
Instance-Sensitive Fully Convolutional Networks

Jifeng Dai1(B), Kaiming He1, Yi Li2, Shaoqing Ren3, and Jian Sun1

1 Microsoft Research, Beijing, China
jifdai@microsoft.com

2 Tsinghua University, Beijing, China
3 University of Science and Technology of China, Hefei, China

Abstract. Fully convolutional networks (FCNs) have been proven very
successful for semantic segmentation, but the FCN outputs are unaware
of object instances. In this paper, we develop FCNs that are capable of
proposing instance-level segment candidates. In contrast to the previous
FCN that generates one score map, our FCN is designed to compute a
small set of instance-sensitive score maps, each of which is the outcome
of a pixel-wise classifier of a relative position to instances. On top of
these instance-sensitive score maps, a simple assembling module is able
to output instance candidate at each position. In contrast to the recent
DeepMask method for segmenting instances, our method does not have
any high-dimensional layer related to the mask resolution, but instead
exploits image local coherence for estimating instances. We present com-
petitive results of instance segment proposal on both PASCAL VOC and
MS COCO.

1 Introduction

Fully convolutional networks (FCN) [1] have been proven an effective end-to-end
solution to semantic image segmentation. An FCN produces a score map of a
size proportional to the input image, where every pixel represents a classifier of
objects. Despite good accuracy and ease of usage, FCNs are not directly applica-
ble for producing instance segments (Fig. 1 (top)). Previous instance semantic
segmentation methods (e.g., [2–5]) in general resorted to off-the-shelf segment
proposal methods (e.g., [6,7]).

In this paper, we develop an end-to-end fully convolutional network that is
capable of segmenting candidate instances. Like the FCN in [1], in our method
every pixel still represents a classifier ; but unlike an FCN that generates one
score map (for one object category), our method computes a set of instance-
sensitive score maps, where each pixel is a classifier of relative positions to an
object instance (Fig. 1 (bottom)). For example, with a 3×3 regular grid depicting
relative positions, we produce a set of 9 score maps in which, e.g., the map #6

This work was done when Yi Li and Shaoqing Ren were interns at Microsoft
Research.

c© Springer International Publishing AG 2016
B. Leibe et al. (Eds.): ECCV 2016, Part VI, LNCS 9910, pp. 534–549, 2016.
DOI: 10.1007/978-3-319-46466-4 32

Instance-Sensitive Fully Convolutional Networks 535

Fig. 1. Methodological comparisons between: (top) FCN [1] for semantic segmentation;
(bottom) our InstanceFCN for instance segment proposal.

in Fig. 1 has high scores on the “right side” of object instances. With this set of
score maps, we are able to generate an object instance segment in each sliding
window by assembling the output from the score maps. This procedure enables
a fully convolutional way of producing segment instances.

Most related to our method, DeepMask [8] is an instance segment proposal
method driven by convolutional networks. DeepMask learns a function that maps
an image sliding window to an m2-d vector representing an m×m-resolution
mask (e.g., m = 56). This is computed by an m2-d fully-connected (fc) layer.
See Fig. 2. Even though DeepMask can be implemented in a fully convolutional
way (as at inference time in [8]) by recasting this fc layer into a convolutional
layer with m2-d outputs, it fundamentally differs from the FCNs in [1] where
each output pixel is a low-dimensional classifier. Unlike DeepMask, our method
has no layer whose size is related to the mask size m2, and each pixel in our
method is a low-dimensional classifier. This is made possible by exploiting local
coherence [9] of natural images for generating per-window pixel-wise predictions.
We will discuss and compare with DeepMask in depth.

On the PASCAL VOC [10] and MS COCO [11] benchmarks, our method
yields compelling instance segment proposal results, comparing favorably with a
series of proposal methods [6,8,12]. Thanks to the small size of the layer for pre-
dicting masks, our model trained on the small PASCAL VOC dataset exhibits
good accuracy with less risk of overfitting. In addition, our system also shows

536 J. Dai et al.

Fig. 2. Methodological comparisons between DeepMask [8] and InstanceFCN for
instance segment proposal. DeepMask uses a high-dimensional m2-d fc layer to gener-
ate an instance, e.g., m = 56 and m2 = 3136. Our network has no any m2-d layer.

competitive results for instance semantic segmentation when used with down-
stream classifiers. Our method, dubbed InstanceFCN, shows that segmenting
instances can still be addressed by the FCN fashion in [1], filling a missing piece
among the broad applications of FCNs.

