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Abstract. This paper proposes deep convolutional network models that
utilize local and global context to make human activity label predic-
tions in still images, achieving state-of-the-art performance on two recent
datasets with hundreds of labels each. We use multiple instance learn-
ing to handle the lack of supervision on the level of individual person
instances, and weighted loss to handle unbalanced training data. Fur-
ther, we show how specialized features trained on these datasets can
be used to improve accuracy on the Visual Question Answering (VQA)
task, in the form of multiple choice fill-in-the-blank questions (Visual
Madlibs). Specifically, we tackle two types of questions on person activ-
ity and person-object relationship and show improvements over generic
features trained on the ImageNet classification task

Keywords: Activity prediction · Deep networks · Visual Question
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1 Introduction

The task of Visual Question Answering (VQA) has recently garnered a lot of
interest with multiple datasets [1–3] and systems [4–10] being proposed. Many of
these systems rely on features extracted from deep convolutional neural networks
(CNNs) pre-trained on the ImageNet classification task [11], with or without fine-
tuning on the VQA dataset at hand. However, questions in VQA datasets tend
to cover a wide variety of concepts such as the presence or absence of objects,
counting, brand name recognition, emotion, activity, scene recognition and more.
Generic ImageNet-trained networks are insufficiently well tailored for such open-
ended tasks, and the VQA datasets themselves are currently too small to provide
adequate training data for all types of visual content that are covered in their
questions.

Fortunately, we are also seeing the release of valuable datasets targeting
specific tasks such as scene recognition [12], age, gender, and emotion classifi-
cation [13,14], human action recognition [15–17], etc. To better understand and
answer questions about an image, we should draw on the knowledge from these
specialized datasets. Given a specific question type, we should be able to choose
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Fig. 1. We train CNNs on the HICO and MPII datasets to predict human activity
labels. Our networks fuse features from the full image and the person bounding boxes,
which are provided in the MPII dataset and detected in the HICO dataset. We then
use these networks to answer two types of multiple choice questions from the MadLibs
dataset – about a person’s activity, and the relationship between a person and an
object.

features from appropriate expert models or networks. In this paper, we show
that transferring expert knowledge from a network trained on human activity
prediction can not only improve question answering performance, but also help
interpret the model’s decisions. We train deep networks on the HICO [16] and
MPII [17] datasets to predict human activity labels and apply these networks to
answer two types of multiple choice fill-in-the-blank questions from the Madlibs
dataset [3] on person activity and person-object relationships (Fig. 1). Our con-
tributions are as follows:

1. We propose simple CNN models for predicting human activity labels by fusing
features from a person bounding box and global context from the whole image.
At training time, the person boxes are provided in the MPII dataset and must
be automatically detected in HICO. Our CNN architecture is described in
Sect. 3.

2. At training time, we use Multiple Instance Learning (MIL) to handle the
lack of full person instance-label supervision and weighted loss to handle the
unbalanced training data. The resulting models beat the previous state-of-
the-art on the respective datasets, as shown in Sect. 4.

3. We transfer our models to VQA with the help of a standard image-text embed-
ding (canonical correlation analysis or CCA) and show improved accuracy on
MadLibs activity and person-object interaction questions in Sect. 5.
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2 Related Work

There exist many datasets for action recognition in still images, including the
older PASCAL VOC [18] and Stanford 40 Actions [19], and newer MPII Human
Pose Dataset [17], COCO-A [20] and Humans Interacting with Common Objects
(HICO) dataset [16]. The number of actions in some of the newer datasets is an
order of magnitude larger than in the older ones, allowing us to learn vocabular-
ies fit for general VQA. The HICO dataset is currently the largest, consisting of
nearly 50000 images belonging to 600 human-object interaction categories. Each
category in the HICO dataset is composed of a verb-object pair, with objects
belonging to the 80 object categories from the MS COCO dataset [21]. On the
other hand, the MPII dataset comprises humans performing 393 different activ-
ities including walking, running, skating, etc. in which they do not necessarily
interact with objects. In this work, we train CNNs with simple architectures on
HICO and MPII datasets, and show that they outperform the previous state-of-
the-art models.

