problem could be solved iteratively by optimizing each reference r; while
fixing other references ry(k # i) with gradient descent algorithm. For each ref-
erence 7;, we define two active sets S} and S5:

St = {( k) + d(aig,mi) > dlxig, )} (11)

S5 = {4, )1+ d(xr,j, 1) > d(wp j,7m5)}- (12)
Then the gradient can be represented as:

= Z {El N T‘Z + Z ZM(CUL"J' — 7‘1') — Z QM(:B]C’J — T'i). (13)

87‘1 ] ) ) .
(J,k)ES] (4,k)ESS
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Algorithm 2. Optimization of References.
Require: Initial references R, Distance metric M, Training set X
Ensure: Updated references R

1: while not converged do

2 for i=1to C do

3 while not converged do
4 update active sets St and S3
5 g =5

6: Ty «— T — stepsize X g
7

8

9
10

end while
end for
: end while
: return R

The optimization of references is shown in Algorithm 2. The initial references R
can be the class centers or any given references.

With a given M, a new group of references R can be learnt one-by-one with
fixing the others as described in Algorithm 2. While with a given R, a new
distance metric M can be optimized with Algorithm 1. This is a chicken-and-egg
problem, so we try to solve it by alternately optimizing M and R iteratively.
Algorithm 3 summarizes the procedure of our iterative Reference Driven Metric
Learning (iRDML) algorithm.

Algorithm 3. Optimization of iRDML.
Require: Training set X
Ensure: Updated references R, Updated metric M
: for i =1to C do

i = e 2T T
end for
initialize M using Algorithm 1 with R
while not converged do

update R with Algorithm 2

update M with Algorithm 1
end while
return R and M

4 Implementation

4.1 Training

In the training stage, the features are extracted from all training samples. The
optimal references R and the corresponding distance metric M are learnt with
the proposed iRDML method (Algorithm 3). Since M is a positive semi-definite
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matrix, it could be decomposed as M = LTL. So the Mahalanobis distance
between a data point x; ; and a reference r;, with matrix M is

D(z; j,r,) = \/(ng — )T M (25 — 1)

(14)
= \/(L.'L‘i’j — er)T(La:i,j — LTk).

Equation (14) shows that the Mahalanobis distance with matrix M is equivalent
to Euclidean distance of the data in the projected space transformed by matrix L.
Therefore, all the references are projected with L for the subsequent recognition.

4.2 Recognition

In the recognition stage, the probe sample x,, is firstly projected with L. Then
the class label of probe data z, can be predicted as:

" = argmin dgye(Lzy, Lre), (15)
ce{1,...,.C}

where dg, means Euclidean distance metric.

5 Experiments

To evaluate the performance of the proposed iRDML method, we conduct the
experiments on SLR both on public DEVISIGN database and our own collected
datasets. Further, we also validate the algorithm on action recognition task on
HDMO05 dataset.

5.1 Evaluation on DEVISIGN Database

In this subsection, we evaluate our method on DEVISIGN database and the fair
comparison on this public database will validate the effectiveness and efficiency
of the proposed iRDML.

Datasets. Although there existed some public sign language datasets, there
are not many choices to conduct a fair comparison. Many works reported their
performance in their own selected subset from the public dataset. Here we choose
DEVISIGN [26] dataset for our experiments.

All the experiments conducted on DEVISIGN-L follow the evaluation proto-
col in [26]. 8 groups of data from 4 signers form the training set and the data
from other 4 signers are the test data.



iRDML for Signer Independent Isolated SLR 443

Evaluation on Different Features. In our implementation, we adopt the
recent fragment-based feature [27]. Fragment-based feature is designed to
describe the sequential data such as sign language data. In the implementation
of fragment-based feature, each sign is divided into 5 fragments. The feature of
each fragment contains both trajectory and hand shapes. The motions of these
5 joints (left hand, right hand, left elbow, right elbow and head) form the trajec-
tory features. The dimension of trajectory feature in each fragment is 120. For
the hand shape feature, HOG descriptor of the typical frame in each fragment
is selected to describe the appearance of the hand shape. In order to reduce the
computing time, the feature dimension for the final hand shape representation
is reduced to 165 from the original 648 by PCA technique. By concatenating
the trajectory and hand shape features, the vector to characterize each frag-
ment is generated. With the fragment partition, each sign can be represented by
concatenating features of all sequential fragments.

We evaluate our method with two different features. One is the fragment-
based feature. The other is frame-based feature, which is widely use in con-
ventional SLR algorithm, such as HMM, DTW etc. In our implementation of
frame-based feature, different from the traditional dense frame-based feature,
the sparse frame-based feature is generated by linear interpolation to normal-
ize the dimension of the final feature vector so that it can be fed into iRDML.
Specifically, skeleton pairwise feature [28] and HOG features of hand shapes
are extracted from each frame, and then interpolated into 15 frames. The final
dimension of frame-based feature is 2625 and the dimension of fragment-based
feature is 1425.

