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Abstract. We address the problem of semantic segmentation using
deep learning. Most segmentation systems include a Conditional Ran-
dom Field (CRF) to produce a structured output that is consistent with
the image’s visual features. Recent deep learning approaches have incor-
porated CRF's into Convolutional Neural Networks (CNNs), with some
even training the CRF end-to-end with the rest of the network. How-
ever, these approaches have not employed higher order potentials, which
have previously been shown to significantly improve segmentation per-
formance. In this paper, we demonstrate that two types of higher order
potential, based on object detections and superpixels, can be included in
a CRF embedded within a deep network. We design these higher order
potentials to allow inference with the differentiable mean field algorithm.
As a result, all the parameters of our richer CRF model can be learned
end-to-end with our pixelwise CNN classifier. We achieve state-of-the-art
segmentation performance on the PASCAL VOC benchmark with these
trainable higher order potentials.
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1 Introduction

Semantic segmentation involves assigning a visual object class label to every
pixel in an image, resulting in a segmentation with a semantic meaning for
each segment. While a strong pixel-level classifier is critical for obtaining high
accuracy in this task, it is also important to enforce the consistency of the
semantic segmentation output with visual features of the image. For example,
segmentation boundaries should usually coincide with strong edges in the image,
and regions in the image with similar appearance should have the same label.
Recent advances in deep learning have enabled researchers to create stronger
classifiers, with automatically learned features, within a Convolutional Neural
Network (CNN) [1-3]. This has resulted in large improvements in semantic seg-
mentation accuracy on widely used benchmarks such as PASCAL VOC [4]. CNN
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classifiers are now considered the standard choice for pixel-level classifiers used
in semantic segmentation.

On the other hand, probabilistic graphical models have long been popular
for structured prediction of labels, with constraints enforcing label consistency.
Conditional Random Fields (CRFs) have been the most common framework, and
various rich and expressive models [5-7], based on higher order clique potentials,
have been developed to improve segmentation performance.

Whilst some deep learning methods showed impressive performance in
semantic segmentation without incorporating graphical models [3,8], current
state-of-the-art methods [9-12] have all incorporated graphical models into the
deep learning framework in some form. However, we observe that the CRF's that
have been incorporated into deep learning techniques are still rather rudimen-
tary as they consist of only unary and pairwise potentials [10]. In this paper,
we show that CRFs with carefully designed higher order potentials (potentials
defined over cliques consisting of more than two nodes) can also be modelled as
CNN layers when using mean field inference [13]. The advantage of performing
CRF inference within a CNN is that it enables joint optimisation of CNN classi-
fier weights and CRF parameters during the end-to-end training of the complete
system. Intuitively, the classifier and the graphical model learn to optimally
co-operate with each other during the joint training.

We introduce two types of higher order potential into the CRF embedded in
our deep network: object-detection based potentials and superpixel-based poten-
tials. The primary idea of using object-detection potentials is to use the outputs
of an off-the-shelf object detector as additional semantic cues for finding the seg-
mentation of an image. Intuitively, an object detector with a high recall can help
the semantic segmentation algorithm by finding objects appearing in an image.
As shown in Fig. 1, our method is able to recover from poor segmentation unar-
ies when we have a confident detector response. However, our method is robust
to false positives identified by the object detector since CRF inference identifies
and rejects false detections that do not agree with other types of energies present
in the CRF.

Baseline  Superpixels only Detections only

Pixelwise CNN Higher Order CRF

trained end-to-end

Object Detector

Superpixel Generator Final Result

Input

Fig. 1. Overview of our system. We train a Higher Order CRF end-to-end with a
pixelwise CNN classifier. Our higher order detection and superpixel potentials improve
significantly over our baseline containing only pairwise potentials.
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Superpixel-based higher order potentials encourage label consistency over
superpixels obtained by oversegmentation. This is motivated by the fact that
regions defined by superpixels are likely to contain pixels from the same visual
object. Once again, our formulation is robust to the violations of this assumption
and errors in the initial superpixel generation step. In practice, we noted that
this potential is effective for getting rid of small regions of spurious labels that
are inconsistent with the correct labels of their neighbours.

