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Abstract. An online video segmentation algorithm, based on short-
term hierarchical segmentation (STHS) and frame-by-frame Markov ran-
dom field (MRF) optimization, is proposed in this work. We develop the
STHS technique, which generates initial segments by sliding a short win-
dow of frames. In STHS, we apply spatial agglomerative clustering to
each frame, and then adopt inter-frame bipartite graph matching to con-
struct initial segments. Then, we partition each frame into final segments,
by minimizing an MRF energy function composed of unary and pairwise
costs. We compute the unary cost using the STHS initial segments and
the segmentation result at the previous frame. We set the pairwise cost to
encourage similar nodes to have the same segment label. Experimental
results on a video segmentation benchmark dataset, VSB100, demon-
strate that the proposed algorithm outperforms state-of-the-art online
video segmentation techniques significantly.

Keywords: Video segmentation · Online segmentation · Streaming seg-
mentation · Agglomerative clustering · Graph matching

1 Introduction

Segmentation, the task of partitioning data into disjoint subsets based on the
underlying data structure, is one of the most fundamental problems in computer
vision. For image segmentation, contour-based algorithms [1,2] have achieved
great success recently. As the state-of-the-art contour detector [3] presents com-
parable performance to the human visual system, the contour-based image seg-
mentation can provide more promising performance. On the other hand, video
segmentation is the process to divide a video into volumetric segments. It is
applicable to a wide variety of vision applications, such as action recognition,
scene classification, video summarization, content-based video retrieval, and 3D
reconstruction. However, video segmentation still remains a challenging prob-
lem due to object and camera motion, occlusion, and contour ambiguities. To
overcome these issues, many attempts have been made.

Video segmentation algorithms can be categorized into offline or online ones.
Offline algorithms [4–10] divide a video into segments by processing all frames
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at once. On the other hand, online (or streaming) algorithms [11–13] extract
segments sequentially from the first to the last frames. Note that the offline
algorithms can achieve more accurate segmentation by exploiting the entire infor-
mation in a video jointly, but they require huge memory space for a long video.
Thus, the online algorithms, which use regular memory space regardless of the
duration of a video, can be used more versatilely in practical applications.

We propose a novel online video segmentation algorithm. The proposed algo-
rithm consists of two steps: short-term hierarchical segmentation (STHS) and
Markov random field (MRF) optimization. In the first pass, STHS generates
initial segments sequentially, by sliding a short window of frames, to identify
newly appearing segments effectively. It attempts to prevent the propagation
of erroneous segments by processing each frame independently of the previous
segmentation results. In the second pass, we define an MRF energy function for
obtaining the final segmentation result of each frame, which consists of unary
and pairwise costs. The unary cost takes into account the segmentation result at
the previous frame and the initial STHS result at the current frame. The pairwise
cost is computed based on node affinities. Then, we achieve temporally coherent
and spatially accurate video segmentation by minimizing the energy function.
Experimental results demonstrate that the proposed algorithm outperforms the
state-of-the-art conventional algorithms in [11–13] on the video segmentation
benchmark (VSB) dataset [14]. To summarize, this paper has three main con-
tributions.

– Development of STHS, which combines spatial agglomerative clustering and
temporal bipartite graph matching to detect newly appearing objects and
achieve initial video segmentation reliably.

– Proposal of the MRF optimization scheme, which refines the initial segmen-
tation results and yield temporally coherent and spatially accurate segments.

– Remarkable performance achievement on the VSB dataset, which consists of
challenging video sequences.

2 Related Work

2.1 Offline Video Segmentation

An offline video segmentation algorithm processes all frames in a video simulta-
neously. Corso et al. [4] developed a graph-based video segmentation algorithm
using a hierarchical structure. Grundmann et al. [5] also proposed a hierarchi-
cal algorithm, which merges similar superpixels sequentially in a spatiotemporal
graph. Galasso et al. [7] first applied the spectral clustering [15] to the video seg-
mentation problem. Galasso et al. [14] assessed video segmentation algorithms by
introducing a benchmark dataset, called VSB100. Khoreva et al. [8] introduced
learning-based must-link constraints, which enforce two nodes to belong to the
same cluster during spectral clustering. Also, Khoreva et al. [9] trained a classi-
fier to determine affinities between superpixels, and selected edges to construct
a sparse efficient graph. Yi and Pavlovic [10] proposed an MRF model, whose
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node potentials are obtained from the results of [5]. Yu et al. [16] introduced a
parametric graph partitioning method to identify and remove between-cluster
edges. While these offline algorithms provide promising segmentation results,
they often demand huge memory space to process all frames simultaneously.
Thus, they may fail to segment long video clips.

