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Abstract. We present a novel framework for hallucinating faces of
unconstrained poses and with very low resolution (face size as small
as 5pxIOD). In contrast to existing studies that mostly ignore or assume
pre-aligned face spatial configuration (e.g. facial landmarks localization
or dense correspondence field), we alternatingly optimize two comple-
mentary tasks, namely face hallucination and dense correspondence field
estimation, in a unified framework. In addition, we propose a new gated
deep bi-network that contains two functionality-specialized branches to
recover different levels of texture details. Extensive experiments demon-
strate that such formulation allows exceptional hallucination quality on
in-the-wild low-res faces with significant pose and illumination variations.

1 Introduction

Increasing attention is devoted to detection of small faces with an image resolu-
tion as low as 10 pixels of height [1]. Meanwhile, facial analysis techniques, such
as face alignment [2,3] and verification [4,5], have seen rapid progress. However,
the performance of most existing techniques would degrade when given a low
resolution facial image, because the input naturally carries less information, and
images corrupted with down-sampling and blur would interfere the facial analy-
sis procedure. Face hallucination [6–13], a task that super-resolves facial images,
provides a viable means for improving low-res face processing and analysis, e.g.
person identification in surveillance videos and facial image enhancement.

Prior on face structure, or face spatial configuration, is pivotal for face halluci-
nation [6,7,12]. The availability of such prior distinguishes the face hallucination
task from the general image super-resolution problem [14–21], where the latter
lacks of such global prior to facilitate the inference. In this study, we extend the
notion of prior to pixel-wise dense face correspondence field. We observe that an
informative prior provides a strong semantic guidance that enables face halluci-
nation even from a very low resolution. Here the dense correspondence field is

Throughout this paper, we use the inter-ocular distance measured in pixels (denoted
as pxIOD), to concisely and unambiguously represent the face size.
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Fig. 1. (a) The original high-res image. (b) The low-res input with a size of 5pxIOD. (c)
The result of bicubic interpolation. (d) An overview of the proposed face hallucination
framework. The solid arrows indicate the hallucination step that hallucinates the face
with spatial cues, i.e. the dense correspondence field. The dashed arrows indicate the
spatial prediction step that estimates the dense correspondence field.

necessary for describing the spatial configuration for its pixel-wise (not by facial
landmarks) and correspondence (not by face parsing) properties. The impor-
tance of dense field will be reflected in Sect. 3.2. An example is shown in Fig. 1
– even an eye is only visible from a few pixels in a low-res image, one can still
recover its qualitative details through inferring from the global face structure.

Nevertheless, obtaining an accurate high-res pixel-wise correspondence field is
non-trivial given only the low-res input. First, the definition of the high-res dense
field is by itself ill-posed because the gray-scale of each pixel is distributed to adja-
cent pixels on the interpolated image (Fig. 1(c)). Second, the blur causes difficul-
ties for many existing face alignment or parsing algorithms [3,22–24] because most
of them rely on sharp edge information. Consequently, we face a chicken-and-egg
problem - face hallucination is better guided by face spatial configuration, while
the latter requires a high resolution face. This issue, however, has been mostly
ignored or bypassed in previous works (Sect. 2).

In this study, we propose to address the aforementioned problem with a
novel task-alternating cascaded framework, as shown as Fig. 1(d). The two tasks
at hand - the high-level face correspondence estimation and low-level face hallu-
cination are complementary and can be alternatingly refined with the guidance
from each other. Specifically, motivated by the fact that both tasks are per-
formed in a cascaded manner [15,23,25], they can be naturally and seamlessly
integrated into an alternating refinement process. During the cascade iteration,
the dense correspondence field is progressively refined with the increasing face
resolution, while the image resolution is adaptively upscaled guided by the finer
dense correspondence field.
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(a) Bicubic (b) Common (c) High-Freq. (d) CBN (e) Original

Fig. 2. Examples for visualizing the effects of the proposed gated deep bi-network. (a)
The bicubic interpolation of the input. (b) Results where only common branches are
enabled. (c) Results where only high-frequency branches are enabled. (d) Results of
the proposed CBN when both branches are enabled. (e) The original high-res image.
Best viewed by zooming in the electronic version.