We evaluate our higher order potentials on the PASCAL VOC 2012 seman-
tic segmentation benchmark as well as the PASCAL Context dataset, to show
significant improvements over our baseline and achieve state-of-the art results.

2 Related Work

Before deep learning became prominent, semantic segmentation was performed
with dense hand-crafted features which were fed into a per-pixel or region classi-
fier [14]. The individual predictions made by these classifiers were often noisy as
they lacked global context, and were thus post-processed with a CRF, making
use of prior knowledge such as the fact that nearby pixels, as well as pixels of
similar appearance, are likely to share the same class label [14].

The CRF model of [14] initially contained only unary and pairwise terms
in an 8-neighbourhood, which [15] showed can result in shrinkage bias. Numer-
ous improvements to this model were subsequently proposed including: densely
connected pairwise potentials facilitating interactions between all pairs of image
pixels [16], formulating higher order potentials defined over cliques larger than
two nodes [5,15] in order to capture more context, modelling co-occurrence of
object classes [17-19], and utilising the results of object detectors [6,20,21].

Recent advances in deep learning have allowed us to replace hand-crafted fea-
tures with features learned specifically for semantic segmentation. The strength
of these representations was illustrated by [3] who achieved significant improve-
ments over previous hand-crafted methods without using any CRF post-
processing. Chen et al. [12] showed further improvements by post-processing
the results of a CNN with a CRF. Subsequent works [9-11,22] have taken this
idea further by incorporating a CRF as layers within a deep network and then
learning parameters of both the CRF and CNN together via backpropagation.

In terms of enhancements to conventional CRF models, Ladicky et al. [6] pro-
posed using an off-the-shelf object detector to provide additional cues for seman-
tic segmentation. Unlike other approaches that refine a bounding-box detection
to produce a segmentation [8,23], this method used detector outputs as a soft
constraint and can thus recover from object detection errors. Their formulation,
however, used graph-cut inference, which was only tractable due to the absence
of dense pairwise potentials. Object detectors have also been used by [20,24], who
also modelled variables that describe the degree to which an object hypothesis
is accepted.

We formulate the detection potential in a different manner to [6,20, 24] so that
it is amenable to mean field inference. Mean field permits inference with dense
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pairwise connections, which results in substantial accuracy improvements [10,12,
16]. Furthermore, mean field updates related to our potentials are differentiable
and its parameters can thus be learned in our end-to-end trainable architecture.

We also note that while the semantic segmentation problem has mostly been
formulated in terms of pixels [3,10,14], some have expressed it in terms of super-
pixels [25-27]. Superpixels can capture more context than a single pixel and
computational costs can also be reduced if one considers pairwise interactions
between superpixels rather than individual pixels [20]. However, such superpixel
representations assume that the segments share boundaries with objects in an
image, which is not always true. As a result, several authors [5,7] have employed
higher order potentials defined over superpixels that encourage label consistency
over regions, but do not strictly enforce it. This approach also allows multiple,
non-hierarchical layers of superpixels to be integrated. Our formulation uses this
kind of higher order potential, but in an end-to-end trainable CNN.

Graphical models have been used with CNNs in other areas besides semantic
segmentation, such as in pose-estimation [28] and group activity recognition
[29]. Alternatively, Ionescu et al. [30] incorporated structure into a deep network
with structured matrix layers and matrix backpropagation. However, the nature
of models used in these works is substantially different to ours. Some early works
that advocated gradient backpropagation through graphical model inference for
parameter optimisation include [31-33].

Our work differentiates from the above works since, to our knowledge, we are
the first to propose and conduct a thorough experimental investigation of higher
order potentials that are based on detection outputs and superpixel segmentation
in a CRF which is learned end-to-end in a deep network. Note that although
[7] formulated mean field inference with higher order potentials, they did not
consider object detection potentials at all, nor were the parameters learned.

3 Conditional Random Fields

We now review conditional random fields used in semantic segmentation and
introduce the notation used in the paper. Take an image I with N pixels,
indexed 1,2,..., N. In semantic segmentation, we attempt to assign every pixel
a label from a predefined set of labels £ = {l1,l2,...,I1}. Define a set of ran-
dom variables X7, Xo,..., Xy, one for each pixel, where each X; € L. Let
X =[X; X3 ... Xn]T. Any particular assignment x to X is thus a solution to
the semantic segmentation problem.