2.2 Online Video Segmentation

An online (or streaming) video segmentation algorithm sequentially partitions
from the first to the last frames in a video sequence. To segment a frame, it
uses only a few (usually less than 10) previous and subsequent frames. Vazquez-
Reina et al. [17] proposed an online algorithm, which sequentially divides video
frames into partitions by selecting optimal hypothesis flows of superpixels. Xu
et al. [11] applied the hierarchical image segmentation algorithm in [18] to two
consecutive frames to propagate segment labels temporally. Also, online super-
voxel algorithms have been proposed to yield regularly sized spatiotemporal
segments [19,20]. Recently, Galasso et al. [12] reduced the full graph for a video,
by re-assigning edge weights, and achieved streaming segmentation by perform-
ing the clustering on the reduced graph. Moreover, Li et al. [13] decomposed
an affinity matrix into low-rank ones to represent relations among supervoxels
efficiently and applied the normalized cuts to the low-rank matrices.

2.3 Video Object Segmentation

Many attempts have been made to separate salient objects from the background
in a video. Shi and Malik [21] clustered motions using the normalized cuts. Brox
and Malik [22] exploited long-term point trajectories to determine object tracks.
Ochs and Brox [6] converted sparse point trajectories into dense regions to yield
pixel-wise object annotations. Ochs and Brox [23] employed the spectral clus-
tering on point trajectories to delineate objects. Also, several algorithms [24–26]
have been proposed to achieve video object segmentation using object proposal
techniques. They first generate object proposals in all frames and then delineate
objects by determining proposal tracks. Oneata et al. [27] developed a video
object proposal algorithm by generating supervoxels. Wang et al. [28] adopted
saliency detection techniques to segment a primary object. Giordano et al. [29]
segmented moving objects by observing temporal consistency of sequential super-
pixels. Taylor et al. [30] analyzed occluder-occluded relations to ensure temporal
consistency of objects. Jang et al. [31] minimized an energy function by perform-
ing the alternate convex optimization to discover a primary object sequentially.
However, these video object segmentation algorithms may fail to segment tem-
porally static or small objects, since they focus on moving, salient, and relatively
large objects in general.

3 Proposed Algorithm

We propose a novel online video segmentation algorithm. The input is a set of
consecutive video frames, and the output is a set of the corresponding pixel-wise
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Short-term hierarchical segmentation

Spatial agglomerative clustering

Temporal graph matching

MRF optimization

Segmentation result
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Segmentation result
at frame Input frames

Fig. 1. Overview of the proposed algorithm. To partition the current frame τ , we apply
the short-term hierarchical segmentation (STHS) to a window of frames from τ − α
to τ + α. Then, we obtain the final segmentation result at frame τ , by minimizing an
MRF energy function, based on the initial STHS result and the previous segmentation
result at frame τ − 1

segment label maps. All pixels in a spatiotemporal segment are assigned the
same label.

Figure 1 shows an overview of the proposed algorithm. First, we apply STHS
to a short window of frames in order to segment the current frame initially. STHS
merges spatially similar superpixels in each frame into clusters, and then links
temporally coherent clusters. For the spatial and temporal merging, we adopt
agglomerative clustering and bipartite graph matching, respectively. Second, we
obtain final segment labels at the current frame τ , by minimizing an MRF energy
function that consists of unary and pairwise costs. The unary cost is defined using
the initial STHS result and the previous segmentation result at frame τ −1, and
the pairwise cost encourages similar nodes to have the same label. We perform
this process sequentially from the first to the last frames to achieve streaming
video segmentation.

3.1 Feature Extraction

For each frame τ , we estimate both forward and backward optical flows using [32].
Also, we over-segment each frame into superpixels using the mean-shift algo-
rithm [33]. For the mean-shift, we fix the parameters of spatial bandwidth and
range bandwidth to 9 and 5, respectively, and set the minimum superpixel area
to 0.1 % of the number of pixels in a frame. We extract three types of features:
color feature, motion feature, and boundary feature. Let us describe these three
features subsequently.

