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USI Universitá della Svizzera Italiana, Lugano, Switzerland

{artiom.kovnatsky,klaus.glashoff,michael.bronstein}@usi.ch

Abstract. Numerous problems in computer vision, pattern recognition,
and machine learning are formulated as optimization with manifold con-
straints. In this paper, we propose the Manifold Alternating Directions
Method of Multipliers (MADMM), an extension of the classical ADMM
scheme for manifold-constrained non-smooth optimization problems. To
our knowledge, MADMM is the first generic non-smooth manifold opti-
mization method. We showcase our method on several challenging prob-
lems in dimensionality reduction, non-rigid correspondence, multi-modal
clustering, and multidimensional scaling.

1 Introduction

A wide range of problems in machine learning, pattern recognition, computer
vision, and signal processing is formulated as optimization problems where the
variables are constrained to lie on some Riemannian manifold. For example, opti-
mization on the Grassman manifold comes up in multi-view clustering [1] and
matrix completion [2]. Optimization on the Stiefel manifold arises in eigenvalue-,
assignment-, and Procrustes problems, and in 1-bit compressed sensing [3]. Prob-
lems involving products of Stiefel manifolds include coupled diagonalization with
applications to shape correspondence [4] and manifold learning [5], and eigenvec-
tor synchronization with applications to sensor localization [6], structural biology
[7] and structure from motion recovery [8]. Optimization on the sphere is used
in principle geodesic analysis [9], a generalization of the classical PCA to non-
Euclidean domains. Optimization over the manifold of fixed-rank matrices arises
in maxcut problems [10], sparse principal component analysis [10], regression
[11], matrix completion [12,13], and image classification [14]. Oblique manifolds
are encountered in problems such as independent component analysis [15], blind
source separation [16], and prediction of stock returns [17].

Though some instances of manifold optimization such as eigenvalues prob-
lems have been treated extensively in the distant past, the first general purpose
algorithms appeared only in the 1990s [18]. With the emergence of numerous
applications during the last decade, especially in the machine learning com-
munity, there has been an increased interest in general-purpose optimization
on different manifolds [19], leading to several manifold optimization algorithms
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such as conjugate gradients [20], trust regions [21], and Newton [18,22]. Boumal
et al. [23] released the MATLAB package Manopt, as of today the most complete
generic toolbox for smooth optimization on various manifolds.

In this paper, we are interested in manifold-constrained minimization of
non-smooth functions, such as nuclear, L1, or L2,1 matrix norms. Recent exam-
ples of such problems include robust PCA [24], compressed eigenmodes [25,26],
robust multidimensional scaling [27], synchronization of rotation matrices [28],
and functional correspondence [29,30].

Prior Work. Broadly speaking, optimization methods for non-smooth func-
tions break into three classes of approaches. First, smoothing methods replace
the non-differentiable objective function with its smooth approximation [31].
Such methods typically suffer from a tradeoff between accuracy (how far is the
smooth approximation from the original objective) and convergence speed (less
smooth functions are usually harder to optimize). A second class of methods use
subgradients as a generalization of derivatives of non-differentiable functions. In
the context of manifold optimization, several subgradient approaches have been
proposed [16,32–34]. The third class of methods are splitting approaches, studied
mostly for problems involving the minimization of matrix functions with orthog-
onality constraints. Lai and Osher proposed the method of splitting orthogonal
constraints (SOC) based on the Bregman iteration [35]. A similar method was
independently developed in [36]. Neumann et al. [26] used a different splitting
scheme for the same class of problems.

Contributions. In this paper, we propose Manifold Alternating Direction
Method of Multipliers (MADMM), an extension of the classical ADMM scheme
[37] for manifold-constrained non-smooth optimization problems. The core idea
is a splitting into a smooth problem with manifold constraints and a non-smooth
unconstrained optimization problem. We stress that while very simple, to the
best of our knowledge we are the first to employ such a splitting, which leads to
a general optimization method. Our method has a number of advantages com-
mon to ADMM approaches. First, it is very simple to grasp and implement.
Second, it is generic and not limited to a specific manifold, as opposed to e.g.
[26,35] developed for the Stiefel manifold, or [16] developed for the oblique man-
ifold. Third, it makes very few assumptions about the properties of the objective
function. Fourth, in some settings, our method lends itself to parallelization on
distributed computational architectures [38]. Finally, our method demonstrates
faster convergence than previous methods in a broad range of applications.

