
Declarative Process Models:
Different Ways to Be Hierarchical

Riccardo De Masellis1, Chiara Di Francescomarino1, Chiara Ghidini1,
and Fabrizio M. Maggi2(B)

1 FBK-IRST, Trento, Italy
{r.demasellis,dfmchiara,ghidini}@fbk.eu

2 University of Tartu, Tartu, Estonia
f.m.maggi@ut.ee

Abstract. In the literature, hierarchical dimensions for procedural
process models have been widely investigated as they provide differ-
ent ways to relate, organize and classify models. Such a categorization
is based on the dimensions of inheritance, behavioral equivalence, and
modularization and can be used to better understand and modify mod-
els as well as handle their complexity. Unfortunately, in the context of
declarative process models hierarchical dimensions have been sparsely
investigated. This paper addresses such a research gap. More specifi-
cally, we study a formal semantics for the dimensions above and show
how they naturally induce hierarchies on a declarative process language
based on declare.

Keywords: Hierarchical process model · Linear temporal logic · Declare

1 Introduction

Hierarchical relations have been widely investigated and adopted in practice in
the context of business process modeling as a key mechanism to handle complex-
ity, organization and categorization. Concepts such as modularization, decompo-
sition, refinement, inheritance, reduction and so on have been introduced, not
infrequently with conflicting meanings, to hierarchically structure and relate
business processes along different dimensions. Despite the terminological differ-
ences, we follow the analysis of [15] and identify three different dimensions along
which processes can be arranged in a hierarchy.

The first dimension aims at achieving inheritance among process models.
Inheritance is often interpreted with a behavioral connotation, wherein a child
model enables a restrictive set (i.e., a subset) of its parents behaviors (see
Fig. 1a). This can also be achieved, in some special cases, through syntactical
inheritance, where parts of the parent model are borrowed by the child. How-
ever, this dimension cannot be characterized from a syntactic viewpoint, e.g.,
through specific constructs. We adopt the uml terminology, and use specializa-
tion and generalization to indicate the top-down and bottom-up directions of
the inheritance relation. The second dimension can be seen as a special case
of the first one, as it categorizes equivalent process models, that is, those that
differ from the syntactic point of view but accept the same set of behaviors.
c© Springer International Publishing Switzerland 2016
Q.Z. Sheng et al. (Eds.): ICSOC 2016, LNCS 9936, pp. 104–119, 2016.
DOI: 10.1007/978-3-319-46295-0 7

Declarative Process Models: Different Ways to Be Hierarchical 105

Level 1

Level 2

Level 3

Generalization

Specialization

(a) (behavioral) Inheritance.

Rewriting

(b) Rewriting processes.

A
bs

tr
ac

tio
n

(c) Decomposable modules.

Fig. 1. Three ways to be hierarchical.

However, it differs from the inheritance dimension by being “horizontal” and, as
such, it is not characterized by bottom-up and top-down directions but rather
realized through rewriting of the processes, as depicted in Fig. 1b. Finally, the
third hierarchical dimension involves the process-subprocess decomposition, and
its graphical representation is provided in Fig. 1c, where increasing levels specify
more and more process details. This dimension is essential to obtain modular-
ization through decomposable modules, or subsystems, as observed in [13,15],
and is usually achieved, in a procedural process specification, by means of ad
hoc syntactic constructs, e.g., the bpmn subprocess construct. In this paper, we
adopt the terminology from [13] and use refinement and abstraction to indicate
the top-down and bottom-up directions of modular decomposition.

While the notion of hierarchy is well investigated and supported in procedural
approaches to business process modeling, it is less understood and used in the
context of declarative models. This can be ascribed to the intrinsic difficulty of
characterizing and supporting these dimensions in declarative process models. In
this work, we aim at addressing such a gap by investigating, in a precise and logic-
based manner, the formalization and the effects of inheritance, rewriting, and
modularization in the context of the declare modeling language [14]. We chose
declare as it is the most popular declarative language for modeling business
processes, and because it grounds on a formal, logic-based, semantics. This latter
fact enables us to embed the conceptual understanding of the three hierarchical
relations into the modeling language in a precise manner and to characterize
them by means of logical properties holding between the hierarchically related
processes. This formal investigation highlights the following: first, declare, in
its current form, fails to support hierarchies in full. Thus, Sect. 5 introduces
HiDec, a declare extension which fills this gap. Second, each dimension is
indeed represented by means of a hierarchy, i.e., a computationally decidable
(partial) order among HiDec processes (Sect. 6). The formal analysis provided
Sects. 5 and 6 is grounded in a literature review (Sect. 2) and in a conceptual
investigation of how to interpret the three dimensions above in a declarative
setting (Sect. 4).

106 R. De Masellis et al.

2 Related Work

Hierarchies of procedural process models have been widely investigated. The
classification provided in this paper is inspired by the work proposed in [15] where
the research on procedural process model hierarchies is recognized to provide
contributions to inheritance, rewriting and modularization. Most of the work in
the literature on hierarchical procedural models fall in one of these categories
and even if there are much less contributions in the declarative settings, the
same concepts/categories also apply. In the following, we analyze the literature
according to its contribution to each dimension.

