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Abstract. In online action detection, the goal is to detect the start of
an action in a video stream as soon as it happens. For instance, if a child
is chasing a ball, an autonomous car should recognize what is going on
and respond immediately. This is a very challenging problem for four
reasons. First, only partial actions are observed. Second, there is a large
variability in negative data. Third, the start of the action is unknown,
so it is unclear over what time window the information should be inte-
grated. Finally, in real world data, large within-class variability exists.
This problem has been addressed before, but only to some extent. Our
contributions to online action detection are threefold. First, we introduce
a realistic dataset composed of 27 episodes from 6 popular TV series.
The dataset spans over 16 h of footage annotated with 30 action classes,
totaling 6,231 action instances. Second, we analyze and compare various
baseline methods, showing this is a challenging problem for which none
of the methods provides a good solution. Third, we analyze the change
in performance when there is a variation in viewpoint, occlusion, trunca-
tion, etc. We introduce an evaluation protocol for fair comparison. The
dataset, the baselines and the models will all be made publicly available
to encourage (much needed) further research on online action detection
on realistic data.
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1 Introduction

In this paper, we focus on the problem of online action detection. Unlike tra-
ditional action recognition and action detection as studied in the literature to
date, e.g., [1–6], the goal of online action detection is to detect an action as
it happens and ideally even before the action is fully completed. Being able to
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detect an action at the time of the occurence can be useful in many practical
applications - think of a pro-active robot offering a helping hand; a surveillance
camera raising an alarm not just after the facts but well in time to allow for
intervention; a smart active camera system zooming in on the action scene and
recording it from the optimal perspective; or an autonomous car stopping for a
child chasing a ball (see Fig. 1).

A similar task coined ‘early event detection’ has been brought to the attention
of the community in the seminal work of Hoai and De la Torre [7,8]. However,
they consider only the special case of relatively short video fragments with the
category label given as prior information. Hence, it is assumed that it is known
beforehand which action is going to take place. As the video is streamed, the
system then only needs to indicate, as early as possible but not too early, when
the action has started. A further simplified setting, focusing more on classifica-
tion instead of detection, has been studied in [9–13]. In these works, the video
starts with the onset of an action and ends when the action is completed. As
the correct temporal segmentation is already provided, the system only needs to
choose the most likely action out of a predefined set.

Fig. 1. Illustration of an online action detection prediction.

We claim these simplified setups are not representative for practical appli-
cations, where occurrences of any out of possibly many different action cate-
gories need to be detected in an online fashion, in (very) long video recordings
with widely varying content. As we will show, this is a significantly more chal-
lenging task, to which the standard methods proposed in the literature provide
only partial answers. Moreover, to date, no realistic benchmark dataset focusing
on this problem has been released. In fact, the situation is somewhat reminis-
cent of the early days of action recognition, with datasets such as KTH [14] or
Weizmann [15]. To alleviate this problem, we introduce the TVSeries dataset,
a new dataset consisting of 27 episodes of 6 popular TV series. The dataset is
temporally annotated at the frame level w.r.t. 30 possible actions. Furthermore,
metadata is added, containing extra information regarding the action occurrence,
e.g., whether the action instance is atypical compared to the rest of the action
instances in the same class, occluded, or taken from an unusual viewpoint.

We mark several differences between online action detection and ‘early event
detection’. First, we think the term ‘event’ should be preserved for longer term
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activities such as ‘baking a cake’ or ‘changing a tire’, as in the TrecVid MED
challenge [16], which, by the way, is more a retrieval task than a detection one.
Second, for practical applications methods should process the video in an online
fashion (as opposed to batch processing), preferably in realtime and with minimal
latency. Hence we prefer the term ‘online’ over ‘early’.

Given a streaming video as input, the system should output, ideally in real-
time, whether the action is currently taking place (or not). This requires detect-
ing the ongoing action as accurately as possible, no matter what is the stage of
the action. Since we focus on longer videos, this task requires in turn discrim-
inating the action from a variety of negative data, including both background
frames as well as irrelevant actions. Realistic background frames do not depict
prespecified ‘neutral’ poses as in earlier datasets [8]. Similar to standard action
detection, the wide variability and plethora of negative data makes the prob-
lem really challenging, although for online action detection the effects are even
stronger. For a TV series episode with 20 min of footage, a typical ‘standing up’
action might not be appearing for more than 10 s in total (less than 1 % of the
total number of frames). Only if a method can cope with this data imbalance
and the large variability in the negative data, it will be of any practical use.
Additionally, given the streaming video as input, the method needs to decide
the proper temporal window to pool information from for deriving the frame
prediction. This is not trivial in an online setting, since the algorithm does not
know starting and ending points bounding the action temporally.