We use notations {V}, and V() to represent the set of elements of a vector
V, and the i*" element of V, respectively. Given a graph G where the vertices are
from {X} and the edges define connections among these variables, the pair (I, X)
is modelled as a CRF characterised by Pr(X = x|I) = (1/Z(I)) exp(—E(x|I)),
where E(x|I) is the energy of the assignment x and Z(I) is the normalisation
factor known as the partition function. We drop the conditioning on I hereafter
to keep the notation uncluttered. The energy E(x) of an assignment is defined
using the set of cliques C in the graph G. More specifically, E(x) = > ¢ te(Xc),
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where x. is a vector formed by selecting elements of x that correspond to random
variables belonging to the clique ¢, and .(.) is the cost function for the clique c.
The function, ¥.(.), usually uses prior knowledge about a good segmentation,
as well as information from the image, the observation the CRF is conditioned
on.

Minimising the energy yields the maximum a posteriori (MAP) labelling of
the image i.e. the most probable label assignment given the observation (image).
When dense pairwise potentials are used in the CRF to obtain higher accuracy,
exact inference is impracticable, and one has to resort to an approximate infer-
ence method such as mean field inference [16]. Mean field inference is particu-
larly appealing in a deep learning setting since it is possible to formulate it as a
Recurrent Neural Network [10].

4 CRF with Higher Order Potentials

Many CRF models that have been incorporated into deep learning frame-
works [10,12] have so far used only unary and pairwise potentials. However,
potentials defined on higher order cliques have been shown to be useful in pre-
vious works such as [7,15]. The key contribution of this paper is to show that
a number of explicit higher order potentials can be added to CRF's to improve
image segmentation, while staying compatible with deep learning. We formulate
these higher order potentials in a manner that mean field inference can still be
used to solve the CRF. Advantages of mean field inference are twofold: First,
it enables efficient inference when using densely-connected pairwise potentials.
Multiple works, [10,32] have shown that dense pairwise connections result in
substantial accuracy improvements, particularly at image boundaries [12,16].
Secondly, we keep all our mean field updates differentiable with respect to their
inputs as well as the CRF parameters introduced. This design enables us to
use backpropagation to automatically learn all the parameters in the introduced
potentials.

We use two types of higher order potential, one based on object detections
and the other based on superpixels. These are detailed in Sects.4.1 and 4.2
respectively. Our complete CRF model is represented by

E(X)ZZW(CEiHZMZ(%%) + Y Ut xa) + W), (1)

i<j d

where the first two terms ¢ (.) and ¢];(.,.) are the usual unary and densely-
connected pairwise energies [16] and the last two terms are the newly introduced
higher order energies. Energies from the object detection take the form QZJEEt(Xd),
where vector x4 is formed by elements of x that correspond to the foreground
pixels of the d™ object detection. Superpixel label consistency based energies
take the form ¢5F (x,), where x, is formed by elements of x that correspond to

the pixels belonging to the s*" superpixel.
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4.1 Object Detection Based Potentials

Semantic segmentation errors can be classified into two broad categories [34]:
recognition and boundary errors. Boundary errors occur when semantic labels are
incorrect at the edges of objects, and it has been shown that densely connected
CRF's with appearance-consistency terms are effective at combating this prob-
lem [16]. On the other hand, recognition errors occur when object categories are
recognised incorrectly or not at all. A CRF with only unary and pairwise poten-
tials cannot effectively correct these errors since they are caused by poor unary
classification. However, we propose that a state-of-the-art object detector [35,36]
capable of recognising and localising objects, can provide important information
in this situation and help reduce the recognition error, as shown in Fig. 2.

Person

I
Person

(d (e ®

Fig. 2. Utility of object detections as another cue for semantic segmentation.
For every pair, segmentation on the left was produced with only unary and pairwise
potentials. Detection based potentials were added to produce the result on the right.
Note how we are able to improve our segmentations for the bus, table and bird over
their respective baselines. Furthermore, our system is able to reject erroneous detections
such as the person in (b) and the bottle and chair in (d). Images were taken from the
PASCAL VOC 2012 reduced validation set. Baseline results were produced using the
public code and model of [10].