2 Manifold Optimization

The term manifold- or manifold-constrained optimization refers to a class of
problems of the form

min
X∈M

f(X), (1)

where f is a smooth real-valued function, X is an m × n real matrix, and M is
some Riemannian submanifold of Rm×n. The manifold is not a vector space and
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Fig. 1. The minimum eigenvalue problem minx∈Rn x�Ax s.t. x�x = 1 is a simple
example of a manifold optimization problem. Left: level sets of the cost function x�Ax
for a random symmetric 3 × 3 matrix A. The manifold constraint (unit sphere {x ∈
R

3 : x�x = 1}) is shown in grey. Right: values of the cost function on the manifold of
feasible solutions. A minimizer (white dot) corresponds to the smallest eigenvector of
A. Note that there are two minimizers in this example due to the sign ambiguity of
the eigenvectors (the other minimizer is on the back of the sphere).

has no global system of coordinates, however, locally at point X, the manifold
is homeomorphic to a Euclidean space referred to as the tangent space TXM.

The main idea of manifold optimization is to treat the objective as a function
f : M → R defined on the manifold, and perform descent on the manifold itself
rather than in the ambient Euclidean space (see a toy example in Fig. 1). On a
manifold, the intrinsic (Riemannian) gradient ∇Mf(X) of f at point X is a vec-
tor in the tangent space TXM that can be obtained by projecting the standard
(Euclidean) gradient ∇f(X) onto TXM by means of a projection operator PX (see
an illustration below). A step along the intrinsic gradient direction is performed
in the tangent plane. In order to obtain the next iterate, the point in the tan-
gent plane is mapped back to the manifold by means of a retraction operator RX ,
which is typically an approximation of the exponential map. For many manifolds,
the projection P and retraction R operators have a closed form expression.

A conceptual gradient descent-like manifold optimization is presented in
Algorithm 1. For a comprehensive introduction to manifold optimization, the
reader is referred to [19].

3 Manifold ADMM

Let us now consider general problems of the form

min
X∈M

f(X) + g(AX), (2)

where f and g are smooth and non-smooth real-valued functions, respectively, A
is a k ×m matrix, and the rest of the notation is as in problem (1). Examples of
g often used in machine learning applications are nuclear-, L1-, or L2,1-norms.
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repeat

Compute the extrinsic gradient ∇f(X(k))
Projection: ∇Mf(X(k)) = PX(k)(∇f(X(k)))
Compute the step size α(k) along the
descent direction
Retraction:
X(k+1) = RX(k)(−α(k)∇Mf(X(k)))

until convergence;

Algorithm 1. Conceptual algorithm for
smooth optimization on manifold M.

X(k)

∇f(X(k))

P
X(k)

α(k)∇Mf(X(k))

R
X(k)

X(k+1)

M

Because of non-smoothness of the objective function, Algorithm 1 cannot be
used directly to minimize (2).

In this paper, we propose treating this class of problems using the Alternating
Directions Method of Multipliers (ADMM). The key idea is that problem (2) can
be equivalently formulated as

min
X∈M,Z∈Rk×n

f(X) + g(Z) s.t. Z = AX (3)

by introducing an artificial variable Z and a linear constraint. The method of
multipliers [39,40], applied to only the linear constraints in (3), leads to the
minimization problem

min
X∈M,Z∈Rk×n

f(X) + g(Z) + ρ
2‖AX − Z + U‖2F (4)

where ρ > 0 and U ∈ R
k×n have to be chosen and updated appropriately (see

below). This formulation now allows splitting the problem into two optimization
sub-problems w.r.t. to X and Z, which are solved in an alternating manner,
followed by an updating of U and, if necessary, of ρ. Observe that in the first sub-
problem w.r.t. X we minimize a smooth function with manifold constraints, and
in the second sub-problem w.r.t. Z we minimize a non-smooth function without
manifold constraints. Thus, the problem breaks down into two well-known sub-
problems. This method, which we call Manifold Alternating Direction Method of
Multipliers (MADMM), is summarized in Algorithm 2.