In summary, the challenges of real-world online action detection are the fol-
lowing. First, actions need to be detected as soon as possible, ideally after only
part of the action has been observed. Second, actions need to be detected from
among a wide variety of irrelevant negative data. Third, starting from long,
unsegmented video data, it is unclear what time window to pool information
from. Finally, we work with real world data, not artificially created for the pur-
pose of action recognition. By design this results in large within-class variability.

Together with the TVSeries dataset, we propose an evaluation protocol, that
allows comparing different solutions in a qualitative and quantitative manner. It
is designed to be invariant to the number of instances of an action in the test set
and less affected by the flux of negative data present in the videos. Given this
protocol we report initial results for a set of state-of-the-art baseline methods
on this challenging task. More specifically, we consider Fisher vectors [17] with
improved trajectories [1], a deep ConvNet operating on a single frame basis [18]
and an LSTM network, recently popular for sequential modelling such as image
captioning [19] and action recognition [20], to encode the actions temporally.
As it turns out, detecting actions at the time of their occurrence in realistic
settings, while keeping the number of false positives under control, is a much
harder problem than one might conclude from results reported in the literature
under more constrained settings, e.g., offline action detection. With this new
dataset and evaluation protocol, we hope to encourage more researchers to look
into the challenging yet very practical task of online action detection.
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In the next section, we discuss related work. In Sect. 3, we describe the
TVSeries dataset. Afterwards, we introduce our evaluation protocol. We evaluate
several baselines and analyze their performance in Sect. 5 and conclude in Sect. 6.

2 Related Work

Action detection datasets. The current datasets for action detection all have
their limitations. In some datasets, e.g., UCF Sports [21], the videos are tem-
porally trimmed: they contain exactly the action, from start to finish. The task
here is to find the spatial location of the action. However, in a video stream it
is often more important to be able to localize an action in time, rather than in
space. In surveillance, for instance, when a guard is alerted that something is
happening, he looks at the screen and easily localizes the action.

Some action detection datasets only contain a limited amount of actions.
MSRII [22], for example, contains only 54 short video sequences with only
three action classes. The actions do not occur concurrently. The MPII Cook-
ing Dataset [23] is larger: it has 44 videos with 65 actions. However, this dataset
is recorded with a fixed camera and therefore every video contains only one shot
and exactly the same background. Moreover, many actions are location depen-
dent: e.g., ‘Taking out of fridge’ can only be done near the fridge. Occlusion is
rare. Usually, the whole action is recorded and visible, from start to finish.

Recently, some larger and more realistic datasets have been introduced. The
Thumos detection challenge [24] contains 24,000 (positive and negative) videos
with 20 different actions; a similar dataset is FGA-240 [25]: it has 135,000 videos
with 240 categories (85 sports, the rest fine-grained actions of these sports). In
these datasets, all actions are sports related, so the background (the playing field)
gives strong cues to help detection. The videos are downloaded from YouTube. As
they are user created content, they often consist of only one shot: actions do not
extend over multiple shots and are the main focus of the videos. Occlusions and
partly recorded actions are rare. Another relevant dataset is ActivityNet [26].
ActivityNet is larger and more varied and focuses on more generic categories,
not just sports. The videos are downloaded from YouTube as well, so most
have a duration between five and ten minutes. Since they are retrieved based
on a textual query, it is very unlikely that one video contains multiple actions.
Moreover, negative background data is likely class-specific as well. Therefore,
action detection on this dataset is easier than the generic problem. Regarding
datasets and online action detection, we experimentally make the observation
that in realistic data, the negative background frames are by far the hardest
obstacle for modeling the actions accurately. Hence, the aforementioned action
datasets are not well suited for evaluating online action detection reliably.