2 Related Work

The general concept of fully convolutional models dates back to at least two
decades ago [13]. For convolutional neural networks (CNNs) [14,15], a sliding
window (or referred to as a patch or crop) is not necessarily run on the image
domain but instead is run on a feature map, which can be recast into convo-
lutional filters on that feature map. These fully convolutional models are nat-
urally applicable for image restoration problems, such as denoising [16], super-
resolution [17], and others [18], where each output pixel is a real-number regressor
of intensity values.

Recently FCNs [1] have shown compelling quality and efficiency for seman-
tic segmentation. In [1], each output pixel is a classifier corresponding to the
receptive field of the network. The networks can thus be trained end-to-end,

Instance-Sensitive Fully Convolutional Networks 537

pixel-to-pixel, given the category-wise semantic segmentation annotation. But
this method can not distinguish object instances (Fig. 1).

Operated fully convolutionally, the Region Proposal Network (RPN) in Faster
R-CNN [19] is developed for proposing box-level instances. In an RPN, each
pixel of the output map represents a bounding box regressor and an objectness
classifier. The RPN does not generate mask-level proposals. In [20], the RPN
boxes are used for regressing segmentation masks, conducted by an fc layer on
Region-of-Interest (RoI) pooling features [21].

3 Instance-Sensitive FCNs for Segment Proposal

3.1 From FCN to InstanceFCN

Although the original FCN [1] for semantic segmentation produces no explicit
instance, we can still think of some special cases in which such an FCN can do a
good job generating an instance. Let’s consider an image that contains only one
object instance. In this case, the original FCN can produce a good mask about
this object category, and because there is only one instance, this is also a good
mask about this object instance. In this procedure, the FCN does not have any
pre-define filters that are dependent on the mask resolution/size (say, m×m).

Next let’s consider an image that contains two object instances that are close
to each other (Fig. 1(top)). Although now the FCN output (Fig. 1(top)) does not
distinguish the two instances, we notice that the output is indeed reusable for
most pixels, except for those where one object is conjunct the other — e.g.,
when the “right side” of the left instance is conjunct the “left side” of the right
instance (Fig. 1). If we can discriminate “right side” from “left side”, we can still
rely on FCN-like score maps to generate instances.

Instance-Sensitive Score Maps. The above analysis motivates us to intro-
duce the concept of relative positions into FCNs. Ideally, relative positions are
with respect to object instances, such as the “right side” of an object or the “left
side” of an object. In contrast to the original FCN [1] where each output pixel is
a classifier of an object category, we propose an FCN where each output pixel is
a classifier of relative positions of instances. For example, for the #4 score map
in Fig. 1 (bottom), each pixel is a classifier of being or not being “left side” of
an instance.

In our practice, we define the relative positions using a k×k (e.g., k = 3)
regular grid on a square sliding window (Fig. 1 (bottom)). This leads to a set
of k2 (e.g., 9) score maps which are our FCN outputs. We call them instance-
sensitive score maps. The network architecture for producing these score maps
can be trained end-to-end, with the help of the following module.

Instance Assembling Module. The instance-sensitive score maps have not
yet produced object instances. But we can simply assemble instances from these
maps. We slide a window of resolution m×m on the set of instance-sensitive score

538 J. Dai et al.

maps (Fig. 1 (bottom)). In this sliding window, each m
k ×m

k sub-window directly
copies values from the same sub-window in the corresponding score map. The
k2 sub-windows are then put together (according to their relative positions) to
assemble a new window of resolution m×m. This is the instance assembled from
this sliding window.

This instance assembling module is adopted for both training and inference.
During training, this model generates instances from sparsely sampled sliding
windows, which are compared to the ground truth. During inference, we densely
slide a window on the feature maps to predict an instance segment at each
position. More details are in the algorithm section.