A key challenge in feeding-in object-detection potentials to semantic segmen-
tation are false detections. A naive approach of adding an object detector’s out-
put to a CRF formulated to solve the problem of semantic segmentation would
confuse the CRF due to the presence of the false positives in the detector’s
output. Therefore, a robust formulation, which can automatically reject object
detection false positives when they do not agree with other types of potentials in
the CRF, is desired. Furthermore, since we are aiming for an end-to-end train-
able CRF which can be incorporated into a deep neural network, the energy
formulation should permit a fully differentiable inference procedure. We now
propose a formulation which has both of these desired properties.

Assume that we have D object detections for a given image, and that the d*®
detection is of the form (14, s4, Fy), where l; € L is the class label of the detected
object, sq4 is the confidence score of the detection, and Fy; C {1,2,..., N}, is the
set of indices of the pixels belonging to the foreground of the detection. The
foreground within a detection bounding box could be obtained using a fore-
ground /background segmentation method (i.e. GrabCut [37]), and represents a
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crude segmentation of the detected object. Using our detection potentials, we aim
to encourage the set of pixels represented by Fy, to take the label [;. However,
this should not be a hard constraint since the foreground segmentation could
be inaccurate and the detection itself could be a false detection. We therefore
seek a soft constraint that assigns a penalty if a pixel in Fy takes a label other
than [;. Moreover, if other energies used in the CRF strongly suggest that many
pixels in Fy do not belong to the class [, the detection d should be identified as
invalid.

An approach to accomplish this is described in [6,20]. However, in both cases,
dense pairwise connections were absent and different inference methods were
used. In contrast, we would like to use the mean field approximation to enable
efficient inference with dense pairwise connections [16], and also because its
inference procedure is fully differentiable. We therefore use a detection potential
formulation quite different to the ones used in [6,20].

In our formulation, as done in [6,20], we first introduce latent binary random
variables Y7, Y5, ... Yp, one for each detection. The interpretation for the random
variable Yy that corresponds to the d* detection is as follows: If the d*" detection
has been found to be valid after inference, Y; will be set to 1, it will be 0
otherwise. Mean field inference probabilistically decides the final value of Yj.
Note that, through this formulation, we can account for the fact that the initial
detection could have been a false positive: some of the detections obtained from
the object detector may be identified to be false following CRF inference.

All Yy variables are added to the CRF which previously contained only X;
variables. Let each (Xg4, Yy), where {Xy} = {X; € {X}]i € Fy}, form a clique ¢4
in the CRF. We define the detection-based higher order energy associated with
a particular assignment (x4, y4) to the clique (Xg4,Yy) as follows:

Det 7, , 21 1[$d ld] if Ya = 07
wDeter i= 1[%1 #lq)  ifyg=1,

YR (X = x4, Yy = ya) = { (2)

where ng = |Fy| is the number of foreground pixels in the d'" detection, xg)
is the it" element of the vector Xg, wpes is a learnable weight parameter, and
[.] is the Iverson bracket. Note that this potential encourages X(gZ)S to take the
value [4 when Yy is 1, and at the same time encourages Yy to be 0 when many

Xc(li)s do not take l;. In other words, it enforces the consistency among X{Y)s
and Yy.
An important property of the above definition of ¢)D°*(.) is that it can be

simplified as a sum of pairwise potentials between Y; and each Xg(f) for 1 =
1,2,...,nq. That is,

nd
7 (Xa = %a,Ya = yq) = Z Fa(@$ ya), where,
1=1
: Oy if yg = 0
@) ya) = wpet iy [Ty = L CYa=
WDet ,Td[ d #ld] if yg = 1.
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We make use of this simplification in Sect.5 when deriving the mean field
updates associated with this potential.

For the latent Y variables, in addition to the joint potentials with X wvari-
ables, described in Egs. (2) and (3), we also include unary potentials, which are
initialised from the score s; of the object detection. The underlying idea is that
if the object detector detects an object with high confidence, the CRF in turn
starts with a high initial confidence about the validity of that detection. This
confidence can, of course, change during the CRF inference depending on other
information (e.g. segmentation unary potentials) available to the CRF.