Early action detection. Hoai and De la Torre [7,8] were the first to present
‘early event detection’. They simulate the sequential arrival of training data and
train a structured output SVM, with the extra constraint that the output of
frame t + 1 should be higher than the output of frame t. At test time, they
assume every video contains exactly one instance of a given action. As the video
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is streamed, the system starts detecting the action once a threshold is exceeded.
Only at the end of the video, they decide on a specific start and end frame.
In [8] they discuss an extended setting where multiple actions per video are
processed, however they never evaluate this. In our setting, we do not make any
prior assumptions of the content of a video. Moreover, detecting the end of the
action in an online fashion, as well as the start, is crucial.

[7] uses three types of video data to test the method: sign language, facial
expressions and simple actions from the Weizmann dataset [15]. The videos are
all relatively short and look artificial: the person is centered and instructed to
perform a specific action. In this work, we use realistic data and introduce a new
dataset that is well-suited for online action detection. They also propose to use
the ROC curve, AMOC curve and F1-score curve as evaluation metrics. As we
will detail later, these metrics are not ideal for online action detection.

In a follow-up work, Huang et al. [27], approach the problem more as clas-
sification than detection. They start assuming that every learned action can be
happening, as well as a ‘non-action’. When more frames of the video are seen,
the occurrence of some actions becomes more unlikely and they are discarded.
When only one action remains, or no actions are removed for a certain amount
of time, a detection happened. In their data, however, the non-action is very
simple: a person is just standing. In the real-world data we use, the non-actions
have very high variability and it is not easy to learn a model for them.

Offline action detection. In this problem, the whole video is given. The task
is to detect whether a given action occurs in this video, and if so, where it
starts and ends (see e.g. [3,4,28–32]). Often the spatial location is determined
as well. In this offline setting, the whole action can be observed first. Moreover,
calculation time is not an issue. As a result, the best performing methods are
often far too complicated to be used in a real-time setting.

A recent work by Yeung et al. [33] explores action detection based on a
limited number of frames. They train a recurrent neural network that takes a
representation of a frame as input and selects another frame (at an arbitrary
location in the video) to consider next. This way, they look at the most inter-
esting frames only. In online detection, the goal is to detect an action based on
a limited number of frames as well. However, the frames considered are always
at the beginning of the action, while in [33], that is not necessarily the case: it is
assumed the whole video is available and the RNN selects the interesting frames
without constraints.

Early action classification. Another simplified setting, focusing on classifica-
tion instead of detection, has been studied in e.g. [9–13]. These works consider
segmented actions. The system then only needs to choose one out of a predefined
set of actions. A separate classifier is trained for every 10 %, 20 %, ..., 100 % of
the video seen. During testing, it is known exactly how much percent of the
action has been observed. This is clearly not valid in an online setting.
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Table 1. The TVSeries dataset and the specification of the provided metadata.

Dataset

Source material 27 episodes of TV series: Breaking Bad, How I
Met Your Mother, Mad Men, Modern Family,
Sons of Anarchy, 24.

Size ca. 16 h

Action classes number 30

Total number of actions 6,231

Metadata

Atypical Does the actor perform the action in a way
humans would call ‘atypical’? Example:
‘drinking’ upside down.

Multiple persons Are multiple persons visible during the action?

Small or background Is the annotated action very small or in the
background?

Side viewpoint Is (part of) the action recorded from the side?

Frontal viewpoint Is (part of) the action recorded from a frontal
viewpoint?

Special viewpoint Is (part of) the action recorded from a special
viewpoint? Example: ‘pouring’ seen from the
bottom of a glass.

Moving camera Is the camera moving during the action?

Shotcut Does the action instance extend over a shotcut?

Occlusion Is the part of the video where the action is
(spatially) located occluded at some time
during the action?

Spatial truncation Does part of the action extend beyond the frame
borders?

Temporal truncation at the start Is the start of the action missing?

Temporal truncation at the end Is the end of the action missing?

Automatically generated Metadata

Length of action Actions divided in 4 quartiles based on number
of frames

Amount of motion Actions divided in 4 quartiles based on number
of extracted improved trajectories

3 Dataset

In this work, we introduce the TVSeries dataset. The videos in this dataset depict
realistic actions as they happen in real life. Similar to the Hollywood2 dataset for
action recognition [34], our dataset is composed of professionally recorded videos.
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Fig. 2. A characteristic frame for each of the 30 classes in the TVSeries dataset.