Color is a fundamental feature for image and video segmentation. We first
represent each superpixel with a histogram of LAB colors. Each dimension is
quantized into 20 bins independently. Also, we extract bag-of-words (BoW) fea-
tures in the LAB and RGB color spaces, respectively. We generate the BoW using
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the K-means algorithm, where K equals 300 for both LAB and RGB spaces. By
aggregating the encoded words in each superpixel, we obtain the LAB and RGB
BoW histograms. Thus, to obtain the color feature hc of a superpixel, we con-
catenate the LAB histogram, the LAB BoW histogram, and the RGB BoW
histogram. Consequently, the dimension of a color feature is 660, hc ∈ R

660×1.
Unlike image segmentation, video segmentation can exploit motion features,

as well as color features. Motion features are complementary to color features,
since they can distinguish similarly colored regions that move differently. To
encode motion characteristics, we construct a BoW, by employing both backward
and forward optical flows and setting K to 100. We represent each superpixel
with the backward and forward optical flow BoW histograms, respectively. Then,
we construct the motion feature hm by cascading the two histograms. Therefore,
the dimension of a motion feature is 200, hm ∈ R

200×1. In the first frame, the
backward optical flow BoW histogram is unavailable, and thus copied from the
forward one. Similarly, in the last frame, the forward histogram is copied from
the backward one.

A good segment should be enclosed by a reliable boundary. Hence, we adopt a
boundary feature to differently characterize superpixels that have strong bound-
aries between them. More specifically, we use results of the contour-based seg-
mentation algorithms in [1,34], which generate segments with reliable bound-
aries. Let us consider segment labels as encoded words on each pixel. Then, we
can obtain a histogram of the segment labels for each superpixel. Notice that the
number of bins varies according to the number of segment labels. In this work,
to exploit multiple levels of segmentation granularity, we generate three segmen-
tation maps with thresholds 0.1, 0.3, and 0.5, respectively. Figure 2 shows seg-
mentation results of [1] according to the thresholds. As the threshold increases,
segments are divided by stronger boundaries only. We cascade the three label
histograms to obtain the boundary feature hb of a superpixel. When two super-
pixels have different boundary features, there are a strong boundary between
them. Notice that we use [34] for a faster version of the proposed algorithm.

We construct the LAB, RGB, and optical flow BoW features using the 40
training sequences in the VSB100 dataset [14]. We normalize each feature hc,
hm, or hb to make its l2-norm to 1, i.e.

∑
i h2

i = 1.

(a) Input frame (b) UCM (c) UCM> 0.1 (d) UCM> 0.3 (e) UCM> 0.5

Fig. 2. Examples of various segmentation results using an ultrametric contour map
(UCM) [1]. As the threshold increases, segments are separated by stronger boundaries
only
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3.2 Short-Term Hierarchical Segmentation

In general, offline algorithms delineate newly appearing objects more effectively
than online ones do, since they consider all frames at once. It is hard to find
new objects using the current and previous frames only. Therefore, we develop
STHS that performs initial segmentation of frame τ , by sliding a short window
of frames from τ − α to τ + α, where α is set to 7. In other words, STHS con-
sider the subsequent α frames, as well as the current and previous α frames,
to identify object appearance more effectively. In general, the future frames are
used in the streaming video segmentation algorithms [7,11,35]. Also, within the
entire segmentation algorithm in Fig. 1, STHS helps to alleviate the propagation
of segmentation errors in the previous frames, by providing an initial segmenta-
tion result, which is independent of the previous segmentation results. Figure 3
visualizes the efficacy of STHS in comparison with the spatial clustering, which
uses the current frame only. It is observable that STHS describes the appearing
man from the right more concisely with fewer segments.

STHS consists of spatial agglomerative clustering and temporal graph match-
ing techniques. In the spatial clustering, all color, motion, and boundary features
are used to merge superpixels in each frame. On the other hand, only color fea-
tures are used in the temporal graph matching between frames, since motion
and boundary features are not temporally coherent.

For each frame t in the short-term window τ − α ≤ t ≤ τ + α, we adopt
the simple agglomerative clustering [36] to merge the most similar pair of clus-
ters iteratively. First, we define a graph G(t) = (V (t), E(t)) for frame t, where
V (t) = {x1, . . . , xN} is the set of nodes and E(t) = {eij} is the set of edges.
The superpixels become the nodes. If two superpixels xi and xj share a bound-
ary, they are connected by edge eij . Note that these graphs {G(1), . . . , G(T )} are
also used in the MRF optimization in Sect. 3.3, where T denotes the number of
frames in an input video. To perform the agglomerative clustering at frame t,
we initially regard superpixels {x1, . . . , xN} as individual clusters {c1, . . . , cN}.
We measure the distances between these clusters by

d(ci, cj) =
{

dχ2(xi, xj) if eij ∈ E(t),
∞ otherwise,

(1)