To better recover different levels of texture details on faces, we propose a new
gated deep bi-network architecture in the face hallucination step in each cascade.
Deep convolutional neural networks have demonstrated state-of-the-art results
for image super resolution [14,15,17,18]. In contrast to aforementioned studies,
the proposed network consists two functionality-specialized branches, which are
trained end-to-end. The first branch, referred as common branch, conservatively
recovers texture details that are only detectable from the low-res input, similar
to general super resolution. The other branch, referred as high-frequency branch,
super-resolves faces with the additional high-frequency prior warped by the esti-
mated face correspondence field in the current cascade. Thanks to the guidance
of prior, this branch is capable of recovering and synthesizing un-revealed texture
details in the overly low-res input image. A pixel-wise gate network is learned
to fuse the results from the two branches. Figure 2 demonstrates the properties
of the gated deep bi-network. As can be observed, the two branches are comple-
mentary. Although the high-frequency branch synthesizes the facial parts that
are occluded (the eyes with sun-glasses), the gate network automatically favours
the results from the common branch during fusion.

We refer the proposed framework as Cascaded Bi-Networks (CBN) hereafter.
We summarize our contribution as follows:

1. While conducting face hallucination or dense face correspondence field is
hard on low-res images, we circumvent this problem through a novel task-
alternating cascade framework. In comparison to existing approaches, this
framework has an appealing property of not assuming pre-aligned inputs or
any availability of spatial information (e.g. landmark, parsing map).

2. We propose a gated deep bi-network that can effectively exploit face spatial
prior to recover and synthesize texture details that even are not explicitly
presented in the low-resolution input.

3. We provide extensive results and discussions to demonstrate and analyze the
effectiveness of the proposed approach.

We perform extensive experiments against general super-resolution and face
hallucination approaches on various benchmarks. Our method not only achieves
high Peak Signal to Noise Ratio (PSNR), but also superior quality perceptually.
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Demo codes will be available in our project page http://mmlab.ie.cuhk.edu.hk/
projects/CBN.html.

2 Related Work

Face hallucination and spatial cues. There is a rich literature in face hal-
lucination [6–13]. Spatial cues are proven essential in most of previous works,
and are utilized in various forms. For example, Liu et al. [7,12] and Jin et al. [6]
devised a warping function to connect the face local reconstruction with the
high-res faces in the training set. However, a low-res correspondence field1 may
not be sufficient for aiding the high-res face reconstruction process, while obtain-
ing the high-res correspondence field is ill-posed with only a low-res face given.
Yang et al. [8] assumed that facial landmarks can be accurately estimated from
the low-res face image. This is not correct if the low-res face is rather small
(e.g. 5pxIOD), since the gray-scale is severely distributed to the adjacent pixels
(Fig. 1(c)). Wang et al. [10] and Kolouri et al. [9] only aligned the input low-res
faces with an identical similarity transform (e.g. the same scaling and rotation).
Hence these approaches can only handle canonical-view low-res faces. Zhou et
al. [26] pointed out the difficulties of predicting the spatial configuration over a
low-res input, and did not take any spatial cues into account for hallucination.
In contrast to all aforementioned approaches, we adaptively and alternatingly
estimate the dense correspondence field as well as hallucinate the faces in a cas-
caded framework. The two mutual tasks aid each other and hence our estimation
of the spatial cues and hallucination can be better refined with each other.

Cascaded prediction. The cascaded framework is privileged both for image
super-resolution (SR) [15,25] and facial landmark detection [2,3,22,23,27–30].
For image SR, Wang et al. [15] showed that two rounds of 2× upscaling is better
than a single round of 4× upscaling in their framework. For facial landmark
detection, the cascaded regression framework has revolutionized the accuracy
and has been extended to other areas [31]. The key success of the cascaded
regression comes from its coarse-to-fine nature of the residual prediction. As
pointed out by Zhang et al. [28], the coarse-to-fine nature can be better achieved
by the increasing facial resolution among the cascades. To our knowledge, no
existing work has integrated these two related tasks into a unified framework.