Note that MADMM is extremely simple and easy to implement. The X-
step is the setting of Algorithm 1 and can be carried out using any standard
smooth manifold optimization method. Similarly to common implementation
of ADMM algorithms, there is no need to solve the X-step problem exactly;
instead, only a few iterations of manifold optimization are done. Furthermore,
for some manifolds and some functions f , the X-step has a closed-form solution.
The implementation of the Z-step depends on the non-smooth function g, and
in many cases has a closed-form expression: for example, when g is the L1-
norm, the Z-step boils down to simple shrinkage, and when g is nuclear norm,
the Z-step is performed by singular value shrinkage1. ρ is the only parameter of
1 More generally, it is a proximity operator of 1

ρ
g(Z) at AX + U .
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Initialize k ← 1, Z(1) = AX(1), U (1) = 0.
repeat

X-step: X(k+1) = argmin
X∈M

f(X) + ρ
2
‖AX − Z(k) + U (k)‖2

F

Z-step: Z(k+1) = argmin
Z

g(Z) + ρ
2
‖AX(k+1) − Z + U (k)‖2

F

U (k+1) = U (k) + AX(k+1) − Z(k+1)

k ← k + 1
until convergence;

Algorithm 2. Generic MADMM method for non-smooth optimization on
manifold M.

the algorithm and its choice is not critical for convergence. In our experiments,
we used a rather arbitrary fixed value of ρ, though in the ADMM literature it is
common to adapt ρ at each iteration, e.g. using the strategy described in [38].

Convergence. Our MADMM belongs to the class of multiplier algorithms that
can be considered as ‘methods with partial elimination of constraints’ [41] and
as ‘augmented Lagrangian methods with general lower-level constraints’ [42].
We note that the convergence results of [41,42] do not apply in our case due to
non-differentiability of the function g in (2). Furthermore, MADMM is an alter-
nating method and thus is not covered by theoretical results on ‘pure’ multiplier
methods. An avenue for obtaining convergence results for (a regularized version
of) MADMM is the recently developed theory by [43], which is applicable to
non convex and non-differentiable functions f and g. Attouch et al. [43] show
convergence results for the class of semi algebraic objects, which includes Stiefel
and other matrix manifolds. Wang et al. prove global convergence of ADMM
in convex and non-smooth scenarios, however the non-smooth and non-convex
parts should belong to a specific class of functions (piecewise linear functions,
�q quasi-norms (0 ≤ q ≤ 1), etc.) [44], which limits the use of their convergence
results. We defer a deeper study of convergence properties to future work.

4 Results and Applications

In this section, we show experimental results providing a numerical evaluation
of our approach on several challenging applications from the domains of dimen-
sionality reduction, pattern recognition, and manifold learning. All our experi-
ments were implemented in MATLAB; we used the conjugate gradients and trust
regions solvers from the Manopt toolbox [23] for the X-step. Time measurements
were carried out on a PC with Intel Xeon 2.4 GHz CPU.

4.1 Compressed Modes

Problem Setting. Our first application is the computation of compressed
modes, an approach for constructing localized Fourier-like bases [25]. Let us
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be given a manifold S with a Laplacian Δ, where in this context, ‘manifold’ can
refer to both continuous or discretized manifolds of any dimension, represented
as graphs, triangular meshes, etc., and should not be confused with the matrix
manifolds we have discussed so far referring to manifold-constrained optimiza-
tion problems. Here, we assume that the manifold is sampled at n points and the
Laplacian is represented as an n×n sparse symmetric matrix. In many machine
learning applications such as spectral clustering [45], non-linear dimensionality
reduction, and manifold learning [46], one is interested in finding the first k
eigenvectors of the Laplacian ΔΦ = ΦΛ, where Φ = (φ1, . . . , φk) is the n × k
matrix of the first eigenvectors arranged as columns, and Λ = diag(λ1, . . . , λk)
is the diagonal k × k matrix of the corresponding eigenvalues.