One limitation of the HICO dataset is that it provides labels for the image as a
whole, instead of associating them with specific ground truth person instances.
We disambiguate activity label assignment over the people in the image with
the help of Multiple Instance Learning (MIL) [22], which has been widely used
for recognition problems with weakly or incompletely labeled training data
[23–26]. In the MIL framework, instead of receiving a set of individually labeled
‘instances’, the learner receives a set of ‘bags,’ each of which is labeled negative
if all the instances inside it are negative, and labeled positive if it contains at
least one positive instance. In this work, we treat each person bounding box as
an ‘instance’ and the image, which contains one or more people in it, as a ‘bag’.
The exact formulation of our learning procedure is explained in Sect. 3.2.

To recognize a person’s activity, we want to use not only the evidence from
that person’s bounding box, but also some kind of broader contextual informa-
tion from the image. Previous work suggests the use of latent context boxes [27],
multiresolution or zoom-out features [28,29] and complex 2-D recurrent struc-
tures [28]. In particular, Gkioxari et al. [27] have recently proposed an R∗CNN
network that chooses a second latent box that overlaps the bounding box of
the person and provides the strongest evidence of a particular action being per-
formed. They also proposed a simpler model, the Scene-RCNN, that uses the
entire image instead of a chosen box. We explored using latent boxes but found
their performance to be lacking on datasets with hundreds of labels, possibly
due to overfitting and the infeasibility of thoroughly sampling latent boxes dur-
ing training. Similarly, we could not obtain good results with multiresolution
features owing to overfitting. Instead, we get surprisingly good results with a
simpler architecture combining features from the entire image and the bounding
box of the person under consideration, outperforming both R∗CNN and Scene-
RCNN.
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3 Action Recognition Method

3.1 Network Architecture

Our network is based on the Fast RCNN [30] architecture with VGG-16 [31].
Fast RCNN includes a new adaptive max pooling layer, referred to as the ROI
pooling layer, that replaces the standard max pooling layer (pool5 ) after the set
of the first five convolutional layers. This layer takes in a list of bounding boxes,
referred to as Regions Of Interest (ROI) and outputs a set of fixed-size feature
maps for each input ROI that are then fed to the fully connected layers. During
the forward pass of our network, we use two ROIs for each person instance in
the image: the tight bounding box of the person, and the full image (we also
experimented with using an expanded person bounding box instead of the full
image, but found the full image to always work better). The ROI Pooling layer
produces a feature of 512 channels and spatial size 7 × 7 for each ROI. The fc6
layer of the VGG-16 network expects a feature of size 512 × 7 × 7.

We explore two ways of combining the two ROI features: through stacking
and dimensionality reduction (Fig. 2). In the first, referred to as Fusion-1, we
stack features from the bounding box and the entire image along the channel
dimension and obtain a feature of size 1024 × 7 × 7. A convolutional layer of
filter size 1 × 1 is used to perform dimensionality reduction of channels from
1024 to 512, while keeping the spatial size the same. In the second, referred to
as Fusion-2, we first perform dimensionality reduction on the two ROI features
individually to reduce the number of channels from 512 to 256 each, and then
stack the outputs to obtain an input of size 512 × 7 × 7 for the fc6 layer.

Our architecture differs from R∗CNN and Scene-RCNN [27] in two major
ways. First, unlike R∗CNN, we do not explicitly try to find a box or set of boxes
that provide support for a particular label. Second, while R∗CNN and Scene-
RCNN independently perform prediction using the two features and then average
them, we combine features before prediction. The results presented in Sect. 4
confirm that our “early” fusion strategy gives better performance. Further, our
architecture is faster than R∗CNN because it does not need to sample boxes
during training and testing.