We annotated the first episodes of six recent TV series1. We select the number of
episodes such that we have around 150 min of every series: almost 16 hours in total.
Wedivide the episodes over a training, validation and testing set.Every set contains
at least one episode of every series: having different series in training and testing
set would introduce a domain shift, and online action detection is already difficult
enough by itself.

We define 30 actions (see Table 2). Every action occurs at least 50 times in
the dataset. Annotations were done manually and afterwards checked by one
person. The start of an action is defined as the first frame where one notices
something is going to happen; the person is in rest position (or doing something
completely different) in the previous frame. The end of an action is defined as
the last frame that contains visual evidence of the action. After that, you can no
longer tell that action has happened. The actions are only annotated temporally,
not spatially.

There is a large variability in this dataset. First, there are multiple actors,
and everyone does an action his or her way. Second, different actions can occur at
the same time, being performed by the same or multiple actors (as opposed to the
easy setting of [8], where actions are separated by a specific non-action). Third,
the way the action is recorded can be very different. The viewpoint is not fixed.
Part of the action can be occluded. In other cases, the recording only starts after

1 Breaking Bad (3 episodes), How I Met Your Mother (8), MadMen (3), Modern Family
(6), Sons of Anarchy (3) and 24 (4).
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the action has started, or it ends too early. Some of the actions are not crucial
for the story in the series, and therefore, the director did not capture the actions
clearly. Other actions are performed by bystanders in the background and are
very small. Fourth, the camera can be moving. Moreover, there are many shot-
cuts. Actions extend over multiple shots: the viewpoint of one action instance can
suddenly change. Due to the long video sequences, containing multiple actions
and a highly varying background, the shotcuts and the incomplete actions, this
dataset is more challenging than the most realistic datasets currently used.

For every action instance, we provide metadata labels that give more informa-
tion on how the action is performed and captured. In Table 1 we summarize the
dataset and the metadata, while in Fig. 2 we present some characteristic frames
from different classes. In Fig. 3 we show examples of metadata annotations.

The videos are ripped at a frame rate of 25 fps and have a resolution of 720
by 576 pixels. Some examples can be found in the supplemental material. This
dataset will be made publicly available to encourage further research on (online)
action detection on realistic data.

Fig. 3. Example frames for some of the metadata annotations. Classes are ‘eat’,
‘smoke’, ‘stand up’, ‘drink’, ‘going up stairway’, ‘get out of car’ and ‘use computer’.

4 Evaluation Protocol

Relevant evaluation protocols. Existing evaluation protocols are not suited
for the task of online action detection. In offline detection, the main goal is
to discover the start and end frame of an action, such that the detected action
overlaps at least α% with the ground truth and the label of the detected action is
correct [3,4,28,29]. A partial overlap cannot be distinguished from a full overlap,
and it is unsure which part of the action is detected. In early action classification,
temporally segmented actions are classified at points where 10 %, 20 %, ..., 100 %
of the action is observed and the accuracies at these percents are measured
[9–13]. However, since it is a classification setting, this evaluation protocol cannot
handle non-action intervals.

The evaluation metrics used for MMED [7,8] are the area under the ROC
curve, the AMOC curve and the F1-score curve. The ROC curve shows, for
different thresholds, the number of times a detector fires during the action (true
positive rate, TPR) as a function of the number of times the detector fires
before the action (false positive rate, FPR). The AMOC curve plots the average
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normalized time to detection (the percentage of the action that has been seen
before the detector fires) as a function of the FPR for different thresholds. The
F1-score curve tries to capture how well the method can localize the action. At
every frame, the MMED method outputs the most probable start frame if an
action ends at that frame. The F1-score is calculated at every action frame, and
this is plotted from 0–100 % of the action.

These evaluation metrics are not really suited for online action detection.
First, having three metrics instead of just one is sub-optimal. Second, every video
gives rise to only one TP or FP. The assumption is made that a video contains
the action exactly once. In a real-world streaming setting, this is obviously not
the case. Finally, in an online action detection setting, methods do not need to
label the start of the action in retrospect, after already having seen a sizable
part of the action. The evaluation should therefore not consider a retrospective
labeling of the action start, as the F1-score curve does.