The first k eigenvectors of the Laplacian can be computed by minimizing the
Dirichlet energy with orthonormality constraints

min
Φ∈Rn×k

tr(Φ�ΔΦ) s.t. Φ�Φ = I. (5)

Laplacian eigenfunctions form an orthonormal basis on the Hilbert space
L2(S) with the standard inner product, and are a generalization of the Fourier
basis to non-Euclidean domains. The main disadvantage of such bases is that its
elements are globally supported. Ozoliņš et al. [25] proposed a construction of
localized quasi-eigenbases by solving

min
Φ∈Rn×k

tr(Φ�ΔΦ) + μ‖Φ‖1 s.t. Φ�Φ = I, (6)

where μ > 0 is a parameter. The L1-norm (inducing sparsity of the resulting
basis) together with the Dirichlet energy (imposing smoothness of the basis
functions) lead to orthogonal basis functions, referred to as compressed modes
that are localized and approximately diagonalize Δ.

Lai and Osher [35] and Neumann et al. [26] proposed two different splitting
methods for solving problem (6). Lai et al. [35] solves (6) by the splitting orthog-
onality constraint (SOC), introducing two additional variables Q = Φ and P = Φ
so that (6) is equivalent to the following constrained optimization problem,

min
Φ,Q,P∈Rn×k

tr(Φ�ΔΦ) + μ‖Q‖1 s.t. Q = Φ, P = Φ, P�P = I, (7)

solved by alternating minimization on Φ,P , and Q (Algorithm 3).

Solution. Here, we realize that problem (6) is an instance of manifold optimiza-
tion on the Stiefel manifold S(n, k) = {X ∈ R

n×k : X�X = I} and solve it using
MADMM, which assumes in this setting the form of Algorithm 4. The X-step
involves optimization of a smooth function on the Stiefel manifold and can be
carried out using standard manifold optimization algorithms; we use conjugate
gradients and trust regions solvers. The Z-step requires the minimization of the
sum of L1- and L2-norms, a standard problem in signal processing that has an
explicit solution by means of thresholding (using the shrinking operator). In all
our experiments, we used the parameter ρ = 2 for MADMM. For comparison
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Input n × n Laplacian matrix Δ, parameter μ > 0
Output n × k matrix Φ of the first compressed modes of Δ
Initialize k ← 1, Φ(1), P (1) = Q(1) = Φ(1), U (1) = V (1) = 0
repeat

Φ(k+1) = argmin
Φ

tr(Φ�ΔΦ) + ρ
2
‖Φ − Q(k) + U (k)‖2

F + ρ′
2

‖Φ − P (k) + V (k)‖2
F

Q(k+1) = argmin
Q

μ‖Q‖1 + ρ
2
‖Φ(k+1) − Q + U (k)‖2

F

P (k+1) = argmin
P :P �P=I

ρ′
2

‖Φ(k+1) − P + V (k)‖2
F

U (k+1) = U (k) + Φ(k+1) − Q(k+1)

V (k+1) = V (k) + Φ(k+1) − P (k+1)

k ← k + 1
until convergence;

Algorithm 3. SOC method [35] for computing compressed modes.

Input n × n Laplacian matrix Δ, parameter μ > 0
Output n × k matrix Φ of the first compressed modes of Δ
Initialize k ← 1, Φ(1) ←random orthonormal matrix, Z(1) = Φ(1), U (1) = 0
repeat

Φ(k+1) = argmin
Φ∈S(n,k)

tr(Φ�ΔΦ) + ρ
2
‖Φ − Z(k) + U (k)‖2

F

Z(k+1) = Shrinkμ
ρ
(Φ(k+1) + U (k))

U (k+1) = U (k) + Φ(k+1) − Z(k+1)

k ← k + 1
until convergence;

Algorithm 4. MADMM method for computing compressed modes.
Shrinkα(x) = x

‖x‖ max{0, ‖x‖ − α} is the shrinkage operator.

with the method of [35], we used the code provided by the authors, and imple-
mented the method of [26] ourselves. All the methods were initialized by the
same random orthonormal n × k matrix Φ.