Fig. 2. Our networks extract ROI features [30] of dimension 512 × 7 × 7 from both
the person bounding box and the full image. The resulting feature is fed into the fc6
layer of the VGG-16 network. (a) Fusion-1: The two ROI features are stacked and a
1 × 1 convolution is used for dimensionality reduction. (b) Fusion-2: Each ROI feature
is separately reduced using 1 × 1 convolutions, and the outputs are then stacked.
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3.2 Multiple Instance Learning for Label Prediction

In the HICO dataset, if at least one of the people in the image is performing an
action, the label is marked as positive for the image. As our architecture makes
predictions with respect to a person bounding box, we treat the assignment of
labels to different people as latent variables and try to infer the assignment
during end-to-end training of the network. For an image I, let B be the set of all
person bounding boxes in the image. Using our network described above which
takes as input an image I and a person bounding box b ∈ B, we obtain the score
of an action a for the image as follows:

score(a; I) = max
b∈B

score(a; b, I) (1)

where score(a; b, I) is the score of action a for the person b in image I. The pre-
dicted label for the action can be obtained by passing the score through a logistic
sigmoid or softmax unit as required. The max operator enforces the constraint
that if a particular action label is active for a given image, then at least one per-
son in the image is performing that action, and when a particular action label is
inactive for a given image, then no person in the image is performing the action.
During the forward pass, the score and thus the label for the image are predicted
using the above relationship. The predicted label is compared to the groundtruth
label in order to compute the loss and gradients for backpropagation.

3.3 Weighted Loss Function

Mostajabi et al. [29] showed that use of an asymmetric weighted loss helps greatly
in the case of an unbalanced dataset. For the HICO dataset, we have to learn
600 independent classifiers per image and this makes for a highly unbalanced
scenario, with the number of negative examples greatly outnumbering the pos-
itive examples, even for the most populous categories (an average negative to
positive ratio of 6000:1, worst case of 38116:1). We thus compute a weighted
cross-entropy loss in which positive examples are weighted by a factor of wp and
negative examples by a factor of wn. Given a training sample (I,B, y) consist-
ing of an image I, set of person bounding boxes or detections B, and ground
truth action label vector y ∈ {0, 1}C for C independent classes, the network pro-
duces probabilities of actions being present in the image by passing predictions
through a sigmoid activation unit. For any given training sample, the training
loss on network prediction ŷ is thus given by

loss(I,B, y) =
C∑

i=1

wi
p · yi · log(ŷi) + wi

n · (1 − yi) · log(1 − ŷi) (2)

In our experiments, we set wp = 10 and wn = 1 for all classes for simplicity.
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4 Activity Prediction Experiments

Datasets. We train and test our system on two different activity classification
datasets: HICO [16] and the MPII Human Pose Dataset [17]. The HICO dataset
contains labels for 600 human-object interaction activities, any number of which
might be simultaneously active for a given image. Labels are provided at the
image level even though each image might contain multiple person instances,
each performing the same or different activities. The labels can thus be thought
of as an aggregate over labels of each person instance in the image. As the
person bounding boxes are not provided with the HICO dataset, we run the
Faster-RCNN detector [32] with the default confidence threshold of 0.8 on all
the train and test images. The obtained person bounding boxes are thus not
perfect and might have wrong or missing annotations. The HICO training set
contains 38,116 images and the test set contains 9,658 images. The training set is
highly unbalanced with 51 out of 600 categories having just 1 positive example.

The MPII dataset contains labels for 393 actions. Unlike in HICO, each image
only has a single label together with one or more annotated person instances. All
person instances inside an image are assumed to be performing the same task.
Ground truth bounding boxes are available for each instance in the training
set, so we do not need to use MIL can take advantage of the extra training data
available by training on each person instance separately. On the test set, however,
only a single point inside the bounding box is provided for each instance, so we
run the Faster-RCNN detector to detect people. The training set consists of
15,200 images and 22,900 person instances and the test set has 5,709 images.
Similar to HICO, the training set is unbalanced and the number of positive
examples for a label ranges from 3 to 476 instances.