Examples of input images with multiple detections and GrabCut foreground
masks are shown in Fig. 3. Note how false detections are ignored and erroneous
parts of the foreground mask are also largely ignored.

tvmonitor tvmonitor

B e

iy AR e 7 =
. aiplane giplane airplane . ajmplane

chair [ 88 chair
¥

Fig. 3. Effects of imperfect foreground segmentation. (a, b) Detected objects,
as well as the foreground masks obtained from GrabCut. (¢, d) Output using detection
potentials. Incorrect parts of the foreground segmentation of the main aeroplane, and
entire TV detection have been ignored by CRF inference as they did not agree with
the other energy terms. The person is a failure case though as the detection has caused
part of the sofa to be erroneously labelled.

4.2 Superpixel Based Potentials

The next type of higher order potential we use is based on the idea that super-
pixels obtained from oversegmentation [38,39] quite often contain pixels from the
same visual object. It is therefore natural to encourage pixels inside a superpixel
to have the same semantic label. Once again, this should not be a hard constraint
in order to keep the algorithm robust to initial superpixel segmentation errors
and to violations of this key assumption.

We use two types of energies in the CRF to encourage superpixel consistency
in semantic segmentation. Firstly, we use the P™-Potts model type energy [40],
which is described by,

; (1) _
PSP (X, = x,) = Weow (1) if all ms =1, W
WHigh otherwise,

where wrow(l) < whigh for all I, and {X,} C {X} is a clique defined by a
superpixel. The primary idea is that assigning different labels to pixels in the
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Fig. 4. Segmentation enhancement from superpixel based potentials. (a) The
output of our system without any superpixel potentials. (b) Superpixels obtained from
the image using the method of [38]. Only one “layer” of superpixels is shown. In prac-
tice, we used four. (c) The output using superpixel potentials. The result has improved
as we encourage consistency over superpixel regions. This removes some of the spurious
noise that was present previously.

same superpixel incurs a higher cost, whereas one obtains a lower cost if the
labelling is consistent throughout the superpixel. Costs wiow(l) and wign are
learnable during the end-to-end training of the network.

Secondly, to make this potential stronger, we average initial unary potentials
from the classifier (the CNN in our case), across all pixels in the superpixel
and use the average as an additional unary potential for those pixels. During
experiments, we observed that superpixel based higher order energy helps in
getting rid of small spurious regions of wrong labels in the segmentation output,
as shown in Fig. 4.

5 Mean Field Updates and Their Differentials

This section discusses the mean field updates for the higher order potentials
previously introduced. These update operations are differentiable with respect
to the Q;(X;) distribution inputs at each iteration, as well as the parameters
of our higher order potentials. This allows us to train our CRF end-to-end as
another layer of a neural network.

Take a CRF with random variables Vi, V5, ..., VN and a set of cliques C,
which includes unary, pairwise and higher order cliques. Mean field inference
approximates the joint distribution Pr(V = v) with the product of marginals
IL, Q(Vi = v;). We use Q(V. = v.) to denote the marginal probability mass
for a subset {V.} of these variables. Where there is no ambiguity, we use the
short-hand notation Q(v.) to represent Q(V. = v,.). General mean field updates
of such a CRF take the form [13]

QN (V; =) = iexp =) Q' (vesi) te(ve) | ()

ceC {v.|v,=v}
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where Q! is the marginal after the ' iteration, v, an assignment to all variables
in clique ¢, v._; an assignment to all variables in ¢ except for V;, ¥.(v.) is the
cost of assigning v. to the clique ¢, and Z; is the normalisation constant that
makes Q(V; = v) a probability mass function after the update.