We remark that the assembling module is the only component in our archi-
tecture that involves the mask resolution m×m. Nevertheless, the assembling
module has no network parameter to be learned. It is inexpensive because it
only has copy-and-paste operations. This module impacts training as it is used
for computing the loss function.

3.2 Local Coherence

Next we analyze our method from the perspective of local coherence [9]. By local
coherence we mean that for a pixel in a natural image, its prediction is most
likely the same when evaluated in two neighboring windows. One does not need
to completely re-compute the predictions when a window is shifted by a small
step.

The local coherence property has been exploited by our method. For a window
that slides by one stride (Fig. 3 (bottom)), the same pixel in the image coordinate
system will have the same prediction because it is copied from the same score
map (except for a few pixels near the partitioning of relative positions). This
allows us to conserve a large number of parameters when the mask resolution
m2 is high.

This is in contrast to DeepMask’s [8] mechanism which is based on a “sliding
fc layer” (Fig. 3 (top)). In DeepMask, when the window is shifted by one stride,
the same pixel in the image coordinate system is predicted by two different
channels of the fc layer, as shown in Fig. 3 (top). So the prediction of this pixel
is in general not the same when evaluated in two neighboring windows.

By exploiting local coherence, our network layers’ sizes and dimensions are
all independent of the mask resolution m×m, in contrast to DeepMask. This
not only reduces the computational cost of the mask prediction layers, but more
importantly, reduces the number of parameters required for mask regression,
leading to less risk of overfitting on small datasets such as PASCAL VOC. In
the experiment section we show that our mask prediction layer can have hundreds
times fewer parameters than DeepMask.

3.3 Algorithm and Implementation

Next we describe the network architecture, training algorithm, and inference
algorithm of our method.

Instance-Sensitive Fully Convolutional Networks 539

Fig. 3. Our method can exploit image local coherence. For a window shifted by one
small step (from blue to red), our method can reuse the same prediction from the same
score map at that pixel. This is not the case if the masks are produced by a sliding
m2-dimensional fc layer (for illustration m = 14 in this figure) (Color figure online).

Network Architecture. As common practice, we use the VGG-16 network [22]
pre-trained on ImageNet [23] as the feature extractor. The 13 convolutional layers
in VGG-16 are applied fully convolutionally on an input image of arbitrary size.
We follow the practice in [24] to reduce the network stride and increase feature
map resolution: the max pooling layer pool4 (between conv4 3 and conv5 1) is
modified to have a stride of 1 instead of 2, and accordingly the filters in conv5 1

to conv5 3 are adjusted by the “hole algorithm” [24]. Using this modified VGG
network, the effective stride of the conv5 3 feature map is s = 8 pixels w.r.t. the
input image. We note that this reduced stride directly determines the resolutions
of our score maps from which our masks are copied and assembled.

On top of the feature map, there are two fully convolutional branches, one
for estimating segment instances and the other for scoring the instances. For
the first branch, we adopt a 1×1 512-d convolutional layer (with ReLU [25]) to
transform the features, and then use a 3×3 convolutional layer to generate a set
of instance-sensitive score maps. With a k×k regular grid for describing relative
positions, this last convolutional layer has k2 output channels corresponding to
the set of k2 instance-sensitive score maps. See the top branch in Fig. 4. On top
of these score maps, an assembling module is used to generate object instances

540 J. Dai et al.

Fig. 4. Details of the InstanceFCN architecture. On the top is a fully convolutional
branch for generating k2 instance-sensitive score maps, followed by the assembling
module that outputs instances. On the bottom is a fully convolutional branch for
predicting the objectness score of each window. The highly scored output instances are
on the right. In this figure, the objectness map and the “all instances” map have been
sub-sampled for the purpose of illustration.

in a sliding window of a resolution m×m. We use m = 21 pixels (on the feature
map with a stride of 8).

For the second branch of scoring instances (bottom in Fig. 4), we use a 3×3
512-d convolutional layer (with ReLU) followed by a 1×1 convolutional layer.
This 1×1 layer is a per-pixel logistic regression for classifying instance/not-
instance of the sliding window centered at this pixel. The output of this branch is
thus an objectness score map (Fig. 4 (bottom)), in which one score corresponds
to one sliding window that generates one instance.