Results. To study the behavior of ADMM, we used a simple 1D problem with
a Euclidean Laplacian constructed on a line graph with n vertices. Figure 3 (top
left) shows the convergence of MADMM with different random initializations.
Figure 3 (top right) shows the convergence of MADMM using different solvers
and number of iterations in the X-step. We did not observe any significant
change in the behavior. Figure 3 (bottom left) studies the scalability of different
algorithms, speaking clearly in favor of MADMM compared to the methods of
[26,35]. Figure 3 (bottom right) shows the convergence of different methods for
the computation of compressed modes on a triangular mesh of a human sampled
at 8 K vertices (see examples in Fig. 2). MADMM shows the best performance
among the compared methods.
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Fig. 2. First six compressed modes computed on a human mesh containing n = 8 K
points computed using MADMM. Parameter μ = 10−3 and three manifold optimization
iterations in the X-step were used in these experiments.
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Fig. 3. Compressed modes problem. Top left: convergence of MADMM on a problem
of size n = 500, k = 10 with different random initialization. Top right: convergence
of MADMM using different solvers and number of iterations at X-step on the same
problem. Bottom left: scalability of different methods; shown is time/iteration on a
problem of different size (fixed k = 10 and varying n). Bottom right: comparison of
convergence of different splitting methods and MADMM on a problem of size n = 8K.

4.2 Functional Correspondence

Problem Setting. Our second problem is coupled diagonalization, which is
used for finding functional correspondence between manifolds [47] and multi-
view clustering [5]. Let us consider a collection of L manifolds {Si}L

i=1, each
discretized at ni points and equipped with a Laplacian Δi represented as an
ni ×ni matrix. The functional correspondence between manifolds Si and Sj is an
nj ×ni matrix Tij mapping functions from L2(Si) to L2(Sj). It can be efficiently
approximated using the first k Laplacian eigenvectors as Tij ≈ ΦjXijΦ

�
i , where

Xij is the k × k matrix translating Fourier coefficients from basis Φi to basis
Φj , represented as ni × k and nj × k matrices, respectively. Imposing a further
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assumption that Tij is volume-preserving, Xij must be an orthonormal matrix
[47], which will be approximated by the product of two orthogonal matrices.
For each pair of manifolds Si,Sj , we assume to be given a set of qij functions
in L2(Si) arranged as columns of an ni × qij matrix Fij and the corresponding
functions in L2(Sj) represented by the nj × qij matrix Gij . The correspondence
between all the manifolds can be established by solving the problem

min
X1,...,XL

∑

i�=j

‖F �
ij ΦiXi − G�

ijΦjXj‖2,1 + μ

L∑

i=1

tr(X�
i ΛiXi) s.t. X�

i Xi = I. (8)

The L2,1-norm ‖A‖2,1 =
∑

j

(∑
i a2

ij

)1/2 allows to cope with outliers in the cor-
respondence data [28,29]. The problem can be interpreted as simultaneous diag-
onalization of the Laplacians Δ1, . . . ,ΔL [5]. As correspondence data F,G, one
can use point-wise correspondence between some known ‘seeds’, or, in computer
graphics applications, some shape descriptors [47]. Geometrically, the matrices
Xi can be interpreted as rotations of the respective bases, and the problem tries
to achieve a coupling between the bases Φ̂i = ΦiXi while making sure that they
approximately diagonalize the respective Laplacians.

Solution. Here, we consider problem (8) as optimization on a product of L
Stiefel manifolds, (X1, . . . , XL) ∈ S

L(k, k) and solve it using the MADMM
method. The X-step of MADMM was performed using four iterations of the
manifold conjugate gradients solver. As in the previous problem, the Z-step
boils down to simple shrinkage. We used ρ = 1 and initialized all Xi = I.

Input ni × qij , nj × qij corresponding matrices Fij , Gij , respectively;
ni × k eigenbases matrices Φi, k × k diagonal matrices Λi of corresponding
eigenvalues, and parameter μ > 0
Output orthonormal matrices X1, . . . , XL aligning the bases Φ1, . . . , ΦL

and allowing to express the functional correspondences as
Tij ≈ ΦjXiX

�
j Φ�

i

Initialize k ← 1, X
(1)
i ← I, Z

(1)
ij ← F�

ij ΦiX
(1)
i − G�

ijΦjX
(1)
j , U

(1)
ij ← I

repeat
(X(k+1)

1 , . . . , X
(k+1)
L ) =

argmin
Xi∈S(k,k)

∑

i

tr(X�
i ΛiXi) + ρ

2

∑

i�=j

‖F�
ij ΦiXi − G�

ijΦjXj − Z
(k)
ij + U

(k)
ij ‖2F

Z
(k+1)
ij (:, l) =

Shrink 1
μρ

(F�
ij ΦiX

(k+1)
i (:, l) − G�

ijΦjX
(k+1)
j (:, l) + U

(k)
ij (:, l))

U
(k+1)
ij = U

(k)
ij + F�

ij ΦiX
(k+1)
i − G�

ijΦjX
(k+1)
j − Z

(k+1)
ij

k ← k + 1
until convergence;

Algorithm 5. MADMM method for functional correspondence problem.
X(:, l) denotes the lth column of matrix X.