Updates from Detection Based Potentials. Following Eq. (3) above, we
now use Eq. (5) to derive the mean field updates related to 1/JdDet. The contribu-

tion from ¥} to the update of Q(Xéi) = 1) takes the form

WDet fTZ Q(Yy=0) ifl =g,
Q

WDet fT‘Z (Ya=1) otherwise,

> Q(xa—iyya) va (xa,ya) = { (6)

{(xawa)le? =1}

where x4_; is an assignment to Xy with the i*? element deleted. Using the same
equations, we derive the contribution from the energy 2°* to the update of
Q(Yy = b) to take the form

et gy =1 if b =0,
> Q(xa) ¥ (Xd; ya) = {wD na 2% Q(Xg a) 0

Sd. (i) _ .
{(*xq,ya)lva=b} Wpet 2L Y ( Q(X,;” =la)) otherwise.

nd

(7)

It is possible to increase the number of parameters in wDet( ). Since we
use backpropagation to learn these parameters automatically during end-to-end
training, it is desirable to have a high number of parameters to increase the flex-
ibility of the model. Following this idea, we made the weight wpe; class specific,
that is, a function wpet (1) is used instead of wpet in Egs. (2), (6) and (7). The
underlying assumption is that detector outputs can be very helpful for certain
classes, while being not so useful for classes that the detector performs poorly
on, or classes for which foreground segmentation is often inaccurate.

Note that due to the presence of detection potentials in the CRF, error differ-
entials calculated with respect to the X variable unary potentials and pairwise
parameters will no longer be valid in the forms described in [10]. The error differ-
entials with respect to the X and Y variables, as well as class-specific detection
potential weights wpet(l) are included in the supplementary material.

Updates for Superpixel Based Potentials. The contribution from the P"-
Potts type potential to the mean field update of Q(z; = l), where pixel i is in
the superpixel clique s, was derived in [7] as

S QGami) v (k) = wiow () [] Q(Xj=1)+wmgh<1— IT Q(Xj=l>>. (8)

{xs\z(b) 1} JE€c,jFi jE€c—i

This update operation is differentiable with respect to the parameters wrow (1)
and wmign, allowing us to optimise them via backpropagation, and also with
respect to the Q(X) values enabling us to optimise previous layers in the network.
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Convergence of Parallel Mean Field Updates. Mean field with parallel
updates, as proposed in [16] for speed, does not have any convergence guarantees
in the general case. However, we usually empirically observed convergence with
higher order potentials, without damping the mean field update as described
in [7,41]. This may be explained by the fact that the unaries from the initial
pixelwise-prediction part of our network provide a good initialisation. In cases
where the mean field energy did not converge, we still empirically observed good
final segmentations.

6 Experiments

We evaluate our new CRF formulation on two different datasets using the CRF-
RNN network [10] as the main baseline, since we are essentially enriching the
CRF model of [10]. We then present ablation studies on our models.

6.1 Experimental Set-Up and Results

Our deep network consists of two conceptually different, but jointly trained
stages. The first, “unary” part of our network is formed by the FCN-8s architec-
ture [3]. It is initialised from the Imagenet-trained VGG-16 network [2], and then
fine-tuned with data from the VOC 2012 training set [4], extra VOC annotations
of [42] and the MS COCO [43] dataset.

The output of the first stage is fed into our CRF inference network. This
is implemented using the mean field update operations and their differentials
described in Sect. 5. Five iterations of mean field inference were performed during
training. Our CRF network has two additional inputs in addition to segmentation
unaries obtained from the FCN-8s network: data from the object detector and
superpixel oversegmentations of the image.

We used the publicly available code and model of the Faster R-CNN [36]
object detector. The fully automated version of GrabCut [37] was then used
to obtain foregrounds from the detection bounding boxes. These choices were
made after conducting preliminary experiments with alternate detection and
foreground segmentation algorithms.

Four levels of superpixel oversegmentations were used, with increasing super-
pixel size to define the cliques used in this potential. Four levels were used since
performance on the VOC validation set stopped increasing after this number.
We used the superpixel method of [38] as it was shown to adhere to object
boundaries the best [39], but our method generalises to any oversegmentation
algorithm.