HICO Results. On the HICO dataset, we compare the networks described in
the previous section with VGG-16 networks trained on just the person bounding
boxes and just the full image, as well as with R∗CNN and Scene-RCNN. For the
latter two, we use the authors’ implementation [27]. For all the networks, except
the R∗CNN, we use a learning rate of 10−5, decayed by a factor of 0.1 every
30000 iterations. For the R∗CNN, we use the recommended setting from [27] of
a learning rate of 10−4, with a lower and upper intersection over union (IoU)
bound for secondary regions of 0.2 and 0.75 and sample 10 secondary regions
per person bounding box during a single training pass. We train all networks for
60000 iterations with a momentum of 0.9. Further, all networks are finetuned till
the conv3 layer as in previous work [27,30]. We use a batch size of 10 images,
resize images to a maximum size of 640 pixels, and sample a maximum of 6
person bounding boxes per image in order to fit the network in the GPU memory
during training with MIL. Consistent with [28,33,34], we initialize our models
with weights from the ImageNet-trained VGG-16.

Table 1 presents our comparison. As HICO is fairly new, the only pub-
lished baseline [16] uses the AlexNet [35] (Table 1a). Using the VGG-16 network
improves upon AlexNet by 10 mAP (first line of Table 1b). The VGG-16 network
that uses just the person bounding box to make predictions with MIL performs
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Table 1. Performance of various networks on the HICO person-activity dataset. Note
that usage of the Bounding Box (Bbox) necessitates the usage of Multiple Instance
Learning (MIL).

Method Full Im. Bbox MIL Wtd. loss mAP

(a) AlexNet+SVM [16] � 19.4

(b) VGG-16, full image � 29.4

VGG-16, bounding box � � 14.6

VGG-16, R∗CNN � � 28.5

VGG-16, Scene-RCNN � � � 29.0

(c) Fusion-1 � � � 33.6

Fusion-1, weighted loss � � � � 36.0

Fusion-2 � � � 33.8

Fusion-2, weighted loss � � � � 36.1

poorly with only 14.6 mAP (second line of Table 1b). This is not entirely sur-
prising since the object that the person is interacting with is often not inside
that person’s bounding box. More surprisingly, the R∗CNN architecture, which
tries to find secondary boxes to support the person box, performs slightly worse
than the full-image VGG network. One possible reason for this is that R∗CNN
has to use MIL twice during training: once for finding the secondary box for an
instance, and then again while aggregating over the multiple person instances
in the image. Since R∗CNN samples only 10 boxes per person instance during
each pass of training (same as in [27]), finding the right box for each of the 600
actions might be difficult. The Scene-RCNN, which uses the entire image as the
secondary box, needs to do MIL just once, and performs marginally better than
R∗CNN. Another possible reason why both R∗CNN and Scene-RCNN cannot
outperform a full-image network is that they attempt to predict action scores
independently from the person box and the secondary box before summing them.
As we can see from the poor results of our bounding-box-only model (second line
of Table 1b), such prediction is hard.

With our fusion networks, we immediately see improvements over the full-
image network (Table 1c). The weighted loss, which penalizes mistakes on posi-
tive examples more heavily as described in Sect. 3.2, helps push the mAP higher
by about 2.5 mAP for both our networks. The Fusion-2 network, which performs
dimensionality reduction before local and global feature concatenation, has a
slight edge probably due to lower number of parameters (Fusion-1 has 1024×512
parameters for dimensionality reduction and Fusion-2 has 2 × 512 × 256, lesser
by a factor of 2).

