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Abstract. Videos acquired in low-light conditions often exhibit motion
blur, which depends on the motion of the objects relative to the camera.
This is not only visually unpleasing, but can hamper further processing.
With this paper we are the first to show how the availability of stereo
video can aid the challenging video deblurring task. We leverage 3D scene
flow, which can be estimated robustly even under adverse conditions. We
go beyond simply determining the object motion in two ways: First, we
show how a piecewise rigid 3D scene flow representation allows to induce
accurate blur kernels via local homographies. Second, we exploit the
estimated motion boundaries of the 3D scene flow to mitigate ringing
artifacts using an iterative weighting scheme. Being aware of 3D object
motion, our approach can deal robustly with an arbitrary number of
independently moving objects. We demonstrate its benefit over state-of-
the-art video deblurring using quantitative and qualitative experiments
on rendered scenes and real videos.

Keywords: Object motion blur · Scene flow · Spatially-variant
deblurring

1 Introduction

Stereo is one of the oldest areas of computer vision research [1]. Interestingly, the
arrival of mass-produced active depth sensors [2] seems to have renewed interest
also in passive stereo systems. In contrast to active depth sensors, stereo cameras
are also applicable in outdoor environments. Due to their more general applica-
bility, stereo cameras are gaining increased adoption, for example in autonomous
driving [3]. Remarkably, the availability of stereo image pairs also helps in the
estimation of temporal correspondences: On the KITTI optical flow benchmark
[4], the best performing algorithms [5,6] are indeed scene flow algorithms that
jointly estimate depth and 3D motion from stereo videos. Part of their advan-
tage stems from an increased robustness to adverse imaging conditions [6]. One
such adverse imaging condition is a shortage of light. In low-light conditions,
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the exposure time often needs to be increased to obtain a reasonable signal-to-
noise-ratio. But when either the camera, or the objects in the scenes are moving
during exposure time, this results in motion blurred images.

Motion blur is not only unsatisfactory to look at, it can also disturb further
image-based processing, e.g. in tasks such as panorama stitching [8] or barcode
recognition [9]. In stereo video setups, viewpoint-dependent motion blur hinders
a post-capture adjustment of the baseline, the acquisition and visualization of
3D point clouds (see Fig. 1 for an example) or the control of tele-operated robots
in the presence of rapid robot and/or object motion.

Fig. 1. Application of stereo video deblurring: Given 2 consecutive stereo frames (a),
our deblurring approach allows to estimate sharp textures from stereo video input with
motion blur. Rendering scene flow geometry with the blurred input image as a colored
point-cloud from a new point of view produces an unnatural motion blur (b). Our
stereo video deblurring algorithm can remove the blur (c).

In this paper we address the challenge of deblurring stereo videos. In contrast
to the substantial literature on removing camera shake [10–15], we aim to deal
with the more general case of camera and object motion. In case of indepen-
dent motions, mixed pixels at motion boundaries yield significant complications.
Removing such spatially-variant blur is extremely challenging when attempted
from single images [16,17], but video input helps to significantly increase robust-
ness [7,18]. Unlike previous work, we leverage stereo video to obtain substantially
improved and more robust deblurring results. In our approach, we exploit 3D
scene flow in various ways and make the following contributions: (i) We show
that 3D scene flow can improve video deblurring by providing more accurate
motion estimates. In particular, we exploit piecewise rigid scene flow [6], which
yields an over-segmentation of the image into planar patches that move with a
rigid 3D motion (Figs. 2b and c). (ii) We demonstrate that the resulting piece-
wise homographies allow to directly induce blur matrices. Thereby, we take into
account that the projection of a rigid 3D motion yields non-linear motion tra-
jectories in 2D (Fig. 3, Table 1). We find that this leads to superior deblurring
results compared to inducing the blur matrices from an optical flow field [7]
(Figs. 2d to f). (iii) We apply the homography-induced blur matrices in a robust
deblurring procedure that attenuates the effects of motion discontinuities using
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Fig. 2. Stereo video deblurring: For two consecutive frames of a synthetic stereo
video (a) we use the scene flow approach of Vogel et al. [6] to compute an over-
segmentation into planar patches with constant 3D rigid body motion (b). Projecting
the 3D motion onto the image plane yields optical flow (c), which our baseline algo-
rithm uses to deblur a reference frame (d). Exploiting the homographies from the 3D
motion and object boundary information from the over-segmentation, our full approach
obtains sharp images avoiding ringing and boundary artifacts (e). Our result is also
clearly sharper than state-of-the-art video deblurring [7] (f)