where dχ2 denotes the chi-square distance between xi and xj in the feature
space. We use the color feature hc, motion feature hm, and boundary feature hb

by concatenating them. We normalize the concatenated feature again. Then, we
iteratively merge the two clusters ci and cj that yield the minimum distance.
The mergence yields a new cluster cn. The distance between the new cluster cn

and an existing cluster ck is updated by

d(cn, ck) = min {d(ci, ck), d(cj , ck)} (2)

according to the single link algorithm [36]. We terminate the merging when the
minimum distance is higher than a threshold γ. Notice that this threshold γ
controls the segmentation granularity. Finally, we reassign the cluster indices
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(a) Frame τ (b) Frame τ + α (c) Spatial clustering (d) STHS

Fig. 3. Efficacy of STHS in comparison with the spatial clustering. The newly appear-
ing man at frame τ is depicted by yellow boundaries. While the spatial agglomerative
clustering divides the man into unnecessarily many segments, STHS represents him
concisely with fewer segments by exploiting the information in the future frame τ + α

from 1 to the number of clusters. Let c
(t)
u denote the resultant uth cluster at

frame t.
After the intra-frame agglomerative clustering, we link the clusters tempo-

rally in the short-term window. To this end, we perform the temporal matching
between two frames, t and t + 1, sequentially for τ − α ≤ t ≤ τ + α − 1.
We first construct a bipartite graph G(t,t+1) = (U (t), U (t+1), E(t,t+1)), where
U (t) = {c

(t)
1 , . . . , c

(t)
N } is the set of nodes at frame t. The clusters, produced by

the intra-frame agglomerative clustering, become the nodes. E(t,t+1) = {e
(t,t+1)
uv }

is the set of inter-frame edges. Node c
(t)
u at frame t is connected to node c

(t+1)
v

by edge e
(t,t+1)
uv , if at least one pixel within c

(t)
u is mapped to a pixel within c

(t+1)
v

according to the forward or backward optical flow. Then, edge e
(t,t+1)
uv is assigned

an affinity weight, given by

w(t,t+1)
uv =

{
η(c(t)u , c

(t+1)
v ) if e

(t,t+1)
uv ∈ E(t,t+1),

0 otherwise,
(3)

where η is a similarity function between the two clusters. It is defined as

η(c(t)u , c(t+1)
v ) = ηc(c(t)u , c(t+1)

v ) × ηo(c(t)u , c(t+1)
v ) (4)

where ηc and ηo are color and overlap similarities, respectively. We measure the
color similarity by

ηc(c(t)u , c(t+1)
v ) = exp

(
−dχ2(c(t)u , c(t+1)

v )
)

(5)

in which dχ2 denotes the chi-square distance between the color features for the
two clusters. As mentioned previously, for the inter-frame matching, we do not
use the motion and boundary features due to their inter-frame irrelevance. We
compute the overlap similarity by

ηo(c(t)u , c(t+1)
v ) =

1
2

(
|P(t)

u ∩ ←−P (t+1)
v |

maxk |P(t)
k ∩ ←−P (t+1)

v |
+

|−→P (t)
u ∩ P(t+1)

v |
maxk |−→P (t)

u ∩ P(t+1)
k |

)

(6)

where P(t)
u is the set of pixels that belongs to cluster c

(t)
u . Also,

−→P (t)
u is the set of

pixels at frame t + 1, which are mapped from the pixels in P(t)
u by the forward
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optical flow vectors. Symmetrically,
←−P (t+1)

v is the set of pixels at frame t, which
are mapped from P(t+1)

u by the backward vectors. The operator | · | returns
the number of elements in a set. Note that a higher similarity ηo(c

(t)
u , c

(t+1)
v ) is

assigned, as the two clusters are more overlapped by the forward or backward
warping.

To represent temporal matching results, we define a matching variable
μ
(t,t+1)
uv , which equals 1 if c

(t)
u is matched to c

(t+1)
v , and 0 otherwise. To deter-

mine the set of matching variables M = {μ
(t,t+1)
uv }, we maximize the objective

function

max
M

τ+α−1∑

t=τ−α

∑

u∈U(t)

∑

v∈U(t+1)

μ(t,t+1)
uv × w(t,t+1)

uv (7)

subject to the constraints
∑

v∈U(t+1)

μ(t,t+1)
uv ≤ 1, μ(t,t+1)

uv ∈ {0, 1}. (8)