MPII Results. On the MPII dataset, we compare our networks with previ-
ously published baselines from Pischulin et al. [17] and Gkioxari et al. [27]. Our
networks are trained with a learning rate of 10−4 with a decay of 0.1 every 12000
iterations, for 40000 iterations. We only finetune till the fc6 layer due to the
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Table 2. Results on the MPII test set (obtained by submitting our output files by
email to the authors of [17]).

Method mAP

Dense Trajectory + Pose [17] 5.5

VGG-16, R∗CNN [27] 26.7

Fusion-1, label per ground truth person instance 32.06

Fusion-2, label per ground truth person instance 32.24

Fusion-1, MIL over ground truth person instances 31.68

Fusion-2, MIL over ground truth person instances 31.89

Fusion-2, label per detected person instance 32.02

Fusion-2, MIL over detected person instances 31.81

smaller amount of training data than in HICO. We do not use the weighted loss
on this dataset, as we did not find it to make a difference.

Table 2 shows the MPII results. The trend is similar to that in Table 1: our
fusion networks outperform previous methods, with Fusion-2 having a lead over
Fusion-1. Recall that the MPII training set comes with ground truth person
instances, which gives us a chance to examine the effect of MIL. If we assume
that the assignment of labels to the people in the image is unknown and use the
MIL framework, we see a small dip in performance as opposed to assuming that
the label applies to each person in the image (last two rows of Table 2). The latter
gives us more training data along with full supervision and improves over MIL
by around 0.4 mAP. We also tried training the network with detected person
bounding boxes instead of groundtruth boxes and found that the performance
was very similar, indicating that groundtruth boxes may not be necessary if
there is no ambiguity in assignment of labels.

Qualitative Results. Figure 3 displays some of the predictions of our best-
performing network on the HICO dataset. In spite of the lack of explicit super-
vision of which labels map onto a specific person instance, the network learns to
reasonably assign labels to the correct person instance. It is interesting to note
a few minor mistakes made by the network: in the top left example, the network
confuses the tower in the background for a clock tower, and assigns the label
‘no interaction-clock’ to one of the people. In the middle example of the second
row, there is a false person detection (marked in red) due to the reflection in the
glass, but it does not get an activity prediction since the highest-scoring label
has confidence less than 0.5.

Figure 4 shows some of the failures of our system on the HICO dataset.
Unusual use-cases of an object such as swinging around a backpack can confuse
the deep network into misclassifying the object as in the leftmost image. Since our
system relies on detected people, we can either miss or produce false positives,
or label the wrong instances as shown in the middle image. Lastly, one drawback
of the weakly supervised MIL framework is that it is unable to distinguish labels
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Fig. 3. Predictions of our Fusion-2 model on the HICO test set. Detected person
instances are marked in different colors and corresponding action labels are given
underneath. (Color figure online)

Fig. 4. Failure examples on HICO. Incorrect classification of objects/actions, wrong
interacting person detection, and inability to assign labels to correct person instances
due to weak supervision and sampling are common issues.

in a crowded scenario, especially when the crowd occurs only in specific settings
such as sports games (right image).

5 Visual Question Answering Results

Dataset and Tasks. In this section, we evaluate the performance of features
extracted by our networks on two types of questions from the Madlibs dataset [3]
that specifically target people’s activities and their interactions with objects. The
first type, ‘Person’s Activity,’ asks us to choose an option that best describes
the activity of the indicated person/people, while the second type, ‘Pair’s Rela-
tionship,’ asks us to describe the relationship between the indicated person and
object(s). The indicated people and objects come from ground truth annotations
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on the MS COCO dataset [21], from which MadLibs is derived, so there is no
need to perform any automatic detection. The prompt is fixed for all questions
of a particular type: ‘The person/people is/are ’ and ‘The person/people
is/are the object(s)’.