Fig. 3. Descriptiveness of homography-based blur kernels: Using 3D rigid body motion
to generate blur kernels, we can faithfully express, e.g., yaw motion (a), while kernels
constructed with spatially varying 2D displacement vectors fields [7] only yield an
approximation (b). Approximation errors (c) are also present close to the rotation axis
where motions are small (extremly large yaw angle and all intensities scaled for better
visibility)

an iterative weighting scheme; Initial motion discontinuities are obtained from
3D scene flow. We demonstrate the superiority of the proposed stereo video
deblurring over state-of-the-art monocular video deblurring using experiments
on synthetic data as well as on real videos.
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Table 1. Overview of the different sources of motion information used for video deblur-
ring: When pure 2D correspondence is considered (top two rows), the induced blur ker-
nels are only approximate, as motion trajectories are assumed to be linear. Exploiting
homographies from scene flow allows us to capture the fact that rigid 3D object motion
leads to non-linear trajectories

Motion information # of frames # of views Linear approxima-
tion of trajectories

Optical flow 2 1 Yes

2D projection of scene flow 2 2 Yes

Homographies 2 2 No

2 Related Work

The goal of this work is to obtain sharp images from stereo videos contain-
ing 3D camera and object motion. Of course, in principle blind deblurring
could be applied to each frame individually. However, blind motion deblur-
ring from a single image is a highly underconstrained problem, as blur para-
meters and sharp image have to be estimated from a single measurement. To
cope with spatially-variant blur due to the 3D motion of the camera, single
image deblurring approaches frequently use homographies [19–21]. In contrast,
we apply homographies to describe spatially-variant object motion blur. Single
image object motion deblurring approaches keep the number of parameters man-
ageable by either choosing the motion of a region from a very restricted set of
spatially-invariant box filters [22,23], assuming it to have a spatially-invariant,
non-parametric kernel of limited size [16], or to be representable by a discrete
set of basis kernels [24]. Approaches that rely on learning spatially-variant blur
are also limited to a discretized set of detectable motions [17,25]. Kim et al. [26]
consider continuously varying box filters for every pixel, but rely heavily on
regularization.

Connecting deblurring and depth estimation, Xu and Jia [27] successfully
apply stereo correspondence estimation to motion-blurred stereo frames to sup-
port blind image deblurring. Lee and Lee [28], Arun et al. [29], and Hu et al. [30]
estimate sharp images and depth jointly. However, all these approaches assume
the scene to be static and camera motion to be the only source of motion blur.

Cho et al. [31] deblur images of independently moving objects. The multiple
input images of their algorithm are unordered, and a piecewise affine registra-
tion between the images, as well as the motion underlying the blur, has to be
estimated. To restrict the parameter space, the blur kernels are assumed to be
piecewise constant and linear.

Video deblurring approaches reduce the number of parameters through the
assumption that the inter-frame and intra-frame motion are related by the duty
cycle of the camera. He et al. [32] and Deng et al. [33] apply feature tracking of
a single moving object to obtain 2D displacement-based blur kernels for deblur-
ring. Wulff and Black [18] refine the latter approach and perform segmentation
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into two layers, estimation of the affine motion parameters, as well as deblurring
of each layer jointly. Relaxing the assumption of two layers and affine motion,
Yamaguchi et al. [34] and Kim and Lee [7] employ optical flow to approxi-
mate spatially variant blur kernels for deblurring. Yamaguchi et al. [34] propose
deblurring based on the flow estimates from the blurry images. Kim and Lee [7]
iteratively refine flow estimation and deblurred video frames by minimizing a
joint energy. The latter method represents the state-of-the-art in video deblur-
ring and is used for comparison in the experimental section. To the best of our
knowledge, exploiting stereo video for deblurring has not been considered in the
literature before.