Training. Our network is trained end-to-end. We adopt the image-centric strat-
egy in [19,21]. The forward pass computes the set of instance-sensitive score
maps and the objectness score map. After that, a set of 256 sliding windows are
randomly sampled [19,21], and the instances are only assembled from these 256
windows for computing the loss function. The loss function is defined as:

∑

i

(L(pi, p∗
i) +

∑

j

L(Si,j , S
∗
i,j)). (1)

Here i is the index of a sampled window, pi is the predicted objectness score of
the instance in this window, and p∗

i is 1 if this window is a positive sample and
0 if a negative sample. Si is the assembled segment instance in this window, S∗

i

is the ground truth segment instance, and j is the pixel index in the window. L
is the logistic regression loss. We use the definition of positive/negative samples
in [8], and the 256 sampled windows have a positive/negative sampling ratio of
1:1 [19].

Instance-Sensitive Fully Convolutional Networks 541

Our model accepts images of arbitrary size as input. We follow the scale
jittering in [26] for training: a training image is resized such that its shorter side
is randomly sampled from 600×1.5{−4,−3,−2,−1,0,1} pixels. We use Stochastic
Gradient Descent (SGD) as the solver. A total of 40k iterations are performed,
with a learning rate of 0.001 for the first 32k and 0.0001 for the last 8k. We
perform training with an 8-GPU implementation, where each GPU holds 1 image
with 256 sampled windows (so the effective mini-batch size is 8 images). The
weight decay is 0.0005 and the momentum is 0.9. The first thirteen convolutional
layers are initialized by the ImageNet pre-trained VGG-16 [22], and the extra
convolutional layers are randomly initialized from a Gaussian distribution with
zero mean and standard derivation of 0.01.

Inference. A forward pass of the network is run on the input image, generating
the instance-sensitive score maps and the objectness score map. The assembling
module then applies densely sliding windows on these maps to produce a segment
instance at each position. Each instance is associated with a score from the
objectness score map. To handle multiple scales, we resize the shorter side of
images to 600×1.5{−4,−3,−2,−1,0,1} pixels, and compute all instances at each
scale. It takes totally 1.5 s evaluating an images on a K40 GPU.

For each output segment, we truncate the values to form a binary mask.
Then we adopt non-maximum suppression (NMS) to generate the final set of
segment proposals. The NMS is based on the objectness scores and the box-level
IoU given by the tight bounding boxes of the binary masks. We use a threshold
of 0.8 for the NMS. After NMS, the top-N ranked segment proposals are used
as the output.

4 Experiments

4.1 Experiments on PASCAL VOC 2012

We first conduct experiments on PASCAL VOC 2012 [10]. Following [3,4], we use
the segmentation annotations from [27], and train the models on the training set
and evaluate on the validation set. All segment proposal methods are evaluated
by the mask-level intersection-over-union (IoU) between the predicted instances
and the ground-truth instances. Following [8], we measure the Average Recall
(AR) [28] (between IoU thresholds of 0.5 to 1.0) at a fixed number N of proposals,
denoted as “AR@N”. In [28], the AR metrics have been shown to be more
correlated to the detection accuracy (when used with downstream classifiers
[2,21]) than traditional metrics for evaluating proposals.

Ablations on the Number of Relative Positions k2. Table 1 shows our
results using different values of k2. Our method is not sensitive to k2, and can
perform well even when k = 3. Figure 5 shows some examples of the instance-
sensitive maps and assembled instances for k = 3.

542 J. Dai et al.

Table 1. Ablation experiments on the numbers of instance-sensitive score maps (i.e.,
of relative positions, k2), evaluated on the PASCAL VOC 2012 validation set.

k2 AR@10 (%) AR@100 (%) AR@1000 (%)

32 38.3 49.2 52.1

52 38.9 49.7 52.6

72 38.8 49.7 52.7

Fig. 5. Examples of instance-sensitive maps and assembled instances on the PASCAL
VOC validation set. For simplicity we only show the cases of k = 3 (9 instance-sensitive
score maps) in this figure.