We conducted the experiments on the proposed iRDML and a classical metric
learning method (LMNN [21]) to evaluate the representative ability of the two
kinds of features mentioned above. In iRDML, the means of the sign classes are
used as initial references directly.

From Fig. 3, it is obvious that fragment-based feature has a better perfor-
mance than frame-based feature, no matter with LMNN or iRDML. Figure 3
also shows that the improvement from frame-based feature to fragment-based
feature with LMNN is much more than that with iRDML. The reason should
be that comparing with frame-based feature, fragment-based feature is more
robust to different signers, which brings the obvious improvement of LMNN.
While for iRDML, our generic model is already derived from different signers, so
the enhancement of using fragment-based feature is less obvious. In the following
experiments on SLR, the inputs for LMNN and our (i)RDML methods are all
fragment-based feature.

Comparison Between RDML and iRDML. In our iRDML, since the ref-
erences and the metric are optimized iteratively, we would like to show how the
performance changes with the iterations in this subsection. In our test, the con-
vergence condition of the iterations is set to |R; — Ry—1| < 0.001. Figure 4 gives
the accuracies of RDML and iRDML with different iterations. Comparing with
RDML, the improvement of iRDML is significant. One point should be noticed
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that the accuracy of the first iteration in iRDML is higher than RDML. The
reason is that in RDML, the class centers are used as references and the metric
is learnt accordingly while in the first iteration of iRDML, the references are
updated based on the metric learnt in RDML. Besides the comparison between
RDML and iRDML, Fig.4 also clearly shows how the performance of iRDML
increases with iterations.

Comparison with Existing Methods. In this part, we will evaluate the
performance of our algorithm by comparing it to some other methods reported
n [26], which are HMM, DTW, ARMA and GCM respectively. LMNN [21] is
one of the most classic metric learning algorithm, so it is also compared in our
experiments. In RDML, the class centers are used as references directly, and the
class centers are also used as initialization for iRDML.

Comparison on Accuracy. Firstly, the accuracies of different methods are com-
pared and listed in Table 1. From the table we can see that RDML and iRDML
consistently outperform the other methods. Comparing with HMM, DTW and
ARMA, the accuracy is improved by about 20 percentage points. While for GCM
and LMNN;, our iRDML still achieves 5 percentage points enhancement.

Comparison on Time Cost. One of the important advantages of our proposed
method is that it costs less time in recognition stage. The reason mainly lies in

Table 1. Comparisons with other methods on DEVISIGN database.

Method Chai et al. [26] LMNN [21] | Ours

HMM | DTW | ARMA | GCM RDML | iRDML
Acc. (%) |34.44 38.35[39.03 |51.81 51.49 53.30 |56.85
Time (ms) | 507.4 | 15778 | 1842 534.7 | 1.174 0.213 |0.213
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two folds. On one hand, the computation cost of the linear distance metric is low.
On the other hand, in our (i)RDML, the probe only needs to compare with the
references instead of all the training samples. We record the recognition time of
all the test signs and calculate the average recognition time. Here the recognition
time doesn’t count the time for feature extraction since all the methods share
approximately same amount of time for feature extraction. The experiments are
run on a regular PC equipped with Intel Core i7 and 10 GB RAM, which is
similar to the experiment conditions in [26]. The time costs of different methods
are given in Table 1.

From Tablel, it can be seen that HMM, DTW, ARMA and GCM cost
much more time than the metric learning based methods (LMNN, RDML and
iRDML). The difference between them is three or four orders of magnitude.
Comparing with LMNN, (i) RDML is faster in recognition stage because only
the references are used for recognition. This advantage of (i)RDML over LMNN
on time cost will be more and more significant when the size of the training data
is increasing.

5.2 Evaluation on Our Own Dataset

In order to fully evaluate the proposed method, we have collected two datasets
with Kinect by ourselves. These two datasets are used for signer independent
and singer-dependent evaluations respectively.

Dataset. Dataset 1 is used for signer independent test. The vocabulary size is
1000. There are 7 signers and each signer performed 1000 signs only once. The
7 groups of data performed by different signers in Dataset 1 are referred as I'1,
12,... and I7.

Different from the multiple signers in Dataset 1, Dataset 2 only has one signer
who performed the same 1000 vocabulary with three repetitions. This dataset is
used for the purpose of signer dependent evaluation.

Signer Independent Evaluation. In this part, we will evaluate our algorithm
on Dataset 1 and compare with other methods. Besides HMM [29], DTW [30],
ARMA [31] and LMNN [21], we also compare with two other classical metric
learning methods: ITML [19] and CSML [32]. For the earlier three methods,
the fused frame-based feature is adopted, which is generated by contanating
the trajectory and hand shape. Specifically, the trajectory feature is skeleton
pairwise feature [28] and the hand shape is described by HOG feature. While for
metric learning based methods, we still use the fragment-based feature.