Results. We computed functional correspondences between L = 6 human 3D
shapes from the TOSCA dataset [48] using k = 25 basis functions and q = 25
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seeds as correspondence data, contaminated by 16 % outliers. Figure 4 (left) ana-
lyzes the resulting correspondence quality using the Princeton protocol [49], plot-
ting the percentage of correspondences falling within a geodesic ball of increas-
ing radius w.r.t. the groundtruth correspondence. For comparison, we show the
results of a least-squares solution used in [47] (see Fig. 5). Figure 4 (right) shows
the convergence of MADMM in a correspondence problem with L = 2 shapes.
For comparison, we show the convergence of a smoothed version of the L2,1-
norm ‖A‖2,1 ≈ ∑

j

(∑
i a2

ij + ε
)1/2 in (8) for various values of the smoothing

parameter ε.

Uncoupled Coupled L2 Coupled L2,1

0.53/0.39

0.53/0.27

0.72/0.5

0.72/0.67

0.82/0.62

0.82/0.69

Fig. 6. Clustering of synthetic multimodal datasets Circles. Shown is (left to right):
spectral clustering applied to each modality independently; clustering results produced
by coupled diagonalization methods with L2 and L2,1 norms, respectively. Grey lines
depict 10 % of outliers correspondences. Ideally, all markers of each type should have
a single color. Numbers show micro-averaged accuracy [50]/normalized NMI [51] (the
higher the better).

Figure 6 shows the application of our method for multimodal clustering using
the dataset Circles from [5], where we introduce 10% outliers in the correspon-
dence between the modalities data points. Following Eynard et al. [5], we use
Φ̂i = ΦiXi obtained by solving problem (8) as joint multimodal data embedding,
and perform spectral clustering [52] in this space. Clustering quality was mea-
sured using two standard criteria used in the evaluation of clustering algorithms:
the micro-averaged accuracy [50] and the normalized mutual information (NMI)
[51]. The use of the robust L2,1 problem formulation (Fig. 6, right) solved with
our MADMM outperforms the smooth L2 version (Fig. 6, center).
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4.3 Robust Euclidean Embedding

Problem Setting. Our third problem is an L1 formulation of the multidimen-
sional scaling (MDS) problem treated in [27] under the name robust Euclidean
embedding (REE). Let us be given an n × n matrix D of squared distances. The
goal is to find a k-dimensional configuration of points X ∈ R

n×k such that the
Euclidean distances between them are as close as possible to the given ones.
The classical MDS approach employs the duality between Euclidean distance
matrices and Gram matrices: a squared Euclidean distance matrix D can be
converted into a similarity matrix by means of double-centering B = − 1

2HDH,
where H = I − 1

n11�. Conversely, the squared distance matrix is obtained from
B by (dist(B))ij = bii + bjj − 2bij . The similarity matrix corresponding to a
Euclidean distance matrix is positive semi-definite and can be represented as a
Gram matrix B = XX�, where X is the desired embedding. In the case when
D is not Euclidean, B acts as a low-rank approximation of the similarity matrix
(now not necessarily positive semi-definite) associated with D, leading to the
problem

min
X∈Rm×k

‖HDH − XX�‖2F (9)

known as classical MDS or classical scaling, which has a closed form solution by
means of eigendecomposition of HDH (Fig 7).

(Squared) distances Similarities

EDM PSD

B∗ = UΛ+U�

dist(B∗) = (b∗
ii + b∗

jj − 2b∗
ij)

B = − 1
2
HDH

Fig. 7. Illustration of the classical MDS approach and the equivalence between Euclid-
ean distance matrices (EDM) and positive semi-definite (PSD) similarity matrices.