This constrained maximization can be easily solved by performing the greedy
bipartite matching from t = τ −α to t = τ +α−1 sequentially. In other words, for
each cluster at frame t, we match it to the cluster at frame t+1 that is connected
with the highest affinity. However, to reflect occlusion scenarios, if all affinities
between cluster c

(t)
u and clusters at frame t + 1 are smaller than a threshold, we

do not match c
(t)
u to any cluster at frame t + 1 and

∑
v∈U(t+1) μ

(t,t+1)
uv = 0. After

the temporal matching, we assign an identical label to the set of clusters that
are connected according to the matching variables. Finally, the label of a cluster
becomes the initial segment labels of all superpixels that the cluster includes.
Let s

(t)
i denote the initial segment that includes superpixel xi at frame t. Notice

that, in the following process, we only use the initial segment results at frame τ .
Figure 4 exemplifies the temporal matching of inter-clusters. The temporal

matching assigns segment labels in a temporally coherent manner, and groups

Fig. 4. An example of the temporal graph matching with α = 2. Each circle denotes
a cluster. The clusters in an identical color have the same label. c

(τ)
4 is not matched

to any cluster at frame τ + 1. While c
(τ)
2 and c

(τ)
3 are not merged in the intra-frame

clustering, they are assigned the same label after the temporal matching
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Algorithm 1. Short-Term Hierarchical Segmentation (STHS)
Input: Superpixels in a window of frames from τ − α to τ + α
1: for frame t = τ − α to τ + α do
2: Set each superpixel as an individual cluster
3: Compute the distance between each pair of neighboring superpixels � (1)
4: repeat
5: Find a cluster pair of the minimum distance
6: Merge the two clusters into a new cluster
7: Update the distances between the new cluster and the existing clusters �

(2)
8: until the minimum distance is higher than γ
9: end for

10: for frame t = τ − α to τ + α − 1 do
11: Construct a bipartite graph for the clusters in two consecutive frames t and

t + 1 � (3)
12: Perform the inter-frame matching between clusters � (7)
13: end for
14: Assign an identical label to each set of connected clusters
Output: Initial segment label of each superpixel in the window of frames

some clusters in a frame that are not merged in the agglomerative clustering.
Thus, by employing STHS, we can detect newly appearing segments and also
group distant superpixels that compose the same segment. Algorithm 1 summa-
rizes the proposed STHS scheme.

3.3 MRF Optimization

Next, we partition the current frame τ into segments by employing the ini-
tial segments, which are obtained by STHS. To this end, we develop an MRF
optimization scheme. We use the graph G(τ) = (V (τ), E(τ)), which is already
constructed for the intra-frame agglomerative clustering in Sect. 3.2. The node
set V (τ) = {x

(τ)
1 , . . . , x

(τ)
N } consists of the superpixels at frame τ . We define a

variable y
(τ)
i to indicate the label of node x

(τ)
i . By combining unary and pairwise

costs, the MRF energy function is defined as

E(y(τ)) =
∑

i∈V (τ)

ψ(x(τ)
i , y

(τ)
i ) + λ ×

∑

(i,j)∈E(τ)

φ(x(τ)
i , x

(τ)
j , y

(τ)
i , y

(τ)
j ) (9)

where λ controls the relative importance between the unary and pairwise costs.
The unary cost is given by

ψ(x(τ)
i , l) = − log p(l |x(τ)

i ) (10)

= − log
θs(x

(τ)
i , l) + θt(x

(τ)
i , l)

∑
k(θs(x

(τ)
i , k) + θt(x

(τ)
i , k))

(11)
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where p(l |x(τ)
i ) is the probability that node x

(τ)
i belongs to the lth segment.

In other words, the unary cost ψ(x(τ)
i , l) gets lower, as node x

(τ)
i is more likely

to be labeled as l. In (11), θs and θt are the STHS similarity function and the
temporal consistency function, respectively.

Although STHS provides robust initial segmentation results, they are not
harmonized with the labels at the previous frame τ − 1. Hence, for each initial
segment at the current frame τ , we check if it is consistent with each label
l at frame τ − 1. More specifically, we compute the STHS similarity function
θs(x

(τ)
i , l) by

θs(x
(τ)
i , l) =

{
η(z(τ−1)

l , s
(τ)
i ) if maxk η(z(τ−1)

k , s
(τ)
i ) > β,

0 otherwise,
(12)

where η is the similarity function in (4), and the threshold β is 0.5. Also, z
(τ−1)
l

denotes the segment that has label l at frame τ − 1. If the initial segment s
(τ)
i

including superpixel x
(τ)
i is similar to the segment z

(τ−1)
l , the function θs(x

(τ)
i , l)

yields a high value. Moreover, we generate new labels to consider newly appear-
ing segments. Specifically, if maxk η(z(τ−1)

k , s
(τ)
i ) ≤ β, we declare that s

(τ)
i is

not harmonized with any existing label at the previous frame. For this inhar-
monic initial segment, we assign a new label l̂ and set the STHS similarity by
θs(x