The training data for MadLibs consists of questions paired with correct
answers. There are 26528 and 30640 training examples for the activity and rela-
tionship questions, respectively (the total number of distinct images is only about
10 K, but a single image can give rise to multiple questions centered on different
person and object instances). In the test data, each question contains four pos-
sible answer choices, of which one is the correct answer (or best answer, in case
of confusing options). Depending on the way the distractor options are selected,
test questions are divided into two categories, Easy and Hard. The test sets for
the activity and relationship types have 6501 and 7595 questions respectively,
and each comes with Easy and Hard distractor options. Hard options are often
quite confusing, with even humans disagreeing on the correct answer. Thus, the
performance on filtered hard questions, on which human annotators agree with
the ‘correct’ answer at least 50% of the times, is also measured. Since MadLibs
does not provide a set of multiple choice questions for validation, we created our
own validation set of Easy questions by taking 10 % of the training images and
following the distractor generation procedure of [3].

Models and Baselines. Similarly to [3], we use normalized Canonical Correla-
tion Analysis (nCCA) [36] to learn a joint embedding space to which the image
and the choice features are mapped. Given a question, we select the choice that
has the highest cosine similarity with the image features in the joint embedding
space as the predicted answer.

On the text side, we represent each of the choices by the average of the 300-
dimensional word2vec features [37] of the words in the choice. In the case that
a word is out of the vocabulary provided by [38], we represent it with all zeros.

On the image side, we compare performance obtained with three types of
features. The first is obtained by passing the entire image, resized to 224 × 224
pixels, through the vanilla (ImageNet-trained) VGG-16 network and extracting
the fc7 activations. This serves as the baseline, similar to the original work of
Yu et al. [3]. The second type of feature is obtained by passing the entire image
through our activity prediction network that uses full image inputs. We compare
both the fc7 activations (of length 4096) and the class label activations (of length
600). The third type of feature is extracted by our Fusion-2 architecture (as
detailed in Sect. 3). As our MadLibs question types target one or more specific
people in the image, we feed in the person bounding boxes as ROIs to our network
(for the relationship questions, we ignore the object bounding box). In the case
that a particular question targets multiple people, we perform max pooling over
the class label activations of the distinct people to obtain a single feature vector.
Note that we found it necessary to use the class label activations before passing
them through the logistic sigmoid/softmax as the squashing saturated the scores
too close to 0 or 1.
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Table 3. Performance of different visual features on Activity and Relationship MadLibs
questions (Fil. H. ≡ Filtered Hard). See text for discussion.

Dataset:Network - Feature Person’s activity Pair’s relationship

Easy Hard Fil. H. Easy Hard Fil. H.

ImageNet:VGG-19 [3] - fc7 80.7 65.4 68.8 63.0 54.3 57.6

ImageNet:VGG-16 - fc7 80.79 65.14 67.73 71.45 51.47 56.28

HICO:VGG-16, Full Im. - cls score 86.03 68.74 72.06 77.25 54.10 59.77

HICO:VGG-16, Full Im. - fc7 86.54 69.14 72.39 77.96 55.76 61.03

HICO:Fusion-2 - cls score 86.66 70.05 73.46 78.29 55.52 61.39

MPII:Fusion-2 - cls score 83.23 68.11 70.89 72.81 52.75 57.68

HICO+MPII:Fusion-2 - cls score 87.57 71.13 74.45 78.50 56.17 62.06

To train the nCCA model, we used the toolbox of Klein et al. [39]. We set
the CCA regularization parameter using the validation sets we created, resulting
in values of 0.01 and 0.001 for the fc7 and class score features respectively.
Our learned nCCA embedding space has dimensionality of 300 (same as the
dimensionality of word2vec).