Table 1 also shows that our results of k = 5 and k = 7 are comparable, and
are slightly better than the k = 3 baseline. Our method enjoys a small gain

Instance-Sensitive Fully Convolutional Networks 543

with a finer division of relative position, but gets saturated around k = 5. In the
following experiments we use k = 5.

Ablation Comparisons with the DeepMask Scheme. For fair compar-
isons, we implement a DeepMask baseline on PASCAL VOC. Specifically, the
network structure is VGG-16 followed by an extra 512-d 1×1 convolutional
layer [8], generating a 14×14 feature map as in [8] from a 224×224 image crop.
Then a 512-d fc layer [8] is applied to this feature map, followed by a 562-d fc
[8] for generating a 56×56-resolution mask. The two fc layers under this setting
have 53M parameters1. The objectness scoring branch is constructed as in [8].
All other settings are the same as ours for fair comparisons. We refer to this
model as ∼DeepMask which means our implementation of DeepMask. This
baseline’s results are in Table 2.

Table 2 shows the ablation comparisons. As the first variant, we train our
model on 224×224 crops as is done in DeepMask. Under this ablative training,
our method still outperforms ∼DeepMask by healthy margins. When trained on
full-size images (Table 2), our result is further improved. The gain from training
on full-size images further demonstrates the benefits of our fully convolutional
scheme.

It is noteworthy that our method has considerably fewer parameters. Our
last k2-d convolutional layer has only 0.1M parameters2 (all other layers being
the same as the DeepMask counterpart). This mask generation layer has only
1/500 of parameters comparing with DeepMask’s fc layers. Regressing high-
dimensional m×m masks is possible for our method as it exploits local coherence.
We also expect fewer parameters to have less risk of overfitting.

Table 2. Ablation comparisons between ∼DeepMask and our method on the PASCAL
VOC 2012 validation set. “∼DeepMask” is our implementation based on controlled
settings (see more descriptions in the main text).

Method Train Test AR@10 (%) AR@100 (%) AR@1000 (%)

∼DeepMask crop 224×224 sliding fc 31.2 42.9 47.0

Ours crop 224×224 fully conv. 37.4 48.4 51.4

fully conv. fully conv. 38.9 49.7 52.6

Comparisons with State-of-the-Art Segment Proposal Methods. In
Table 3 and Fig. 6 we compare with state-of-the-art segment proposal meth-
ods: Selective Search (SS) [6], Multiscale Combinatorial Grouping (MCG) [12],
∼DeepMask, and Multi-task Network Cascade (MNC) [20]. MNC is a joint multi-
stage cascade method that proposes box-level regions, regresses masks from these
1 512 × 14 × 14 × 512 + 512 × 562 = 53M .
2 512 × 3 × 3 × 25 = 0.1M .

544 J. Dai et al.

Table 3. Comparisons with state-of-the-art segment proposal methods on the PASCAL
VOC 2012 validation set. The results of SS [6] and MCG [12] are from the publicly
available code, and the results of MNC [20] is provided by the authors of [20].

Method AR@10 (%) AR@100 (%) AR@1000 (%)

SS [6] 7.0 23.5 43.3

MCG [12] 18.9 36.8 49.5
∼DeepMask 31.2 42.9 47.0

MNC [20] 33.4 48.5 53.8

Ours 38.9 49.7 52.6

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IoU

re
ca

ll

10 proposals

ours
MNC
~DeepMask
MCG
SS

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IoU

re
ca

ll

100 proposals

ours
MNC
~DeepMask
MCG
SS

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IoU

re
ca

ll

1000 proposals

ours
MNC
~DeepMask
MCG
SS

Fig. 6. Recall vs. IoU curves of different segment proposals on the PASCAL VOC 2012
validation set. AR is the area under the curves.

Table 4. Semantic instance segmentation on the PASCAL VOC 2012 validation set.
All methods are based on VGG-16 except SDS based on AlexNet [15].