We trained the full network end-to-end, optimising the weights of the CNN
classifier (FCN-8s) and CRF parameters jointly. We initialised our network using
the publicly available weights of [10], and trained with a learning rate of 1010
and momentum of 0.99. The learning rate is low because the loss was not nor-
malised by the number of pixels in the training image. This is to have a larger loss
for images with more pixels. When training our CRF, we only used VOC 2012
data [4] as it has the most accurate labelling, particularly around boundaries.
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Table 2. Mean IoU accuracy on VOC 2012

test set. All methods are trained with MS
Table 1. Comparison of each higher COCO [43] data

order potential with baseline on VOC

2012 reduced validation set Method Test set (%)
Ours 77.9
Method Reduced DPN [9] 77.5
val set (%) Centrale super boundaries [44] | 75.7
Baseline (unary + pairwise) [10] | 72.9 Dilated convolutions [45] 75.3
Superpixels only 74.0 BoxSup [34] 75.2
Detections only 74.9 DeepLab attention [46] 75.1
Detections and superpixels 75.8 CRF-RNN (baseline) [10] 74.7
DeepLab WSSL [47] 73.9
DeepLab [12] 72.7

Table 3. Mean Intersection over Union (IoU) results on PASCAL Context validation
set compared to other current methods.

Method Ours | BoxSup [34] | ParseNet [48] | CRF-RNN [10] | FCN-8s [3] | CFM [27]
Mean IoU (%) | 41.3 | 40.5 40.4 39.3 37.8 34.4

PASCAL VOC 2012 Dataset. The improvement obtained by each higher
order potential was evaluated on the same reduced validation set [3] used by
our baseline [10]. As Table1 shows, each new higher order potential improves
the mean IoU over the baseline. We only report test set results for our best
method since the VOC guidelines discourage the use of the test set for ablation
studies. On the test set (Table2), we outperform our baseline by 3.2 % which
equates to a 12.6 % reduction in the error rate. This sets a new state-of-the-art
on the VOC dataset. Qualitative results highlighting success and failure cases of
our algorithm, as well as more detailed results, are shown in our supplementary
material.

PASCAL Context. Table3 shows our state-of-the-art results on the recently
released PASCAL Context dataset [49]. We trained on the provided training set
of 4998 images, and evaluated on the validation set of 5105 images. This dataset
augments VOC with annotations for all objects in the scene. As a result, there
are 59 classes as opposed to the 20 in the VOC dataset. Many of these new labels
are “stuft” classes such as “grass” and “sky”. Our object detectors are therefore
only trained for 20 of the 59 labels in this dataset. Nevertheless, we improve by
0.8 % over the previous state-of-the-art [34] and 2 % over our baseline [10].

6.2 Ablation Studies

We perform additional experiments to determine the errors made by our system,
show the benefits of end-to-end training and compare our detection potentials
to a simpler baseline. Unless otherwise stated, these experiments are performed
on the VOC 2012 reduced validation set.
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Error Analysis. To analyse the improvements made by our higher order poten-
tials, we separately evaluate the performance on the “boundary” and “interior”
regions in a similar manner to [34]. As shown in Fig. 5(c) and (d), we consider a
narrow band (trimap [15]) around the “void” labels annotated in the VOC 2012
reduced validation set. The mean IoU of pixels lying within this band is termed
the “Boundary IoU” whilst the “Interior IoU” is evaluated outside this region.

Figure 5 shows our results as the trimap width is varied. Adding the detection
potentials improves the Interior IoU over our baseline (only pairwise potentials
[10]) as the object detector may recognise objects in the image which the pix-
elwise classification stage of our network may have missed out. However, the
detection potentials also improve the Boundary IoU for all tested trimap widths
as well. Improving the recognition of pixels in the interior of an object also helps
with delineating the boundaries since the strength of the pairwise potentials
exerted by the @ distributions at each of the correctly-detected pixels increase.

Our superpixel priors also increase the Interior IoU with respect to the base-
line. Encouraging consistency over regions helps to get rid of spurious regions of
wrong labels (as shown in Fig. 4). Figure 5 suggests that most of this improve-
ment occurs in the interior of an object. The Boundary IoU is slightly lower than
the baseline, and this may be due to the fact that superpixels do not always align
correctly with the edges of an object (the “boundary recall” of various superpixel
methods are evaluated in [39]).

We can see that the combination of detection and superpixel potentials results
in a substantial improvement in our Interior IoU. This is the primary reason our
overall IoU on the VOC benchmark increases with higher order potentials.