(τ)
i , l̂) = 1. Note that we regard all initial segments at the first frame as

inharmonic.
To enforce temporal coherence of inter-frame segments, we adopt the tem-

poral consistency function θt(x
(τ)
i , l) in the unary cost in (11), which is given by

θt(x
(τ)
i , l) = exp

(
−dχ2(←−x (τ)

i , x
(τ)
i )

)
× |Z(τ−1)

l ∩ ←−X (τ)
i |

maxk |Z(τ−1)
k ∩ ←−X (τ)

i |
(13)

where ←−x (τ)
i denotes the superpixel at frame τ − 1, which is warped from x

(τ)
i by

the backward optical flow vectors, and
←−X (τ)

i is the set of pixels in ←−x (τ)
i . Also,

Z(τ−1)
l is the set of pixels within the lth segment at frame τ − 1. The chi-square

distance dχ2(←−x (τ)
i , x

(τ)
i ) is computed using only the color features. Note that

θt(x
(τ)
i , l) yields a higher value when the color matching error is smaller and

the warped area
←−X (τ)

i has a bigger overlap with the lth segment Z(τ−1)
l . Thus,

the temporal consistency function helps to propagate the segment labels at the
previous frame to the current frame.

To encourage neighboring nodes with similar features to have the same seg-
ment label, we define the pairwise cost in (9) by

φ(x(τ)
i , x

(τ)
j , y

(τ)
i , y

(τ)
j ) =

{
exp(−dχ2(x(τ)

i , x
(τ)
j )) if y

(τ)
i �= y

(τ)
j ,

0 otherwise,
(14)

where dχ2 is computed using all the color, motion, and boundary features.
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We employ the graph-cut algorithm [37] to minimize the MRF energy func-
tion in (9). Consequently, we obtain the segment label of each superpixel at
the current frame. This segmentation result is recorded for segmenting the next
frame.

(a) Input frame (b) Before SLE (c) After SLE (d) Short-labels

Fig. 5. An example of the short-label elimination (SLE). Noisy labels with short dura-
tions are depicted in black in (d). They are erased, and the corresponding superpixels
are re-labeled using the neighboring labels in (c). The frames are from “Chameleons”

3.4 Short-Label Elimination

In general, an online segmentation algorithm may produce noisy segments, which
have short temporal durations. To suppress such noise, we develop the short-label
elimination scheme. At frame τ , we check the temporal duration of each segment
at frame τ −ε, where ε = 10. If the duration is shorter than ε, we erase the labels
of the corresponding superpixels. To re-label these erased superpixels, we apply
the MRF optimization scheme again. For a non-erased superpixel, its unary cost
is set to 0 for the original label, and 1 for the other labels. For an erased super-
pixel, its unary cost is set to 1 for all labels. Also, we use the same pairwise cost
in (14). Then, we minimize the energy function using the graph-cut algorithm.
Consequently, the erased superpixels are labeled consistently with the neighbor-
ing superpixels. Figure 5 shows an example of the short-label elimination.

4 Experimental Results

We test the proposed video segmentation algorithm on the VSB100 dataset [14],
which consists of 40 training videos and 60 test videos. The spatial resolution
of these video sequences are between 960 × 720 and 1920 × 1080. The ground-
truth is annotated for every 20th frame by four subjects. The VSB100 sequences
are very challenging due to motion blur, jerky camera motion, occlusion, object
deformation, and ambiguous object boundaries. For efficient computation, we
test the proposed algorithm after resizing video frames by a factor of 0.5 in
both x and y directions. We use the same parameters for all experiments, unless
otherwise specified.