Downstream classifier Proposals mAP@0.5 (%) mAP@0.7 (%)

SDS [3] MCG [7] 49.7 25.3

Hypercolumn [4] MCG [7] 60.0 40.4

CFM [5] MCG [7] 60.7 39.6

MNC [20] MNC [20] 63.5 41.5

MNC [20] ours 61.5 43.0

regions, and classifies these mask. With a trained MNC, we treat the mask regres-
sion outputs as the segment proposals.

Table 3 and Fig. 6 show that the CNN-based methods (∼DeepMask, MNC,
ours) perform better than the bottom-up segmentation methods of SS and MCG.
In addition, our method has AR@100 and AR@1000 similar to MNC, but has
5.5 % higher AR@10. The mask regression of MNC is done by high-dimensional
fc layers, in contrast to our fully convolutional fashion.

Comparisons on Instance Semantic Segmentation. Next we evaluate
the instance semantic segmentation performance when used with downstream

Instance-Sensitive Fully Convolutional Networks 545

Table 5. Comparisons of instance segment proposals on the first 5k images [8] from
the MS COCO validation set. DeepMask’s results are from [8].

Segment proposals AR@10 (%) AR@100 (%) AR@1000 (%)

GOP [29] 2.3 12.3 25.3

Rigor [30] - 9.4 25.3

SS [6] 2.5 9.5 23.0

MCG [7] 7.7 18.6 29.9

DeepMask [8] 12.6 24.5 33.1

DeepMaskZoom [8] 12.7 26.1 36.6

Ours 16.6 31.7 39.2

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

IoU

re
ca

ll

10 proposals

ours
DeepMaskZoom
MCG
SS
Rigor
Geodesic

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

IoU

re
ca

ll

100 proposals

ours
DeepMaskZoom
MCG
SS
Rigor
Geodesic

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

IoU

re
ca

ll

1000 proposals

ours
DeepMaskZoom
MCG
SS
Rigor
Geodesic

Fig. 7. Recall vs. IoU curves on the first 5k images [8] on the MS COCO validation
set. DeepMask’s curves are from [8].

category-aware classifiers. Following [3,4], we evaluate mean Average Precision
(mAP) using mask-level IoU at threshold of 0.5 and 0.7. In Table 4 we compare
with: SDS [3], Hypercolumn [4], CFM [5], and MNC [20]. We use MNC’s stage
3 as our classifier structure, which is similar to Fast R-CNN [21] except that its
RoI pooling layer is replaced with an RoI masking layer that generates features
from the segment proposals. We adopt a two-step training: first train our model
for proposing segments and then train the classifier with the given proposals.
Our method uses N = 300 proposals in this comparison.

Table 4 shows that among all the competitors our method has the highest
mAP@0.7 score of 43.0 %, which is 1.5 % better than the closest competitor. Our
method has the second best mAP@0.5, lower than MNC. We note that MNC is
a joint training algorithm which simultaneously learns proposals and category
classifiers. Our result (61.5 %) is based on two-step training, and is better than
MNC’s step-by-step training counterpart (60.2 % [20]).

4.2 Experiments on MS COCO

Finally we evaluate instance segment proposals on the MS COCO
benchmark [11]. Following [8], we train our network on the 80k training images

546 J. Dai et al.

Fig. 8. Comparisons with DeepMask [8] on the MS COCO validation set. Left: Deep-
Mask, taken from the paper of [8]. Proposals with highest IoU to the ground truth are
displayed. The missed ground-truth objects (no proposals with IoU > 0.5) are marked
by red outlines filled with white. Right: Our results displayed in the same way. (Color
figure online)

and evaluate on the first 5k validation images. The results are in Table 5 (Deep-
Mask’s results are reported from [8]). For fair comparisons, we use the same
multiple scales used in [8] for training and testing on COCO. Our method has
higher AR scores than DeepMask and a DeepMaskZoom variant [8]. Figures 7,
8 and 9 show the recall vs. IoU curves on COCO.