Proposed evaluation protocol. In online action detection, a decision needs to
be made at every frame, for every action: how likely is it that the action is going
on in that frame, based on the information available up to that point? Therefore,
it is logical to use the average precision over all frames as a metric for the
performance of an online action detector. First, the frames are ranked according
to their confidence (high to low). The precision of a class at cut-off k in this list
is calculated as Prec(k) = TP (k)/(TP (k) + FP (k)) with TP (k) the number
of true positive frames and FP (k) the number of false positives at the cut-off.
The average precision of a class is then defined as AP =

∑
k Prec(k) ∗ I(k)/P

with I(k) an indicator function that is equal to 1 if frame k is a true positive,
and equal to 0 otherwise. P is the total number of positive frames. The mean of
the AP over all classes (mAP) is then the final performance metric of an online
action detection method.

This metric has one big disadvantage, though: it is sensitive to changes in
the ratio of positive frames versus negative background frames (if the classifiers
are not perfect), as discussed by Jeni et al. [35]. If there is (relatively speaking)
more background data, the probability increases that some background frames
are falsely detected with higher confidence than some true positives. So the AP
will decrease. This makes it hard to compare the AP of two different classes when
they do not have the same positive vs. negative ratio. Likewise, it makes it hard
to evaluate performance on subsets of the data (e.g., performance of unoccluded
instances vs. occluded ones). To enable an easy, fair comparison, we introduce
the calibrated precision:

cPrec =
TP

TP + FP
w

=
w ∗ TP

w ∗ TP + FP
(1)

We choose w equal to the ratio between negative frames and positive frames,
such that the total weight of the negatives becomes equal to the total weight of
the positives. Based on this calibrated precision, we can compute the calibrated
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average precision (cAP), similar to the AP:

cAP =
∑

k cPrec(k) ∗ I(k)
P

(2)

This way, the average precision is calculated as if there were an equal amount of
positive and negative frames: the random score is 50 %. This evaluation metric
is inspired by the work of Hoiem et al. [36]. They use a normalized average
precision to compare object detection scores for different classes. Since in that
case the number of negative data cannot be determined, they adjust the average
precision as if every class has the same (arbitrary) amount of positive instances.
Our calibrated average precision makes use of the number of negative data as
well, and therefore, it is more suited for evaluation in our task.

For our dataset, we take the mAP as final performance measure. To compare
the effectiveness of the different classifiers and the influence of the metadata
labels, we use the cAP instead.

5 Experiments

5.1 Baseline Features

We analyze the difficulty of our dataset with three baseline methods. We opt for
these, as they are the backbone of most action detection systems today.

1. Trajectories + FV. In our first approach, we use the improved trajecto-
ries of [1], with default parameters. For every trajectory, we calculate the raw
trajectory motion, and HOG, HOF and MBH around the trajectory. Based on
these descriptors, we calculate Fisher vectors (FV) [17] as in [1]. These FVs are
used as input for linear SVM classifiers: one one-vs-all SVM for every action
class. As examples for the SVM we use fixed-length windows, obtained as fol-
lows. Our positive windows are the ones that are completely in a positive action
instance, i.e., intersection of window and ground truth is equal to the length of
the window. If the action is shorter than the window size, we take all windows
that contain the action completely. As negative windows, we use windows of all
other actions as well as background windows, where no action is happening. We
train four SVMs for different window lengths: 20, 40, 60 and 80 frames. At test
time, the prediction for the current frame is obtained by max-pooling the scores
of windows of length 20, 40, 60 and 80 ending in the current frame.

2. CNN. As a second approach, we run a CNN on every frame separately. We
choose the VGG-16 architecture [18] which consists of 13 convolutional layers
to train the RGB network, including a softmax layer to return class probabili-
ties. Since our training data is relatively small, we first pre-train our model on
UCF101 split-1, then we finetune on our dataset. We also do image flipping and
multiscale cropping for data augmentation. As CNN relies on single frames only,
there is no temporal information encoded.
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3. LSTM. Our third approach is based on the recently successful LSTM [20,32].
LSTM is the most popular variant of recurrent neural networks, with a distinct
ability of modeling better long and short term temporal patterns in sequence
data, making them good candidates for modeling video data. We use a single
layer LSTM architecture with 512 hidden units. We directly resize each frame
to 224 × 224 pixels (without data augmentation) and use it as input to extract
the fc6 features from our CNN. These fc6 features are then fed into the LSTM.
For training and testing, each video is split into multiple sequences of 16 frames
(stride 1). Our LSTM model takes 16 frames as input at a time, and makes a
prediction for the last frame. The LSTM is connected with a softmax, which
again returns class probabilities.