We use two performance metrics, boundary precision-recall (BPR) and vol-
ume precision-recall (VPR), which were introduced in [14]. BPR measures the
qualities of segmentation boundaries in the precision-recall framework after
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the bipartite graph matching between computer-generated boundaries and the
ground-truth boundaries. VPR assesses volumetric qualities of segmentation by
computing the maximal overlap between computer-generated segments and the
ground-truth segments. For both BPR and VPR, we calculate the average pre-
cision (AP), which is the area under the precision-recall curve. We report the
optimal dataset scale (ODS) performance and the optimal segmentation scale
(OSS) performance according to the aggregation strategy of F-measure scores.
While ODS aggregates the scores of all sequences at a fixed segmentation scale,
OSS discovers the optimal scale for each sequence. Hence, OSS yields a higher
score than ODS. The proposed algorithm controls the scale of segmentation using
the spatial merging threshold γ ∈ {0.1, . . . , 0.6}, which is more practical than
specifying the number of segments. Figure 6 visualizes segmentation results of
the proposed algorithm according to the scale parameter γ. As γ increases, more
superpixels are merged, resulting in coarser segments. In addition, we count the
number of segments (NCL) and compute the average length (μ) and the stan-
dard deviation (δ) of segment durations in ODS. We analyze running times of
the proposed algorithm and the conventional methods [5–7,9,11] by seconds per
frame (SPF) for “Arctic Kayak” sequence at 640 × 360 resolution. We test the
methods on a PC with a 3.0 GHz CPU.

(a) Input frame (b) Ground-truth (c) γ = 0.1 (d) γ = 0.2 (e) γ = 0.4

Fig. 6. Segmentation results of the proposed algorithm in various scales according to
the parameter γ. As γ increases, the proposed algorithm generates coarser segments.
The frames are from “Fish Underwater”

Table 1 compares the performance of the proposed algorithm on the VSB100
dataset with those of 12 conventional algorithms: nine offline methods [4–
10,12,14] and three online methods [11–13]. The scores of the conventional algo-
rithms are from [9,10,12,13]. The oracle method links the per-frame UCM seg-
ments [1] optimally using the ground-truth data as specified in [14]. We see that
the proposed algorithm surpasses the conventional online video segmentation
algorithms in terms of both BPR and VPR. Especially, in terms of VPR ODS,
the proposed algorithm provides a 20 % gain, compared with the state-of-the-art
online algorithm [12]. Moreover, the proposed algorithm even outperforms most
offline video segmentation algorithms and provides comparable performances to
the state-of-the-art offline algorithms [9,10]. In addition, we develop a faster ver-
sion, which shortens the overall running time from 176.1 to 18.6 by employing
lighter optical flow estimator, [32] without matching, and faster contour detec-
tor [34]. The faster version reduces the running time by 89 %, while sacrificing a
small BPR-AP score only. The faster version of the proposed algorithm is faster
than all conventional methods.
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Table 1. Comparison of video segmentation performances on the VSB100 [14]. The
best and the second best results are boldfaced and underlined, respectively

Algorithm BPR VPR Length NCL Time

ODS OSS AP ODS OSS AP μ(δ) μ SPF

Human 0.81 0.81 0.67 0.83 0.83 0.70 83.24(40.04) 11.90 -

Oracle [14] 0.61 0.67 0.61 0.65 0.67 0.68 - 118.56 -

A. Offline segmentation algorithms

Corso et al. [4] 0.51 0.53 0.37 0.51 0.52 0.38 70.67(48.39) 25.83 -

Grundmann et al. [5] 0.47 0.54 0.41 0.52 0.55 0.52 51.83(39.91) 117.90 26.8

Ochs and Brox [6] 0.17 0.17 0.06 0.25 0.25 0.12 87.85(38.83) 3.73 268.9

Galasso et al. [7] 0.51 0.56 0.45 0.45 0.51 0.42 80.17(37.56) 8.00 425.6

Galasso et al. [14] 0.61 0.65 0.59 0.59 0.62 0.56 25.50(36.48) 258.05 -

Galasso et al. [12] 0.62 0.66 0.54 0.55 0.59 0.55 61.25(40.87) 80.00 -

Khoreva et al. [8] 0.61 0.64 0.51 0.58 0.61 0.58 60.48(43.19) 50.00 -

Khoreva et al. [9] 0.64 0.70 0.61 0.63 0.66 0.63 83.41(35.27) 50.00 416.2

Yi and Pavlovic [10] 0.63 0.67 0.57 0.65 0.67 0.64 35.76(38.72) 168.93 -

B. Online segmentation algorithms

Xu et al. [11] 0.38 0.46 0.32 0.45 0.48 0.44 59.27(47.76) 26.58 39.2

Galasso et al. [12] 0.61 0.67 0.52 0.55 0.59 0.53 73.31(40.33) 15.63 -

Li et al. [13] 0.54 0.58 0.40 0.53 0.60 0.46 - - -

Proposed 0.63 0.66 0.53 0.66 0.68 0.62 36.61(31.19) 133.22 176.1

Proposed (Faster ver.) 0.63 0.66 0.51 0.66 0.68 0.62 37.01(31.27) 140.97 18.6
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(b) VPR