The main disadvantage of classical MDS is the fact that noise in a single
entry of the distance matrix D is spread over entire column/row by the double
centering transformation. To cope with this problem, Cayton and Dasgupta [27]
proposed an L1 version of the problem,

min
B∈Rn×n

‖D − dist(B)‖1 s.t. B 
 0, rank(B) ≤ k, (10)

where the use of the L1-norm efficiently rejects outliers. The authors proposed
two solutions for problem (10): a semi-definite programming (SDP) formulation
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and a subgradient descent algorithm (the reader is referred to [27] for a detailed
description of both methods).

Solution. Here, we consider (10) as a non-smooth optimization of the form (2)
on the manifold of fixed-rank positive semi-definite matrices and solve it using
MADMM (Algorithm 6). Note that in this case, we have only the non-smooth
function g and f ≡ 0. The X-step of the MADMM algorithm is manifold opti-
mization of a quadratic function, carried out using two iterations of manifold
conjugate gradients solver. The Z-step is performed by shrinkage. In our exper-
iments, all the compared methods were initialized with the classical MDS solu-
tion and the value ρ = 10 was used for MADMM. The SDP approach was
implemented using MATLAB CVX toolbox [53].

Input squared distance matrix D
Initialize k ← 1, Z(1) = X(1), U (1) = 0
repeat

B(k+1) = argmin
B∈S+(n,k)

‖dist(B(k+1)) − Z(k) − D + U (k)‖2F
Z(k+1) = Shrink 1

ρ

(
dist(B(k+1)) − D + U (k)

)

Update U (k+1) = U (k) + dist(B(k+1)) − D − Z(k+1)

k ← k + 1
until convergence;
Algorithm 6. MADMM method for robust Euclidean embedding.

Groundtruth

Classical MDS

MADMM

Fig. 8. Embedding of the noisy distances between 500 US cities in the plane using
classical MDS (blue) and REE solved using MADMM (red). The distance matrix was
contaminated by sparse noise by doubling the distance between some cities. (Color
figure online)
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Results. Figure 8 shows an example of 2D Euclidean embedding of the distances
between 500 US cities, contaminated by sparse noise. The robust embedding is
insensitive to such outliers, while the classical MDS result is completely ruined.
Figure 9 (right) shows an example of convergence of the proposed MADMM
method and the subgradient descent of [27] on the same dataset. We observed
that our algorithm outperforms the subgradient method in terms of convergence
speed. Furthermore, the subgradient method appears to be very sensitive to the
initial step size c; choosing too small a step leads to slower convergence, and if
the step is too large the algorithm may fail to converge. Figure 9 (left) studies
the scalability of the subgradient-, SDP-, and MADMM-based solutions for the
REE problem, plotting the complexity of a single iteration as function of the
problem size on random data. Typical number of iterations was of the order of
20 for SDP, 50 for MADMM, and 500 for the subgradient method.
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Fig. 9. REE problem. Left: scalability of different algorithms; shown is single iteration
complexity as functions of the problem size n using random distance data. SDP did
not scale beyond n = 100. Right: example of convergence of MADMM and subgradient
algorithm of [27] on the US cities problem of size n = 500. The subgradient algorithm
is very sensitive to the choice of the initial step size c (choosing too large c breaks the
convergence, while too small c slows down the convergence).

5 Conclusions

We presented MADMM, a generic algorithm for optimization of non-smooth
functions with manifold constraints, and showed that it can be efficiently used
in many important problems from the domains of machine learning, computer
vision and pattern recognition, and data analysis. Among the key advantages
of our method is its remarkable simplicity and lack of parameters to tune - in
all our experiments, it worked entirely out-of-the-box. While there exist several
solutions for some instances of non-smooth manifold optimization (notably on
Stiefel manifolds), MADMM, to the best of our knowledge, is the first generic
approach. We believe that MADMM will be very useful in many other applica-
tions in the computer vision and pattern recognition community involving mani-
fold optimization. In our experiments, we observed that MADMM converged on
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par with or better than other methods; a theoretical study of convergence prop-
erties is an important future direction. The implementation of the considered
problems is at https://github.com/skovnats/madmm.

Acknowledgement. This research was supported by the ERC Starting Grant No.
307047 (COMET).
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