The bi-network architecture. The bi-network architecture [32–34] has been
explored in various form, such as bilinear networks [35,36] and two-stream con-
volutional network [37]. In [35], the two factors, namely object identification
and localization, are modeled by the two branches respectively. This is different
from our model, where the two factors, the low-res face and the prior, are jointly
modeled in one branch (the high-frequency branch), while the other branch (the
common branch) only models the low-res face. In addition, the two branches are
joined via the gate network in our model, different from the outer-production in
[35]. In [37], both spatial and temporal information are modeled by the network,
1 We assume that we only correspond from pixel to pixel.

http://mmlab.ie.cuhk.edu.hk/projects/CBN.html
http://mmlab.ie.cuhk.edu.hk/projects/CBN.html
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which is different from our model, where no temporal information is incorpo-
rated. Our architecture also differs from [26]. In [26], the output is the average
weighted by a scalar between the result of one branch and the low-res input.
Moreover, neither of the two branches utilizes any spatial cues or prior in [26].

3 Cascaded Bi-Network (CBN)

3.1 Overview

Problem and notation. Given a low-resolution input facial image, our goal is
to predict its high-resolution image. We introduce the two main entities involved
in our framework:

The facial image is denoted as a matrix I. We use x ∈ R
2 to denote the (x, y)

coordinates of a pixel on I.
The dense face correspondence field defines a pixel-wise correspondence map-

ping from M ⊂ R
2 (the 2D face region in the mean face template) to the face

region in image I. We represent the dense field with a warping function [38],
x = W (z) : M → R

2, which maps the coordinates z ∈ M from the mean shape
template domain to the target coordinates x ∈ R

2. See Fig. 3(a,b) for a clear
illustration. Following [39], we model the warping residual W (z) − z as a linear
combination of the dense facial deformation bases, i.e.

W (z) = z + B(z)p (1)

where p = [p1 . . . pN ]� ∈ R
N×1 denotes the deformation coefficients and B(z) =

[b1(z) . . .bN (z)] ∈ R
2×N denotes the deformation bases. The N bases are chosen

in the AAMs manner [40], that 4 out of N correspond to the similarity transform
and the remaining for non-rigid deformations. Note that the bases are pre-defined
and shared by all samples. Hence the dense field is actually controlled by the
deformation coefficients p for each sample. When p = 0, the dense field equals
to the mean face template.

We use the hat notation (ˆ) to represent ground-truth in the learning step.
For example, we denote the high-resolution training image as Î.

Framework overview. We propose a principled framework to alternatively
refine the face resolution and the dense correspondence field. Our framework
consists of K iterations (Fig. 1(d)). Each iteration updates the prediction via

pk = pk−1 + fk(Ik−1; pk−1);Wk(z) = z + Bk(z)pk; (2)
Ik = ↑Ik−1 + gk(↑Ik−1; Wk(z)); (∀z ∈ Mk), (3)

where k iterates from 1 to K. Here, Eq. 2 represents the dense field updating
step while Eq. 3 stands for the spatially guided face hallucination step in each
cascade. ‘↑’ denotes the upscaling process (2× upscaling with bicubic interpola-
tion in our implementation). All the notations are now appended with the index
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(a) Mean Face M (b) Face image I (c) High-Frequency Prior E (d) Warped Prior EW

z1

z2

z1

x1=W(z1)

z2

x2=W(z2)

E(z1)

E(z2)

EW(x1)=E(z1)

EW(x2)=E(z2)

Fig. 3. (a,b) Illustration of the mean face template M and the facial image I. The grid
denotes the dense correspondence field W (z). The warping from z to x is determined
by this warping function W (z). (c,d) Illustration of the high-frequency prior E and
the prior after warping EW for the sample image in (b). Note that both E and EW

have C channels. Each channel only contains one ‘contour line’. For the purpose of
visualization, in this figure, we reduce their channel dimension to one channel with
max operation. We leave out all indices k for clarity. Best viewed in the electronic
version.

Fig. 4. Architecture of the proposed deep bi-network (for the k-th cascade). It consists
of a common branch (blue), a high-frequency branch (red) and the gate network (cyan).
(Color figure online)

k to indicate the iteration. A larger k in the notation of Ik, Wk, Bk and Mk
2

indicates the larger resolution and the same k indicates the same resolution.
The framework starts from I0 and p0. I0 denotes the input low-res facial image.
p0 is a zero vector representing the deformation coefficients of the mean face
template. The final hallucinated facial image output is IK .