Correspondence estimation on stereo video sequences can be improved by
estimating stereo correspondences and optical flow jointly as 3D scene flow
[35–37]. In our approach we build on the piecewise rigid scene flow by Vogel
et al. [6] for the following reasons. First, it provides us with explicit 3D rotations
and translations that we employ for accurate blur kernel construction. Second,
through over-segmentation into planar patches, it also delivers occlusion infor-
mation, which we use as initialization for our boundary-aware object motion
deblurring. A general problem in object motion deblurring is that object bound-
aries with mixed foreground and background pixels can lead to severe ringing
artifacts (see Fig. 2). Explicit segmentation and α-matting [18,38] can prevent
this effect, but requires restrictive assumptions on the number of moving objects.
To handle general scenes with an arbitrary number of objects, we extend the
robust outlier handling of Chen et al. [39] to spatially-variant deblurring based
on scene flow, and apply it to the mixed pixels at object boundaries.

In contrast to the aforementioned deblurring approaches, Cho et al. [40]
deblur hand-held video under the assumption that patches are sharp in some
frames of the video. However, in the case of autonomous robots or objects passing
the field of view with high speed, this assumption does not hold. Joshi et al. [41]
attach additional inertial measurement units to the camera, but this does not
account for object motion. An additional low-resolution, high frame-rate camera
can provide complex motion kernels [38], but does not provide depth estimates
in the way a stereo camera can.

3 Blurred Image Formation in Stereo Video

Inducing Blur Matrices from 3D Rigid Object Motions. Due to the finite expo-
sure time τ of our stereo video camera, each frame of each camera is blurred.
Our goal is to find a sharp image It0 for a reference camera at time t0. We
base our approach on the scene flow of Vogel et al. [6], and likewise assume that
the scene can be approximated with planar patches that undergo a 3D rigid
body motion. If an object in the scene is non-planar, this assumption leads to
an over-segmentation of the object into spatially adjacent patches (see Fig. 2b).
Considering video frames where the exposure time is naturally limited by the
frame rate, we additionally assume that the motion of each patch is constant
during the exposure time of two consecutive frames. Note that a constant rigid
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motion in 3D does not necessarily imply that its 2D projection is constant; the
projection may, e.g. in the case of a rotation, be constantly accelerated. However,
our assumption excludes rapidly changing motions such as vibrations.

Constant 3D rigid body motion can be expressed as a homogeneous 4 × 4
matrix

M =
(

R T
0 1

)
(1)

with a rotation matrix R ∈ R
3×3 and a translation vector T ∈ R

3. To enable
our highly accurate blur kernel description, we rewrite M = exp

(
θξ

)
as matrix

exponential, where θ ∈ R describes the rotation angle and ξ is a 4 × 4 matrix
that is determined by the rotation axis and the translation, see [42,43]. With M
describing the motion between time instants t0 and t1, the constant 3D motion
between two arbitrary time instants ta and tb is given as

Mtb,ta
= exp

(
tb − ta
t1 − t0

θξ

)
. (2)

In a piecewise planar scene approximation, the 3D planes of the patches at
time t are defined via their scaled normals nt. All points P on the plane satisfy
the equation PTnt = 1, where PT is the transposed of P . We can relate a
moving 3D point to its corresponding pixel location on the image plane via the
camera geometry. Given the calibration matrix K of the reference camera and
its location TK , the projection from a 3D plane to the image plane at time t can
be written in homogeneous coordinates as Prt = K − KTKnT

t , see e.g. [6].
Under the assumption of color constancy, two sharp images of the reference

camera (with hypothetical infinitesimal exposure) at different times are con-
nected via

Ita
(x) = Itb

(tbHtax) where tbHta = Prtb
Mtb,ta

Pr−1
ta

. (3)

With this notation, a blurry image pixel x in the interior of a patch is formed
from the reference image as

B̂(x) =
∫ t0+

τ
2

t0− τ
2

It(x) dt =
∫ t0+

τ
2

t0− τ
2

It0(
t0Htx) dt, (4)

where
t0Ht = Prt0 exp

( − tθξ
)
Pr−1

t (5)

is a homography that can be computed exactly from camera geometry, normal,
and motion. To put it differently, a 3D point that is projected to x on the image
plane describes a certain trajectory on the image plane during the exposure
time. If the 3D point follows a rigid body motion, the homography

(
t0Ht

)−1

allows us to exactly describe this 2D trajectory. In contrast, optical flow based
methods [7,24,44], employ 2D optical flow vectors to generate It via forward
warping. Thus the trajectory of a point on the image plane is approximated by
a 2D line that is traversed with constant velocity. As optical flow is spatially



564 A. Sellent et al.

variant, the trajectories may change for each pixel, hence induce blur kernels
with a curved shape. However, more complex motions such as rotations can only
be approximated, Fig. 3. In our approach, the description of trajectories due to
3D rigid body motions is exact. As our experiments show, this also results in
more faithfully deblurred images.