5.2 Offline Detection

In offline detection, the goal is to find the start and end frame of any action
that occurs in the video. All information of the video is available at once, and
calculation time is not an issue. As this is a more widely studied setting, we first
report offline detection scores on our new dataset using the methods described
above, as a reference.

To this end, the baselines need to be adapted to the offline setting. For
baseline 1, we run the SVM classifiers over all windows of lengths 20, 40, 60 and
80. We then use a non-maximum suppression algorithm (as in [3]) to eliminate
double detections. For baseline 2 and 3, we take a window around every frame
and assign the score of that frame to the whole window. The length of the
window is chosen for each class separately as the median of the duration of the
instances of that class in the training set. We then use the same non-maximum
suppression algorithm.

Evaluation is done in the traditional setting. Intersection over union is calcu-
lated between the detected windows and the ground truth. If this value is larger
than an overlap ratio and the action class is correctly identified, the detection is
considered correct. Then, the average precision is calculated. We obtain a mAP
for overlap ratio 0.2 of 4.9 %, 1.1 % and 2.7 % for FV, CNN and LSTM respec-
tively. The results for more overlap ratios and all classes separately can be found
in the supplemental material.

In general, FVs are better than LSTM, which is better than CNN. The three
methods perform best on different classes. FVs capture motion information, and
are therefore best for classes that inherently have a lot of motion, like ‘stand up’,
‘fall’ and ‘punch’, as opposed to actions like ‘write’ and ‘eat’. CNN on the other
hand is appearance-based, and therefore needs characteristic poses or context
information from objects and scenes (‘drive car’, ‘read’ and ‘drink’ all provide
these). The AP is lower than the AP of the FVs: with realistic data, this static
information is not sufficient. LSTM uses the CNN features and is able to use
their temporal order. This is not the same as having real motion information,
but a step in the right direction (reflected by its score in between CNN and FV).
It might be a good idea to use motion features (e.g. optical flow) as input for
the LSTM, but testing that is beyond the scope of this paper.
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The detection scores are quite low, indicating that this is a difficult dataset.
For reference: the average classification accuracy of the actions (without taking
the background into account), is 15.3 %, 24.7 % and 22.4 % for FV, CNN and
LSTM. The FV score is lower than the other ones, likely because some action
instances are so short that it is impossible to extract trajectories for them.

5.3 Online Detection

In online detection, we decide at every moment whether a specific action is hap-
pening now. This decision can not use information of the next frames, since
this information is not yet available. We evaluate by reporting the average pre-
cision over frames, as discussed in Sect. 4. The mAP is 5.2 %, 1.9 % and 2.7 %
for the FV, CNN and LSTM respectively. The values are very low, because
the amount of negative data is very high, but still clearly better than the ran-
dom mAP of 0.7 %. Here too, FVs score higher than LSTM and CNN. How-
ever, FVs computed on dense trajectories are slower. Dense trajectories, which
occupy most of the computations, have a computational complexity of about
O(SD2kf2 + V), for S scales and D average frame width and height, employ-
ing k convolutional kernels of size f for smoothing and spatio-temporal gradients
used in HOG/HOF/MBH and, V the computational complexity of the respective
optical flow algorithm used. In practice using FVs from the features computed
on dense trajectories is hard in a realtime setting. In comparison, CNN have a
complexity of O(

∑L
i CiM

2
i f2

i ) assuming an L-layered network with Ci channels,
Mi feature map size (on average considerably smaller than D) and fi filter size
and a thresholding (ReLU) non-linearity, while O

( ∑L
i CiM

2
i f2

i +
∑

t φ(Mtu)
)

for LSTMs that receive CNN feature maps as input, considering u memory
units and t timesteps and non-linearities with complexity φ. Most importantly,
because of the recursive nature of matrix multiplications, neural network based
models are largely parallelizable in GPU architectures, allowing for much faster
computations.