FoME

a) Image (b) Ground truth (c) Boundary (d) Interior

Interior IoU
Boundary loU

~—Pairwise only
~Superpixels
~Detections

[~ Pairwise only
|~ Superpixels
-+ Detections
elLzDstections and Suporpixels | Detections and Superpixels|

5 10 15 25 30 35 40

5 20
Trimap Width

(e) Interior IoU (f) Boundary IoU

20 25
Trimap Width

Fig. 5. Error analysis on VOC 2012 reduced validation set. The IoU is com-
puted for boundary and interior regions for various trimap widths. An example of the
Boundary and Interior regions for a sample image using a width of 9 pixels is shown
in white in the top row. Black regions are ignored in the IoU calculation.
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Benefits of End-to-End Training. Table4 shows how end-to-end training
outperforms piecewise training. We trained the CRF piecewise by freezing the
weights of the unary part of the network, and only learning the CRF parameters.

Table 4. Comparison of mean IoU (%) obtained on VOC 2012 reduced validation set
from end-to-end and piecewise training

Method FCN-8s | DCN
Unary only, fine-tuned on COCO 68.3 68.6
Pairwise CRF trained piecewise 69.5 70.7
Pairwise CRF trained end-to-end 72.9 72.5

Higher Order CRF trained piecewise |73.6 73.5
Higher Order CRF trained end-to-end | 75.8 75.0
Test set performance of best model 77.9 76.9

Our results in Table 2 used the FCN-8s [3] architecture to generate unaries.
To show that our higher order potentials improve performance regardless of the
underlying CNN used for producing unaries, we also perform an experiment
using our reimplementation of the “front-end” module proposed in the Dilated
Convolution Network (DCN) of [45] instead of FCN-8s.

Table4 shows that end-to-end training of the CRF yields considerable
improvements over piecewise training. This was the case when using either FCN-
8s or DCN for obtaining the initial unaries before performing CRF inference
with higher order potentials. This suggests that our CRF network module can
be plugged into different architectures and achieve performance improvements.

Baseline for Detections. To evaluate the efficacy of our detection potentials,
we formulate a simpler baseline since no other methods use detection information
at inference time (BoxSup [34] derives ground truth for training using ground-
truth bounding boxes).

Our baseline is similar to CRF-RNN [10], but prior to CRF inference, we
take the segmentation mask from the object detection and add a unary poten-
tial proportional to the detector’s confidence to the unary potentials for those
pixels. We then perform mean-field inference (with only pairwise terms) on these
“augmented” unaries. Using this method, the mean IoU increases from 72.9 %
to 73.6 %, which is significantly less than the 74.9 % which we obtained using
only our detection potentials without superpixels (Table1).

Our detection potentials perform better since our latent Y detection variables
model whether the detection hypothesis is accepted or not. Our CRF inference
is able to evaluate object detection inputs in light of other potentials. Inference
increases the relative score of detections which agree with the segmentation,
and decreases the score of detections which do not agree with other energies
in the CRF. Figures2(b) and (d) show examples of false-positive detections
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that have been ignored and correct detections that have been used to refine our
segmentation. OQur baseline, on the other hand, is far more sensitive to erroneous
detections as it cannot adjust the weight given to them during inference.

7 Conclusion

We presented a CRF model with two different higher order potentials to tackle
the semantic segmentation problem. The first potential is based on the intuitive
idea that object detection can provide useful cues for semantic segmentation.
Our formulation is capable of automatically rejecting false object detections
that do not agree at all with the semantic segmentation. Secondly, we used a
potential that encourages superpixels to have consistent labelling. These two
new potentials can co-exist with the usual unary and pairwise potentials in a
CRF.

Importantly, we showed that efficient mean field inference is still possible in
the presence of the new higher order potentials and derived the explicit forms of
the mean field updates and their differentials. This enabled us to implement the
new CRF model as a stack of CNN layers and to train it end-to-end in a unified
deep network with a pixelwise CNN classifier. We experimentally showed that
the addition of higher order potentials results in a significant increase in semantic
segmentation accuracy allowing us to reach state-of-the-art performance.
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