By discretizing the integration over time with δt = τ
N (we fix N = 70) and

using bilinear image interpolation, we can obtain a discretized version of Eq. (4)
for vectorized reference images as B̂(x) = AxIt0 . Here, Ax denotes a sparse
row vector that depends on the homography estimated at pixel x. Stacking the
blur vectors Ax for each pixel, we obtain our homography-based blur matrix A
leading to B̂ = AIt0 .

Motion Boundaries. If only scene points from the same plane contribute to the
color B(x) of the measured blurred image at point x, the image formation model
of Eq. (4) is exact. If at time t a scene point with a different motion contributes
to B(x) we should also use the corresponding homography. However, within an
object, the planar patches are adjacent in space and move consistently. Therefore,
we approximate the blur with the row vector Ax induced by the homography of
x at t0. At motion boundaries, the homographies are very different and as pix-
els of foreground and background mix, transparency effects occur. While such
effects can be modeled, taking them into account requires precise localization of
the motion boundaries, which is very challenging. Instead, we exclude motion
boundaries from the deblurring process by means of an iterative approach. In
each iteration, we downweight pixels with a high difference between image for-
mation model and measured image and try to find a sharp image that explains
the remaining pixels. Under the assumption of additive Gaussian noise, we use
the residual to compute a weight for each pixel as

wn(x) = exp
(
− kσ‖B(x) − AxI

n−1
t0 ‖2

)
, (6)

where In−1
t0 denotes the current estimate of the sharp (color) image. For nor-

malized images we set kσ = 4000/3 as default value. In the first iteration we
initialize w0 with the binary occlusion information from the scene flow. As Fig. 4
shows, the weights converge quickly. Some pixels in the image that were initially
suppressed as motion boundaries are included in deblurring at a later itera-
tion. More importantly, other pixels where the image formation model is invalid
are suppressed later on, which helps controlling ringing artifacts. Suppression
may also happen due to some inaccuracies in the computed scene flow. In the
experimental section, we will see how this property actually helps to improve
deblurring results.

Deblurring. Theoretically, we could fill in the regions at motion boundaries dur-
ing deblurring by using adjacent frames or information from the other cam-
era. However, we found experimentally that correspondence estimation in these
regions is too unreliable to produce visually pleasing results. Instead, we exploit
that natural, sharp images follow a Laplacian distribution of their gradients [22].
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Fig. 4. Downweighting of mixed pixels due to motion boundaries: Foreground and
background mix at motion boundaries and violate our image formation model (a). At
motion boundaries and locations of inaccurate flow estimates, the image formation
model is downweighed to avoid ringing artifacts. We initialize these weights with the
occlusion information provided by the scene flow (b) and refine them iteratively (c), (d)

In locations where the image formation model is unreliable, e.g., at motion
boundaries, we rely on this prior to provide the necessary regularization. Specif-
ically, we obtain an estimate of the sharp reference frame by minimizing the
energy

E(It0) =
∑
x∈Ω

∥∥∥wn(x)
(
B(x) − AxIt0

)∥∥∥2

+ αρ
(∇It0(x)

)
, (7)

where Ω ⊂ N
2 is the image domain and the constant α is fixed to 0.001. Following

prior work [22], we use the robust norm ρ
(
c
)

= |c|0.8 for each color channel and
gradient direction.

To solve the optimization problem in Eq. (7), we use iteratively reweighted
least squares (IRLS) [45]. In each reweighting iteration, we compute the following
weights

ρn(c) =
1
c

dρ
(
c
)

dc
≈ max

(|c|, ε)0.8−2 with ε = 0.01 (8)

for the smoothness term using the preceding image estimate ∇In−1
t0 . Then we

minimize the least squares energy

E(It0 , n) =
∑
x∈Ω

∥∥wn(x)
(
B(x) − AxI

n
t0

)∥∥2 + α‖ρn∇In
t0(x)‖2 (9)

via conjugate gradients. We alternate between updating the occlusion weight
wn and the smoothness weight ρn. In all our experiments the weights converge
quickly and only a few (≈10) iterations were needed in total.