To be able to compare the scores of the different classes, we calculate the
cAP (see Table 2). Multiple classifiers perform close to the random value of 50
especially the CNN. The conclusions for offline detection are valid here as well.
FVs are best for actions that intrinsically have a lot of motion (‘run’, ‘punch’),
while CNN needs context information and characteristic poses for its best classes
(‘fire weapon’, ‘get in/out car’).

Table 3 shows the mean cAP for frames in every ten-percent interval of
actions. FVs need some time to collect information of trajectories in windows.
Their performance reaches its maximum near the end of the action. The cAP of
the other methods is constant for all frames.

5.4 Metadata Analysis

We do an analysis based on the different metadata provided with the dataset.
To be able to derive some meaningful conclusions, we just select those action
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Table 3. Mean cAP for different baselines when only a part of every action is consid-
ered: first 10 % frames of the action, next 10 % . . . last 10 %, vs. all frames not containing
the considered action.

mean cAP (%) 0–10% 10–20% 20–30% 30–40% 40–50% 50–60% 60–70% 70–80% 80–90% 90–100%

FV 67.0 68.4 69.9 71.3 73.0 74.0 75.0 76.4 76.5 76.8

CNN 61.0 61.0 61.2 61.1 61.2 61.2 61.3 61.5 61.4 61.5

LSTM 63.3 64.5 64.5 64.3 65.0 64.7 64.4 64.3 64.4 64.3

categories for which we have at least 5 action instances in each of the two splits
(e.g., classes that have at least 5 atypical and 5 typical instances). The results
are presented in Table 2. The most interesting observations are discussed below.

Multiple persons. When there are multiple persons in the scene, the per-
formance of FV slightly improves. The highest increase occurs with actions like
‘throw something’ and ‘eat’, which generally are performed in group. In contrast,
actions like ‘hang up phone’ and ‘close door’ are recognized less often. For CNN,
the average performance decreases when there are more persons present. When
one person is present in the image (instead of a group of people), action-specific
context is stronger. This explains the reduced performance.

Small or background. The FVs are clearly not capable of capturing the motion
of small persons. The trajectories are hard to extract. Moreover, there are few
of them, so their contribution to the FVs is relatively limited. CNN relies more
on the context that is present in the whole image and is less sensitive to changes
in size. In fact, when the action is small, more context may be available.

Side and frontal viewpoint. Analyzing the mean does not make sense here:
the definitions of ‘frontal’ and ‘side’ depend on the action class. Interesting to
note is that the performances of the three classifiers change differently for dif-
ferent actions. When one of them increases, there often is another one that
decreases. The classifiers capture different information, and therefore, combin-
ing them seems a good idea to obtain better results.

Shotcut. Both temporal methods are negatively affected by shotcuts. Trajec-
tories for FVs are interrupted and discarded, and it takes 15 frames to generate
new ones. Therefore, some frames have less information. LSTM combines infor-
mation from multiple frames. If there is a shotcut, the relation between the
frames is not as clear. On the other hand, CNN uses only the current frame, so
its accuracy does not change much.

Temporal truncation at start and end. For the temporal methods, the
performance is worse when the start of the action is missing. These methods use
information from previous frames. If an action is shorter because the beginning
is missing, it takes relatively speaking more time before they have constructed a
good representation. It does not matter that much whether the end of the action
is missing.
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6 Conclusion

Online action detection is a difficult problem, that has not been studied in a
real-world setting and with realistic data before. There are four main challenges.
First, only partial actions are available (as previously stressed in [7,8,27]). Sec-
ond, the negative data is highly variable and should not give rise to many false
positives. Third, the start frame of an action is not known beforehand, so it
is unclear over what time window to integrate the information. Fourth, large
within-class variability exists in real-world data.

We collected a new dataset and proposed an evaluation protocol to assist
the research on online action detection. We tested a few baselines and showed
none of the simple methods perform well. A realistic setting is clearly different
from the artificial setups that were previously used in an online action detection
context. Therefore, online action detection is a novel problem far from being
solved, as existing methodologies fall short on delivering reliable results.
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