Model, inference and learning. Our model is composed of functions fk (dense
field estimation) and gk (face hallucination with spatial cues). The deformation
bases Bk are pre-defined for each cascade and fixed during the whole training and
testing procedures. During testing, we repeatedly update the image Ik and the
dense correspondence field Wk(z) (basically the coefficients pk) with Eqs. 2, 3.
The learning procedure works similarly to the inference but incorporating the
learning process of the two functions - gk for hallucination and fk for predicting

2 We also append the subscript k for M because the mean face template domain Mk

do not have the same size in different iteration k.
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the dense field coefficients. We present their learning procedures in Sects. 3.2 and
3.3 respectively.

3.2 gk - Gated Deep Bi-Network: Face Hallucination with Spatial
Cues

We propose a gated deep bi-network architecture for face hallucination with the
guidance from spatial cues. We train one gated bi-network for each cascade. For
the k-th iteration, we take in the input image ↑Ik−1 and the current estimated
dense correspondence field Wk(z), to predict the image residual G = Ik −↑Ik−1.

As the name indicates, our gated bi-network contains two branches. In con-
trast to [35] where two branches are joined with outer production, we combine
the two branches with a gate network. More precisely, if we denote the output
from the common branch (A) and the high-frequency branch (B) as GA and GB

respectively, we combine them with

gk(↑Ik−1; Wk(z)) = G = (1 − Gλ) ⊗ GA + Gλ ⊗ GB , (4)

where G denotes our predicted image residual Ik − ↑Ik−1 (i.e. the result of gk),
and Gλ denotes the pixel-wise soft gate map that controls the combination of
the two outputs GA and GB. We use ⊗ to denote element-wise multiplication.

Figure 4 provides an overview of the gated bi-network architecture. Three
convolutional sub-networks are designed to predict GA, GB and Gλ respectively.
The common branch sub-network (blue in Fig. 4) takes in only the interpolated
low-res image ↑Ik−1 to predict GA while the high-frequency branch sub-network
(red in Fig. 4) takes in both ↑ Ik−1 and the warped high-frequency prior EWk

(warped according to the estimated dense correspondence field). All the inputs
(↑ Ik−1 and EWk) as well as GA and GB are fed into the gate sub-network (cyan
in Fig. 4) for predicting Gλ and the final high-res output G.

We now introduce the high-frequency prior and the training procedure of the
proposed gated bi-network.

High-frequency prior. We define high-frequency prior as the indication for
location with high-frequency details. In this work, we generate high-frequency
prior maps to enforce spatial guidance for hallucination. The prior maps are
obtained from the mean face template domain. More precisely, for each training
image, we compute the residual image between the original image Î and the
bicubic interpolation of I0, and then warp the residual map into the mean face
template domain. We average the magnitude of the warped residual maps over
all training images and form the preliminary high-frequency map. To suppress
the noise and provide a semantically meaningful prior, we cluster the preliminary
high-frequency map into C continuous contours (10 in our implementation). We
form a C-channel maps, with each channel carrying one contour. We refer this
C-channel maps as our high-frequency prior, and denote it as Ek(z) : Mk → R

C .
We use Ek to represent Ek(z) for all z ∈ Mk. An illustration of the prior is shown
in Fig. 3(c).
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Learning the gated bi-network. We train the three parts of convolutional
neural networks to predict GA, GB and Gλ in our unified bi-network archi-
tecture. Each part of the network has a distinct training loss. For training the
common branch, we use the following loss over all training samples

LA = ‖Îk − ↑Ik−1 − GA‖2F . (5)

The high-frequency branch has two inputs: ↑Ik−1 and the warped high-frequency
prior EWk (see Fig. 3(d) for illustration) to predict the output GB . The two
inputs are fused in the channel dimension to form a (1 + C)-channel input. We
use the following loss over all training samples

LB =
C∑

c=1

‖(EWk)c ⊗ (Îk − ↑Ik−1 − GB)‖2F , (6)

where (EWk)c denotes the c-th channel of the warped high-frequency prior maps.
Compared to the common branch, we additionally utilize the prior knowledge
as input and only penalize over the high-frequency area. Learning to predict the
gate map Gλ is supervised by the final loss

L = ‖Îk − ↑Ik−1 − G‖2F . (7)

We train the proposed gated bi-network with three steps. Step i : We only
enable the supervision from LA (Eq. 5) to pre-train the common branch; Step ii :
We only enable LB (Eq. 6) to pre-train the high-frequency branch; Step iii : We
finally fine-tune the whole gated bi-network with the supervision from L (Eq. 7).
In the last step, we set the learning rate of the parameters related to the gate
map to be 10 times as the parameters in the two branches. Note that we can
still use back-propagation to learn the whole bi-network in our last step.