Fig. 7. Comparison of the precision-recall curves of the proposed algorithm and the
conventional algorithms [4–7,11,14]

Figure 7 shows the precision-recall curves of BPR and VPR. We compare the
proposed algorithm with the conventional algorithms [4–7,11,14], whose results
are available in the benchmark [14]. Among them, only the proposed algorithm
and [11] are online ones, and the others are offline ones. The curves of the
proposed algorithm are mostly higher than those of the conventional algorithms.
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(a) (b) (c) (d) (e)

Fig. 8. Qualitative results of the proposed segmentation algorithm. (a), (b), and (c)
show the input frame, the ground-truth, and the computed results at the same frames,
respectively. (d) and (e) illustrate more segmentation results at different frames. From
top to bottom, the frames are from “Arctic Kayak,” “Gokart,” “VW Commercial,”
and “Bicycle Race” in the VBS100 dataset [14]

Furthermore, the proposed algorithm partly outperforms the oracle method,
which uses the ground-truth data.

Figure 8 exemplifies segmentation results of the proposed algorithm in OSS.
It is observable that the proposed algorithm yields spatially accurate and tem-
porally coherent segments. Especially, the proposed algorithm robustly identifies
newly appearing segments on the “Arctic Kayak” and “Gokart” sequences. Also,
the proposed algorithm provides successful results on “VW Commercial” and
“Bicycle Race,” even though there are fast camera motions. Due to the page
limitation, we provide more segmentation results as supplementary materials.

Next, in Table 2, we analyze the efficacy of each energy term in the MRF
optimization. We test three configurations: ‘STHS + Pairwise,’ ‘Temporal +
Pairwise,’ and ‘STHS + Temporal.’ First, in ‘STHS + Pairwise,’ we omit the
temporal consistency function θt in (11). Second, ‘Temporal + Pairwise’ does
not perform STHS and ignores the STHS similarity function θs in (11). Third,
in ‘STHS + Temporal,’ we omit the pairwise cost in the MRF optimization.
Note that the omission of the temporal consistency function in ‘STHS + Pair-
wise’ leads to worse VPR scores. Since the proposed STHS plays an essential
role in handling newly appearing segments and alleviating the propagation of
erroneous segmentation labels, ‘Temporal + Pairwise’ presents the worst scores.
Also, the omission of the pairwise term in ‘STHS + Temporal’ leads to the per-
formance degradation. However, since we consider spatial affinities in STHS, the
degradation is relatively small.
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Table 2. The segmentation performance of the proposed algorithm using various exper-
imental configurations

BPR VPR Length NCL

Experimental setting ODS OSS AP ODS OSS AP μ(δ) μ

Proposed algorithm 0.63 0.66 0.53 0.66 0.68 0.62 36.61(31.19) 133.22

A. Combination of energy functions

STHS + Pairwise 0.62 0.66 0.55 0.64 0.66 0.59 34.02(28.69) 119.45

Temporal + Pairwise 0.57 0.61 0.45 0.61 0.64 0.55 65.64(40.38) 39.02

STHS + Temporal 0.62 0.65 0.52 0.65 0.67 0.62 35.43(30.26) 125.68

B. Post processing (short-label elimination)

Without post processing 0.63 0.66 0.52 0.66 0.68 0.62 13.54(23.49) 345.83

To analyze the effectiveness of the short-label elimination, we measure the
performance of the proposed algorithm without the post processing. As reported
in Table 2, the short-label elimination extends the average duration of segments
and decreases the number of segments, by eliminating noisy segments. It does
not increase BPR and VPR significantly, since the noisy segments are too small
to affect on the quantitative results.

5 Conclusions

We proposed a novel online video segmentation algorithm. To identify newly
appearing segments effectively, we introduced the STHS technique, which gen-
erates initial segments by sliding a window of frames. We first employed the
spatial agglomerative clustering for each frame, and then performed the tem-
poral bipartite graph matching across frames. Moreover, we defined the MRF
energy function, which consists of the unary and pairwise costs. We computed
the unary cost to exploit the initial STHS result and the previous segmenta-
tion result, and the pairwise cost to encourage similar superpixels to have the
same label. Experimental results on the VSB100 dataset [14] showed that the
proposed algorithm outperforms the state-of-the-art online video segmentation
algorithms [11–13] significantly.
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