The leave-one-out cross validation is conducted on the seven groups of data
from Dataset 1 and all the results are shown in Table2. Each row with the
group name ‘In’ means the accuracy in this row is evaluated by taking group
‘In’ as probe data. From the table we can see that iRDML still has the highest
performance on this dataset. The last row in Table 2 gives the standard devia-
tions of different methods. iRDML shows relatively stable performance with the
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Table 2. Accuracy (%) comparisons on Dataset 1.

Method | I1 |12 |I3 |14 |I5 |16 |I7 |Ave.|sd.
HMM | 57.4|57.1|58.7|55.9|55.9/61.0|47.4|56.2 4.3
DTW | 61.7/60.5|66.6 | 60.6 | 33.5|49.2|16.2 49.8 | 18.5
ARMA 65.865.2|66.6|64.9/61.7|71.4/47.0/63.2 | 7.7
ITML 68 |70.2|67.8|74.6|66.9|76.3|64.8 69.8 |4.2
CSML |70.5|73.4|70.8|73.5/68.376.9/67.2|71.5 | 3.3
LMNN [70.0|72.1|69.0|75.6|69.1|77.7|66.2|71.3 | 4.0
iRDML | 75.0 | 78.5|74.4|78.9|74.181.4|72.176.3 |3.3

Table 3. The p-values given by the Student’s t distribution comparing with iRDML.

Baseline/iRDML | HMM/iRDML | DTW/iRDML | ARMA /iRDML | LMNN/iRDML
p-value 0.000003 0.006209 0.000982 0.000046

least standard deviation. We also conduct statistical tests to validate whether
the advantage of iRDML is statistically significant comparing with other base-
line methods. The p-values are given by the Student’s t distribution in Table 3.
The statistical tests convincingly show that comparing with other methods, the
performance improvement of our proposed iRDML is statistically significant
(p < 0.01).

Signer Dependent Evaluation. Above experiments are all evaluated in the
signer independent case. Although our method is proposed to tackle signer inde-
pendent problem, we hope it can also work well in signer dependent situation.
We conduct this experiment on Dataset 2 in three-fold cross validation. The
average accuracies are presented in Fig.5. It can be seen that iRDML still per-
forms well in this signer dependent dataset although the enhancement is modest.
Dataset 2 has only three groups of data and the references are learnt from lim-
ited two groups. Therefore, it is reasonable that the improvement of iRDML is
indistinctive.

5.3 Experiment on Human Motion Recognition

Although the method is proposed to tackle the SLR problem, it is indeed a
generic algorithm for recognition tasks, especially for the person or subject inde-
pendent case. In this section we evaluate the performance of iRDML on human
motion recognition.

The experiment is conducted on the public dataset HDMO05 [33]. The motion
capture data in HDMO05 have been recorded at the Hochschule der Medien
(HDM) in the year 2005. The dataset consists of 2337 motion sequences from 65
actions.
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We follow the experimental settings in [34]. The data are randomly split
into 10 balanced partitions of sequences and 10-fold cross validation is adopted.
The results reported in this paper is the average accuracy over 10 folds. The
original feature of HDMO05 is formed by the 3D coordinates of 31 joints. To
align the actions, DTW is adopted. A standard sample is selected randomly in
each class and all the other samples are aligned to it. After DTW, each action
sequence is sampled to 20 frames. In each frame, we use the same feature as
[34] described. Not only the 3D coordinates of joints (PO) but also the temporal
differences (TD) between pairs of PO feature are adopted. Finally PCA is used
for dimensionality reduction of motion features and the final feature dimension
for each action sequence is 1460.

Table 4. Comparisons with other methods on HDMO05.

Method | Cho et al. [34] Ours
ELM | SVM | MLP | Hybrid MLP | iRDML
Acc. (%) 91.57194.95|95.20 | 95.59 95.76

Here we compare our method with the experimental results reported in [34].
The accuracies are shown in Table4. The performance of iRDML is slightly
better than the state-of-the-art MLP and Hybrid MLP with the same feature.

Therefore, iIRDML can be regarded as a general method to tackle such subject
independent problem.

6 Conclusion

This paper proposed a novel iterative Reference Driven Metric Learning
(iRDML) method to tackle signer independent SLR problem. We try to seek
a generic model which could capture the common character for each sign of dif-
ferent signers. In the generic model, each sign is represented by a signer invariant
reference and RDML is proposed to learn the distance between specific references
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and the training samples. Then an iterative optimizing algorithm is designed to
further explore more appropriate references and the corresponding distance met-
ric. Extensive experiments have shown the effectiveness of our proposed iRDML
on SLR task. Compared with the state-of-the-art methods, iRDML shows the
obvious advantages in both the accuracy and the speed. The extended experi-
ment on human motion recognition suggests that our method can be generalized
to other recognition task.
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