3.3 fk - Dense Field Deformation Coefficients Prediction

We apply a simple yet effective strategy to update the correspondence field coeffi-
cients estimation (fk). Observing that predicting a sparse set of facial landmarks
is more robust and accurate under low resolution, we transfer the facial land-
marks deformation coefficients to the dense correspondence field. More precisely,
we simultaneously obtain two sets of N deformation bases: Bk(z) ∈ R

2×N for
the dense field, and Sk(l) ∈ R

2×N for the landmarks, where l is the landmark
index. The bases for the dense field and landmarks are one-to-one related, i.e.
both Bk(z) and Sk(l) share the same deformation coefficients pk ∈ R

N :

Wk(z) = z + Bk(z)pk; xk(l) = x̄k(l) + Sk(l)pk, (8)

where xk(l) ∈ R
2 denotes the coordinates of the l-th landmark, and x̄k(l) denotes

its mean location.
To predict the deformation coefficients pk in each cascade k, we utilize the

powerful cascaded regression approach [23] for estimation. A Gauss-Newton
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steepest descent regression matrix Rk is learned in each iteration k to map
the observed appearance to the deformation coefficients update:

pk = pk−1 + fk(Ik−1;pk−1) = pk−1 + Rk(φ(Ik−1;xk−1(l)|l=1,...,L) − φ̄), (9)

where φ is the shape-indexed feature [2,27] that concatenates the local appear-
ance from all L landmarks, and φ̄ is its average over all the training samples.

To learn the Gauss-Newton steepest descent regression matrix Rk, we follow
[23] to learn the Jacobian Jk and then obtain Rk via constructing the project-out
Hessian: Rk = (J�

k Jk)−1J�
k . We refer readers to [23] for more details.

It is worth mentioning that the face flow method [39] that applies a landmark-
regularized Lucas-Kanade variational minimization [38] is also a good alternative
to our problem. Since we have obtained satisfying results with our previously
introduced deformation coefficients transfer strategy, which is purely discrimina-
tive and much faster than face flow (8 ms per cascade in our approach v.s. 1.4 s
for face flow), we use the coefficients transfer approach in our experiments.

4 Experiments

Datasets. Following [6,8], we choose the following datasets that contain both
in-the-wild and lab-constrained faces with various poses and illuminations.

1. MultiPIE [41] was originally proposed for face recognition. A total of more
than 750,000 faces from 337 identities are collected under lab-constrained
environment. We use the same 351 images as used in [8] for evaluation.

2. BioID [42] contains 1521 faces also collected in the constrained settings. We
use the same 100 faces as used in [6] for evaluation.

3. PubFig [43] contains 42461 faces (the evaluation subset) from 140 identities
originally for evaluating face verification and later used for evaluating face
hallucination [8]. The faces are collected from the web and hence in-the-
wild. Due to the existence of invalid URLs, we use a total of 20991 faces for
evaluation. Further, following [6], we use PubFig83 [44], a subset of PubFig
with 13838 images, to experiment with input blurred by unknown Gaussian
kernel. Similar to [6], we test with the same 100-image-subset of PubFig83.

4. Helen [45] contains 2330 in-the-wild faces with high resolution. The mean
face size is as large as 275pxIOD. We evaluate with the 330-image test set.

Metric. We follow existing studies [6,8,12,14,15] to adopt PSNR (dB) and
only evaluate on the luminance channel of the facial region. The definition of
the facial region is the same as used in [6]. Similar to [6], SSIM is not reported
for in-the-wild faces due to irregular facial shape.

Implementation details. Our framework consists of K = 4 cascades, and
each cascade has its specific learned network parameters and Gauss-Newton
steepest descent regression matrix. During training, our model requires two parts
of training data, one for training the cascaded dense face correspondence field,
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and the other for training the cascaded gated bi-networks for hallucination. The
model is trained by iterating between these two parts of the training data. For
the former part, we use the training set from 300 W [46] (the same 2811 images
used in [23]) for estimating deformation coefficient and BU4D [47,48] dataset for
obtaining dense face correspondence basis (following [39]). For the latter part,
as no manual labeling is required, we leverage the existing large face database
CelebA [49] for training the gated bi-network.