To compute the 3D scene flow needed for our stereo video deblurring app-
roach, we rely on the method of Vogel et al. [6]. The algorithm is originally
designed for sharp images. However, its data term uses the census transform for
comparing the warped images, which makes it quite robust to image blur. Of
course, scene flow estimation will reach its limits for very strong motion blur.
Experimentally, we find that by aggregating evidence in piecewise planar patches,
the method yields a scene flow accuracy that turns out to work well in deblur-
ring stereo videos of casual motion. As the following experiments will show, it
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is crucial, however, to not only rely on the robust correspondence information,
but to exploit the homographies to directly induce the blur kernels.

4 Experiments

To demonstrate the efficacy of the proposed stereo video deblurring, we perform
experiments on synthetic images with known ground truth, as well as on real
images. We capture the real video footage with a Point Grey Bumblebee2 stereo
color camera, which can acquire 640 × 480 images at a frame rate of 20 Hz.
We use the internal calibration and supplied software to obtain rectified and
demosaiced images. The exposure time of each image can be obtained from the
camera software.

In all experiments, we compute scene flow using the publicly available imple-
mentation of [6]. We take the default parameters and scale them uniformly to
account for the baseline difference between our stereo camera and the KITTI
dataset [4] for which they were tuned. For the 640 × 480 image in Fig. 2 our
approach requires 73 s to form the discretized blur matrix A. Using MATLAB to
optimize Eq. (7) in 25 conjugate gradient steps and 10 IRLS iterations requires
69 s on an 8-core 4 GHz CPU.

4.1 Comparing Flow-Based Deblurring to Homography-Based
Deblurring

We begin by applying the proposed stereo video deblurring to scenes without
object discontinuities. In this way we can analyze the benefit of the homography-
induced motion blur model in isolation. We create synthetic sequences by simu-
lating various 3D motions (upward and forward translation, and a combination
forward translation and yaw) of a planar, roughly fronto-parallel texture, see
Fig. 5a.1 A second test set consists of rigidly moving 3D objects rendered with a
raytracer at very small time steps and averaged to give motion-blurred images
(see Figs. 4a, 6a and 7a for the first image of the left view). We take the central

Fig. 5. Deblurring planar textures: For a planar texture blurred with 3D rigid body
motion (a), deblurring with 2D spatially-variant ground truth displacements (b) yields
ringing errors (c) that can be reduced by deblurring with our homography-based image
formation model (d), (e)

1 More textures and motions are evaluated in the supplemental material.
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frame of each motion-blurred image as a sharp reference frame. For the rendered
scenes motion discontinuities are known. In the first experiment, we disable the
data term around any motion discontinuities by fixing the weights wn in these
areas to zero, see Fig. 6b for an example. As the image prior stays active, the
boundaries are filled in smoothly as illustrated in Fig. 6d.

Fig. 6. Deblurring with masked discontinuities: Our raytraced stereo video frames con-
tain independent object motion of non-planar objects (a). Through the estimated dis-
parity we can assess the shape of the objects (c). Excluding given discontinuities (b)
from the computation of the data term, invalid areas are filled in smoothly (d). The
masked difference image (e) to the real sharp image (f) shows that homography-based
deblurring has about the same error in planar as in curved surfaces, showing the effec-
tiveness of the over-segmentation from the scene flow

We compare our homography-induced deblurring approach against deblur-
ring with blur matrices generated from different 2D displacement fields. We use
forward and backward 2D motion as described by Kim and Lee [7] and apply
them in our IRLS deblurring framework. In particular, we use the known ground
truth 2D displacement, the 2D initial optical flow with which the scene flow is
initialized [46] (baseline deblurring), and the 2D projection of the scene flow to
induce blur kernels. Table 1 summarizes these settings. Table 2 shows the peak-
signal-to-noise-ratio (PSNR) of the deblurred images from the different methods.
We observe that the PSNR of our homography-based stereo video deblurring out-
performs the results of deblurring with ground truth 2D displacement in all cases
of non-fronto-parallel motion. In these cases linear motion trajectories of con-
stant velocity are an approximation. Blur matrices induced by homographies are
more expressive and improve the results. Already, deblurring with the 2D projec-
tion of scene flow achieves a consistently higher PSNR than deblurring with the
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Fig. 7. Raytraced scenes for evaluating object motion deblurring: The input images
exhibit blur due to 3D object motion (a). Also when 3D homographies are used to
induce blur kernels, mixed pixels at object boundaries cause some ringing artifacts (b).
Iteratively downweighting the boundaries from the data term, our full stereo video
deblurring (c) suppresses ringing and obtains considerably sharper images than state-
of-the-art video deblurring (d). Please zoom in for detail