Instance-Sensitive Fully Convolutional Networks 547

Fig. 9. More examples of our results on the MS COCO validation set, displayed in the
same way of Fig. 8 (the missed ground-truth objects are marked by red outlines filled
with white). (Color figure online)

5 Conclusion

We have presented InstanceFCN, a fully convolutional scheme for proposing seg-
ment instances. It is driven by classifying pixels based on their relative positions,
which leads to a set of instance-sensitive score maps. A simple assembling module
is then able to generate segment instances from these score maps. Our network
architecture handles instance segmentation without using any high-dimensional
layers that depend on the mask resolution. We expect our novel design of fully
convolutional models will further extend the family of FCNs.

References

1. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR (2015)

548 J. Dai et al.

2. Girshick, R., Iandola, F., Darrell, T., Malik, J.: Deformable part models are con-
volutional neural networks. arXiv preprint arXiv:1409.5403 (2014)

3. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Simultaneous detection and
segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV
2014, Part VII. LNCS, vol. 8695, pp. 297–312. Springer, Heidelberg (2014)

4. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object seg-
mentation and fine-grained localization. In: CVPR (2015)

5. Dai, J., He, K., Sun, J.: Convolutional feature masking for joint object and stuff
segmentation. In: CVPR (2015)

6. Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search
for object recognition. IJCV 104(2), 154–171 (2013)

7. Arbeláez, P., Pont-Tuset, J., Barron, J.T., Marques, F., Malik, J.: Multiscale com-
binatorial grouping. In: CVPR (2014)

8. Pinheiro, P.O., Collobert, R., Dollar, P.: Learning to segment object candidates.
In: NIPS (2015)

9. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.: Patchmatch: a random-
ized correspondence algorithm for structural image editing. ACM Trans. Graph.
(2009)

10. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The
PASCAL visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)

11. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp.
740–755. Springer, Heidelberg (2014)

12. Agrawal, P., Girshick, R., Malik, J.: Analyzing the performance of multilayer neural
networks for object recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014, Part VII. LNCS, vol. 8695, pp. 329–344. Springer, Heidelberg
(2014)

13. Matan, O., Burges, C.J., Le Cun, Y., Denker, J.S.: Multi-digit recognition using a
space displacement neural network. In: NIPS (1992)

14. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
Comput. 1(4), 541–551 (1989)

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS (2012)

16. Jain, V., Seung, S.: Natural image denoising with convolutional networks. In: NIPS
(2008)

17. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for
image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.)
ECCV 2014, Part IV. LNCS, vol. 8692, pp. 184–199. Springer, Heidelberg (2014)

18. Eigen, D., Krishnan, D., Fergus, R.: Restoring an image taken through a window
covered with dirt or rain. In: ICCV (2013)

19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: NIPS (2015)

20. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task net-
work cascades. In: CVPR (2016)

21. Girshick, R.: Fast R-CNN. In: ICCV (2015)
22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. In: ICLR (2015)

http://arxiv.org/abs/1409.5403

Instance-Sensitive Fully Convolutional Networks 549

23. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. arXiv:1409.0575 (2014)

24. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic
image segmentation with deep convolutional nets and fully connected crfs. In:
ICLR (2015)

25. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann
machines (2010)

26. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars,
T. (eds.) ECCV 2014, Part III. LNCS, vol. 8691, pp. 346–361. Springer, Heidelberg
(2014)

27. Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours
from inverse detectors. In: ICCV (2011)

28. Hosang, J., Benenson, R., Dollár, P., Schiele, B.: What makes for effective detection
proposals? TPAMI (2015)

29. Krähenbühl, P., Koltun, V.: Geodesic object proposals. In: Fleet, D., Pajdla, T.,
Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 725–
739. Springer, Heidelberg (2014)

30. Humayun, A., Li, F., Rehg, J.: Rigor: reusing inference in graph cuts for generating
object regions. In: CVPR (2014)

http://arxiv.org/abs/1409.0575

	Instance-Sensitive Fully Convolutional Networks
	1 Introduction
	2 Related Work
	3 Instance-Sensitive FCNs for Segment Proposal
	3.1 From FCN to InstanceFCN
	3.2 Local Coherence
	3.3 Algorithm and Implementation

	4 Experiments
	4.1 Experiments on PASCAL VOC 2012
	4.2 Experiments on MS COCO

	5 Conclusion
	References