4.1 Comparison with State-of-the-Art Methods

We compare our approach with two types of methods: (I) general super resolution
(SR) approaches and (II) face hallucination approaches. For SR methods, we
compare with the recent state-of-the-art approaches [14,15,19,50] based on the
original released codes. For face hallucination methods, we report the result of
[6,12,51] by directly referring to the literature [6]. We compare with [8,52] by
following the implementation of [8]. We re-transform the input face to canonical-
view if the method assumes the input must be aligned. Hence, such method would
enjoy extra advantages in the comparison. If the method requires exemplars, we
feed in the same in-the-wild samples in our training set. We observe that such
in-the-wild exemplars improve the exemplar-based baseline methods compared
to their original implementation. Codes for [7] is not publicly available. Similar
to [6], we provide the qualitative comparison with [7].

We conduct the comparison in two folds: 1. The input is the down-sampled
version of the original high-res image as many of the previous SR methods are
evaluated on [7,14,15,19,50] (referred as the conventional SR setting, Sect. 4.1);
2. The input is additionally blurred with unknown Gaussian kernel before down-
sampling as in [6,8,12] (referred as the Gaussian-blurred setting, Sect. 4.1).

The Conventional SR Evaluation Setting We experiment with two scenar-
ios based on two different types of input face size configuration:

1. Fixed up-scaling factors – The input image is generated by resizing the origi-
nal image with a fixed factor. For MultiPIE, following [8] we choose the fixed
factor to be 4. For the in-the-wild datasets (PubFig and Helen), we evaluate
for scaling factors of 2, 3 and 4 as in [14,15,19,50] (denoted as 2×, 3×, 4×
respectively in Table 1). In this case, different inputs might have different face
sizes. The proposed CBN is flexible to handle such scenario. Other existing
face hallucination approaches [8,12,51,52] cannot handle different input face
sizes and their results in this scenario are omitted.

2. Fixed input face sizes – Similar to the face hallucination setting, the input
image is generated by resizing the original image to ensure the input face
size to be fixed (e.g. 5 or 8 pxIOD, denoted as 5/8px in Table 1). Hence, the
required up-scaling factor is different for each input. For baseline approaches,
[15] can naturally handle any up-scaling requirement. For other approaches,
we train a set of models for different up-scaling factors. During testing, we
pick up the most suitable model based on the specified up-scaling factor.
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Table 1. Results under the conventional SR setting (for Sect. 4.1). Numbers in the
parentheses indicate SSIM and the remaining represent PSNR (dB). The first part of
the results are from Scenario 1 where each method super-resolves for a fixed factor (2×,
3× or 4×), while the latter part are from Scenario 2 that each method begins from
the same face size (5 or 8 pxIOD, i.e. the inter-ocular distance is 5 or 8 pixels). The
omitted results (-) are due to their incapability of handling varying input face size.

Dataset Input size Bicubic (I) General super-resolution (II) Face hallucination CBN

A+ [50] SRCNN [14] CSCN [15] NBF [19] PCA [12,51] [52] [8]

MultiPIE 4× 33.66 34.53 34.75 35.10 34.73 33.98 34.07 34.31 35.65

(.900) (.910) (.913) (.920) (.912) (.904) (.907) (.903) (.926)

PubFig 2× 34.78 35.89 36.12 36.47 35.98 - - - 36.66

3× 31.52 32.02 32.13 32.88 32.09 - - - 33.17

4× 29.61 30.02 30.15 30.79 30.16 - - - 31.28

HELEN 2× 41.96 42.77 42.95 43.37 43.01 - - - 43.51

3× 38.52 38.89 39.10 39.57 39.15 - - - 39.78

4× 36.59 36.81 36.87 37.61 36.89 - - - 37.94

MultiPIE 5px 25.39 25.63 25.72 25.93 25.75 25.62 25.83 25.72 27.14

(.752) (.767) (.771) (.773) (.769) (.767) (.774) (.769) (.808)