initial flow. Indeed, in the case of forward motion, also deblurring with the 2D
projection of the scene flow outperforms deblurring with ground truth displace-
ment. The estimated 2D displacement appears to be a better approximation to
the linear, but accelerated trajectory of the 3D forward motion than the 2D
ground truth displacement. Figures 5b and d show examples of deblurred images
using the ground-truth 2D displacement and our homography-based approach.
From the difference image between the results and the original sharp texture,
Figs. 5c and e, we observe that the increase in PSNR is due to the mitigation of
ringing effects throughout the image.

For the raytraced scenes the geometry of the moving objects is non-planar
and the planarity assumption in our image formation model becomes an approx-
imation. Figure 6 shows the estimated disparity of an object and the deblurred
image obtained by masking out discontinuities. Looking at the difference image,
Fig. 6e, we observe that the deblurring error for slightly curved surfaces is com-
parable to the performance on planar regions of the background, showing that
the over-segmentation aids coping with curved surfaces.
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Table 2. Deblurring without considering motion-discontinuity regions: For different
motions of a planar texture (top) and moving 3D objects with masked object bound-
aries (bottom), we report the peak signal-to-noise ratio (PSNR) of the deblurred refer-
ence frame, the average endpoint error of the estimated motion (AEP), and the average
disparity error (ADE) of the estimation. For all scenes the use of scene flow increases
deblurring accuracy compared to using optical flow. For scenes with non-fronto-parallel
motion (all except ‘upward ’ and ‘apples’) homography-based object motion deblurring
provides the best results (bold)

Blur kernel source Ground truth
2D displacement

Initial optical
flow [46]

2D projection
of scene flow

3D homographies

PSNR AEP PSNR AEP PSNR ADE PSNR

upward 26.09 2.53 24.89 0.20 25.83 3.66 25.94

forward 34.12 0.09 34.45 0.10 34.55 0.19 34.74

forward + yaw 30.03 0.15 29.90 0.15 29.95 0.45 31.02

apples 34.36 0.48 29.39 0.81 34.74 4.95 33.33

bunny 25.01 0.62 24.87 0.54 25.09 0.50 25.19

chair 24.84 0.59 23.86 0.47 24.81 0.25 25.03

squares 25.97 2.32 22.69 0.97 25.82 0.65 27.21

triplane 27.43 1.16 27.11 0.49 27.27 0.12 28.30

For all rendered scenes where the disparity does not exhibit gross errors, we
observe in Table 2 that 3D homography-based deblurring improves the PSNR
clearly over any form of 2D deblurring. In the scene ‘apples’, Fig. 7a, 1st row,
depth estimation fails with a mean disparity error of 4.95 pixels. In this situation
the deblurring quality of homography-based deblurring drops below that of its
2D projection. Still, both outperform the results obtained with the initial optical
flow. More importantly, as we will see below, the iterative weighting scheme for
treating motion discontinuities can address such disparity estimation errors as
well and lead to much improved results.

4.2 Full Algorithm with Motion Discontinuities

We now evaluate the performance of stereo video deblurring in the presence
of object motion boundaries. We use the raytraced scenes from the previous
experiment, but this time without providing ground-truth information on the
motion discontinuities, Fig. 7a. Additionally, we use real images captured with a
stereo camera attached to a motorized rail, Fig. 8a. The camera moves forward
very slowly on the rail while we capture frames with maximal exposure time
and frame rate. By averaging the frames, we obtain motion-blurred images.
Comparison to the central frame of the averaged frame series allows for numerical
evaluation. Finally, we capture scenes with arbitrarily moving objects for which
only a visual evaluation is possible, Fig. 9a. As before we compare against 2D
versions of our algorithm. Additionally, we compare against the state-of-the-art
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video deblurring algorithm of Kim and Lee [7] that uses 3 consecutive monocular
frames. We tuned their regularization parameter to obtain the most accurate
results.