Question Answering Performance. The first two rows of Table 3 contain
the accuracies from the vanilla VGG baseline of Yu et al. [3] and our repro-
duction. Some of our numbers deviate from those of [3], probably owing to the
different features used (VGG-16 v/s VGG-19), CCA toolboxes, and hyperpara-
meter selection procedures. From the second row of Table 3, using the vanilla
VGG features gives an accuracy of 80.79% and 71.45% on the Easy Person
Activity and Easy Pair Relationship questions respectively. By extracting fea-
tures from our full-image network trained on the HICO dataset, we obtain gains
of around 6–7 % on the Easy questions (rows 3–4). It is interesting to note
that the 600-dimensional class label features give performance comparable to
the 4096-dimensional fc7 features. Next, features from our Fusion-2 network
trained on HICO (row 5) help improve the performance further. The Fusion-2
network trained on the smaller MPII dataset (row 6) gives considerably weaker
performance. Nevertheless, we obtain our best performance by concatenating
class label predictions from both HICO and MPII (last row of Table 3), since
some of the MPII categories are complementary to those of HICO, especially
in the cases when a person is not interacting with any object. Compared to
our baseline (row 2), we obtain an improvement of 6.8% on the Easy Activity
task, and 7.5% on the Easy Relationship task. For the Hard Activity task, our
improvements are 6% and 6.7% on the unfiltered and filtered questions, and
for the Hard Relationship task, our improvements are 4.7% and 5.8% on the
unfiltered and filtered questions respectively.

Qualitative Results. Figure 5 shows a range of correctly answered multiple
choice questions using our best-performing features. By examining top labels
predicted by our network, we can gain intuition into the choices of our model
as these are easily interpretable unlike fc7 features of the VGG-16 network.
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Fig. 5. Correctly answered questions of the person activity type (first two rows) and
person-object relationship type (last row). The subjects of the questions are highlighted
in each image. The left column below each image shows the answer choices, with the
correct choice marked in red. The right column shows the activity labels and scores
predicted by our best network. (Color figure online)

In fact, our top predicted labels often align very closely to the correct answer
choice. In the top left image of Fig. 5, the question targets multiple people and
the label scores max pooled over the people correctly predict the activity of
sitting at and eating at the dining table. In the middle image of the first row,
the question targets the skateboarder. Accordingly, our network gives a high
score for skateboard-related activities, and a much lower score for the bicyclist
in the background. In the rightmost image in the first row, our network also
correctly predicts the labels for ‘ride, straddle-horse’ along with ‘wear, carry-
backpack’ (which is not one of the choices). The middle and right images in the
middle row show that our predictions change depending on the target bounding
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Fig. 6. Failure examples. The correct choice is marked in red, and the predicted answer
in blue. Failure modes mainly belong to three classes as illustrated (left to right): correct
predictions but unfamiliar object (‘picture’); incorrect predictions (‘dog’ missed); and
a mix of the first two, i.e., partly correct predictions and unfamiliar setting. (Color
figure online)

box: the ‘hold-book’ label has a much higher probability for the boy on the
right, even though the network was trained using weak supervision and MIL, as
detailed in Sect. 3.

Figure 6 displays some of the common failure modes of our system. In the
leftmost image, even though the predicted activity labels are correct, the target
object of the question (‘picture’) is absent from the HICO and MPII datasets so
the labels offer no useful information for answering the question. The network
can also make wrong predictions, as in the middle image. In the rightmost image,
the choices are rather hard and confusing as the person is indeed holding onto
a kite as well as a surfboard in an activity best described as ‘parasurfing’ or
‘windsurfing’.

6 Conclusion

In this paper, we developed effective models exploiting local and global context
to make person-centric activity predictions and showed how Multiple Instance
Learning could be used to train these models with weak supervision. Even though
we used a simple global contextual representation, we obtained state-of-the-
art performance on two different datasets, outperforming more complex models
like R∗CNN. In future work, we hope to further explore more sophisticated
contextual models and find better ways to train them on our target datasets,
which feature hundreds of class labels with highly unbalanced label distributions.

We have also shown how transferring the knowledge from models trained on
specialized activity datasets can improve performance on VQA tasks. While we
demonstrated this on fairly narrow question types, we envision a more general-
purpose system that would have access to many more input features such as
person attributes, detected objects, scene information, etc. and appropriately
combine them based on the question and image provided.
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