PubFig 8px 22.32 22.79 22.98 23.25 23.08 23.37 23.57 23.10 26.83

5px 20.63 20.96 21.07 21.33 21.04 21.42 21.58 21.19 25.31

HELEN 8px 21.86 22.24 22.47 22.69 22.53 22.95 23.01 22.62 26.36

5px 20.28 20.50 20.59 20.84 20.57 21.09 21.13 20.64 25.09

Table 2. Results under the Gaussian-blur setting (for Sect. 4.1). Numbers in parenthe-
ses indicate SSIM and the remaining represent PSNR (dB). Settings adhere to [6]. For
a fair comparison, we feed in the same number of in-the-wild exemplars from CelebA
when evaluating [8], instead of the originally used MultiPIE in the released codes.

Dataset Bicubic (I) General super-resolution (II) Face hallucination CBN

A+ [50] SRCNN [14] CSCN [15] NBF [19] PCA [12,51] [52] [8] [6]

BioID 19.67 20.47 20.59 20.86 20.60 21.51 21.77 20.01 22.32 24.55

(.670) (.684) (.685) (.695) (.688) (.770) (.776) (.689) (.810) (.852)

PubFig83 24.78 25.20 25.22 25.65 25.47 25.72 25.83 25.02 26.17 29.83

We need to point out that the latter scenario is more challenging and appro-
priate for evaluating a face hallucination algorithm, because recovering the
details of the face with the size of 5/8pxIOD is more applicable for low-res face
processing applications. In the former scenario, the input face is not small enough
(as revealed in the bicubic PSNR in Table 1), such that it is more like a facial
image enhancement problem rather than the challenging face hallucination task.

We report the results in Table 1, and provide qualitative results in Fig. 5. As
can be seen from the results, our proposed CBN outperforms all general SR and
face hallucination methods in both scenarios. The improvement is especially sig-
nificant in the latter scenario because our incorporated face prior is more critical
when hallucinating face from very low resolution. We observe that the general
SR algorithms did not obtain satisfying results because they take full efforts
to recover only the detectable high-frequency details, which obviously contain
noise.
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Table 3. PSNR results (dB) of in-house comparison of the proposed CBN (for
Sect. 4.2).

Dataset 1a. Only
common
branch
i.e.
Vanilla
cascaded
CNN

1b. Only
high-
freq.
branch

2. Fixed corre-
spondence

3. Single
cascade

Full Model

PubFig 23.76 24.66 23.85 22.09 25.31

HELEN 23.57 24.53 23.77 21.83 25.09

PubFig83 28.06 29.31 28.34 26.70 29.83

Bicubic [12] CSCN Bicubic [12] CSCN Bicubic [12] CSCN

Original [8] CBN Original [8] CBN Original [8] CBN

Fig. 5. Qualitative results from PubFig/HELEN with input size 5pxIOD (for Sect. 4.1,
detailed results refer Table 1). Best viewed by zooming in the electronic version.

In contrast, our approach recovers the details according to the high-frequency
prior as well as the estimated dense correspondence field, thus achieving better
performance. The existing face hallucination approaches did not perform well
either. In comparison to the evaluation under the constrained or canonical-view
condition (e.g. [8]), we found that these algorithms are more likely to fail under
in-the-wild setting with substantial shape deformation and appearance variation.

The Gaussian-Blur Evaluation Setting It is also important to explore the
capability of handling blurred input images [53]. Our method demonstrates cer-
tain degrees of robustness toward unknown Gaussian blur. Specifically, in this
section, we still adopt the same model as in Sect. 4.1, with no extra efforts spent
in the training to specifically cope with blurring. To compare with [6], we add
Gaussian blur to the input facial image in the same way as [6]. The experimen-
tal settings are precisely the same as in [6] - the input faces have the same size
(around 8pxIOD); the up-scaling factor is set to be 4; and σ for Gaussian blur
kernel is set to be 1.6 for PubFig83 and 2.4 for BioID. Additional Gaussian noise
with η = 2 is added in BioID. We note that our approach only uses single frame
for inference, unlike multiple frames in [6].
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Original Bicubic SRCNN NBF CSCN [8] [7] [6] CBN

Fig. 6. Qualitative results from the PubFig83 dataset (for Sect. 4.1, detailed results
refer Table 2). The six test samples presented are chosen by strictly following [6].