In Figs. 7b and c we first contrast homography-induced deblurring without
and with handling of motion boundaries. When not taking into account motion
boundaries explicitly, i.e. wn ≡ 1, Fig. 7b, considerable ringing artifacts are the
result, but they are successfully suppressed with our proposed iterative weight-
ing scheme, Fig. 7c. This also becomes evident in the numerical evaluation when
comparing the 3rd and 4th column of Table 3 (top)2. For the real sequences in
Fig. 8, boundary artifacts are generally less pronounced, as all objects in the
scene are static and the camera moves toward the scene. However, as shown in
Fig. 4, the discontinuity weight can still compensate errors in scene flow com-
putation. One such example is the erroneous depth estimation in the ‘apples’
scene, which is disabled by the discontinuity weight. Similarly, also in the scenes
with the motorized rail, our full object motion deblurring approach improves the
PSNR compared to the basic homography approach, Table 3 (bottom).

When comparing to the state-of-the-art video deblurring method of Kim
and Lee [7], we find that our stereo video deblurring approach yields signif-
icantly fewer ringing artifacts and considerably sharper results. This can be
seen visually, comparing (d) to (c) of Figs. 7, 8 and 9, as well as quantita-
tively in Table 3. Interestingly, we find in Table 3 that IRLS deblurring with
the 2D projection of the scene flow is already on par with video deblurring
of Kim and Lee. 3D homography-based deblurring without boundary handling

Table 3. Deblurring with motion discontinuities: PSNR of deblurred synthetic scenes
with motion discontinuities (top) and real scenes with the camera moving on a motor-
ized rail (bottom). Our homography-based stereo video deblurring with motion bound-
ary weighting (full) clearly outperforms monocular video deblurring with optical-flow
induced blur kernels in all cases

Initial optical
flow [46]

2D projection
of scene flow

3D homogra-
phies

Ours (full) Kim and Lee [7]

apples 20.89 29.43 26.00 29.48 26.14

bunny 20.72 22.36 22.95 23.20 21.93

chair 19.03 21.57 22.19 23.36 21.78

squares 19.60 21.90 22.56 24.58 22.99

triplane 24.73 24.55 25.22 26.59 23.30

bottles 29.51 29.55 30.80 31.07 28.33

office 31.37 30.87 32.45 32.56 29.01

planar 30.71 31.21 32.33 32.82 30.01

toys 33.51 33.64 34.89 34.90 31.06

2 In the supplemental material we also consider the Structural Similarity index [47]
to compare the results.
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improves on these result numerically already, highlighting the importance of our
homography-induced blur kernels. Yet, our full homography-based object deblur-
ring with motion boundary handling gives further numerical gains and a large
visual improvement. Recall that the motion boundaries are initially obtained
from the 3D scene flow, thus unique to our setting.

Fig. 8. Controlled camera motion for evaluating object motion deblurring: Our 3D
deblurring (c) has less ringing artifacts than baseline deblurring with optical flow (b),
and sharper results than video deblurring (d), in particular at the periphery of the
images where motion is large

For the real scenes with independent object motion, Fig. 9, we observe that
the optical flow-based approaches introduce ringing artifacts, particularly where
strong gradients of the background coincide with the object boundary. Our stereo
video deblurring algorithm can cope with this situation even in the presence of
non-planar, non-rigidly moving objects such as the trousers (2nd row) are present.
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Fig. 9. For real scenes with independent object motion (a), our novel stereo video
deblurring approach (c) generates fewer ringing artifacts due to object boundaries than
baseline deblurring with optical flow (b) and sharper images than video deblurring (d)

5 Conclusions and Future Work

We have proposed the first stereo video deblurring approach, which is based on
an image formation model that exploits 3D scene flow computed from stereo
video. For scenes with an arbitrary number of moving objects, we use an over-
segmentation of the scene into planar patches to establish spatially-variant blur
matrices based on local homographies. Our experiments on synthetic scenes and
real videos show that deblurring with these homographies is more accurate than
baseline methods based on 2D linear motion approximations, as well as the cur-
rent state-of-the-art in video deblurring. Combined with our robust treatment of
motion boundaries through an iterative weighting scheme, our approach obtains
superior results also on real stereo videos with independently moving objects. In
future work we would like to improve the performance of scene flow computa-
tion at motion boundaries such that we can benefit from another view to supply
information near motion boundaries.
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