Bicubic CSCN [6] CBN Bicubic CSCN [6] CBN

Fig. 7. Qualitative results for real surveillance videos (for Sect. 4.1). The test samples
are directly imported from [6]. Best viewed by zooming in the electronic version.

We summarize the results in Table 2. Qualitative results are shown in Fig. 6.
From the results it is observed that again CBN significantly outperforms all
the compared approaches. We attribute the robustness toward the unknown
Gaussian blur on the spatial guidance provided by the face high-frequency prior.

Taking advantages of such robustness of our approach, we further test the
proposed algorithm over the faces from real surveillance videos. In Fig. 7, we
compare our result with [6,15]. Note that the presented test cases are directly
imported from [6]. Again, our result demonstrates the most appealing visual
quality compared to existing state-of-the-art approaches, suggesting the poten-
tial of our proposed framework in real-world applications.
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Run Time The major time cost of our approach is consumed on the forwarding
process of the gated deep bi-networks. On a single core i7-4790 CPU, the face
hallucination steps for the four cascades (from 5pxIOD to 80pxIOD) require
0.13 s, 0.17 s, 0.70 s, 2.76 s, respectively. The time cost of the dense field prediction
steps is negligible compared to the hallucination step. Our framework totally
consumes 3.84 s, which is significantly faster than existing face hallucination
approaches, for examples, 15–20 min for [6], 1 min for [8], 8 min for [12], thanks
to CBN’s purely discriminative inference procedure and the non-exemplar and
parametric model structure.

4.2 An Ablation Study

We investigate the effects of three important components in our framework:

1. Effects of the gated bi-network. (a) We explore the results if we replace
the cascaded gated bi-network with the vanilla cascaded CNN, in which only
the common branch (the blue branch in Fig. 4) is remained. In this case, the
spatial information, i.e. the dense face correspondence field is not considered
or optimized at all. (b) We also explore the case where only the high-frequency
branch (the red branch in Fig. 4) is remained.

2. Effects of the progressively updated dense correspondence field. In
our framework, the pixel-level correspondence field is refined progressively to
better facilitate the subsequent hallucination process. We explore the results
if we only use the correspondence estimated from the input low-res image3. In
this case, the spatial configuration estimation is not updated with the growth
of the resolution.

3. Effects of the cascade. The cascaded alternating framework is the core for
our framework. We explore the results if we train one network and directly
super resolve the input to the required size. High-frequency prior is still used
in this baseline. We observe an even worse result without this prior.

We present the results in Table 3. The experimental setting follows the same set-
ting in Sect. 4.1 - The PubFig and HELEN datasets super-resolve from 5pxIOD
while the PubFig83 dataset up-scales 4 times with unknown Gaussian blur. The
results suggest that all components are important to our proposed approach.

4.3 Discussion

Despite the effectiveness of our method, we still observe a small set of failure
cases. Figure 8 illustrates three typical types of failure: (1) Over-synthesis of
occluded facial parts, e.g., the eyes in Fig. 8(a). In this case, the gate network
might have been misled by the light-colored sun-glasses and therefore favours
the results from the high-frequency branch. (2) Ghosting effect, which is caused
by inaccurate spatial prediction under low-res. It is rather challenging to localize
3 As the correspondence estimation is by itself a cascaded process, in this case, we

re-order the face corresponding cascades before the super resolution cascades.
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(a)Bicubic (a)CBN (a)Original (b)Bicubic (b)CBN (b)Original (c)Bicubic (c)CBN (c)Original

Fig. 8. Three types of representative failure cases of our approach (for Sect. 4.3).

facial parts with very large head pose in the low-res image. (3) Incorrect details
such as gaze direction. We found that there is almost no reliable gaze direction
information presented in the input. Our method only synthesizes the eyes with
the most probable gaze direction. We leave it as future works to address the
aforementioned drawbacks.

5 Conclusion

We have presented a novel framework for hallucinating faces under substantial
shape deformation and appearance variation. Owing to the specific capability
to adaptively refine the dense correspondence field and hallucinate faces in an
alternating manner, we obtain state-of-the-art performance and visually appeal-
ing qualitative results. Guided by the high-frequency prior, our framework can
leverage spatial cues in the hallucination process.
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