In [1], the authors study inheritance of behavior in a simple process-algebraic
setting as well as in a Petri-net framework. The approach in [11] groups together
similar process models where similarity measures are (also) based on the concept
of inheritance borrowed by object-oriented programming. Inheritance is also used
in the context of process configuration to customize generic process model “tem-
plates” instead of building one from scratch. From a template, several process
variants can be derived by means of a restricted set of change operations [23].
In the last decade, configurability of procedural process models has been widely
investigated [16], while for declarative ones the approach in [21] has been recently
proposed.

Concerning rewriting, several works provide reduction rules to support the
analysis of procedural process models. In [24], reduction rules translating reset-
nets to much smaller ones (whilst preserving the original properties) are shown.
Analogously, [25] presents reduction rules for YAWL workflows with cancelation
regions and OR-joins. Also, [17] introduces a set of graph reduction rules as a
verification mechanism to identify structural conflicts in a procedural process
model. In the context of declarative process models, reduction rules to remove
redundancies in declare models obtained from process discovery are investi-
gated in [10].

Coming to modularization, in [2], the authors provide guidelines to select
parts of procedural process models, represented as meta-graphs, for modular-
ization purposes. Good candidates for subprocesses are fragments with a single
input and a single output control flow arc. Other work [9,22] provide recommen-
dations regarding the size of a subprocess in a process model. To assess which
modularization should be preferred starting from the characteristics of a com-
plex process model, quality metrics are proposed in [12]. In [23], the ability to
extract a subprocess from a process model has been described as a change pat-
tern for process-aware information systems. In the context of declarative process
models, in [27] the understandability of hierarchical declarative models is dis-
cussed and how subprocesses enhance the expressiveness of declarative modeling
languages is shown. Differently form what we propose, this paper discusses a
cognitive-psychology-based framework to assess the impact of hierarchy on the
understandability of declarative models, rather than formally studying its prop-
erties. A different approach to modularization for declarative process models has
been presented in [5], where a definition of hierarchical declarative process models
based on Dynamic Condition Response (DCR) graphs is given, and can be used
for incremental refinement, adaptation, and dynamic creation of subprocesses.

Declarative Process Models: Different Ways to Be Hierarchical 107

However, besides being based on a semantics different from ltl, the focus of the
paper is providing constructs that support modularization, rather than study-
ing the different dimensions of hierarchy. Lastly, also the recently-introduced
Declarative Process Intermediate Language (DPIL) [26] allows for modeling sub-
processes, and it focuses not only on the model behavioral dimension, i.e., the
traditional control-flow, but also on other perspectives such as the organizational
perspective (tasks may be assigned/performed by specific roles/groups) and the
informational perspective (resources/entities accessed by activities). Given the
expressivity of DPIL, several hierarchies can be defined by considering the dif-
ferent perspectives, e.g., hierarchies between roles [18]. Our analysis focus on the
core traditional control-flow perspective only so as to first have a formal basis
on top of which possibly many other constructs/extensions can be considered.

Table 1. Aspects of hierarchical dimensions.

Aspect Inheritance Rewriting Modularization

Understandability [10,24] [9,12,15,22,27]

Reusability [11,16,21] [15,23]

Scalability [17,25] [15]

Analysis [17,25]

The importance of these dimensions in the context of hierarchical declar-
ative process models is also demonstrated by the number of properties and
aspects that they affect. Table 1 maps the three dimensions of hierarchical mod-
els (columns) to the corresponding affected aspects (rows). The table shows that
for instance, understandability is affected by both modularization and equiv-
alence. As shown in several studies, indeed, understandability is affected by
modularization, because smaller modules are usually easier to understand for
humans (see, e.g., [12]). On the other hand, also different representations of the
same set of behaviors (equivalence) impact on understandability [10]. Reusabil-
ity is affected by both inheritance and modularization. Inheritance, for example,
enables the reuse of (process) variants [21] while modularization the reuse of
(process) modules [23]. Rewriting and modularization, enabling respectively the
optimized [17,25] and distributed [15] execution of process models impact on
scalability. Finally, rewriting also supports formal analysis of models [17,25], as
conflict detection.

From the above literature review, we can conclude that contributions on
hierarchical declarative process models have been sparse, often ad hoc, and, in
the vast majority of cases ([5] is a notable exception) the proposed semantics is
not formally grounded. In addition, they usually deal with a subset of dimensions
thus not providing a comprehensive interpretation/semantics for all of them,
which we tackle in this work.

3 Preliminaries

Our choice of using declare [14] grounds on the fact that it adopts the semantics
of a well-known and well-studied temporal logics. This not only paves the way

108 R. De Masellis et al.

Table 2. Graphical notation and ltl formalization of some declare templates.

for a mathematical characterization of dimensions and hierarchy, but also allows
us to borrow some of the theoretical results originally developed for that logics.

A declare model is a set of constraints that must hold in conjunction during
the process execution, declaratively setting the boundaries that process instances
must not overcome. Each constraint is chosen among a set of predefined “tem-
plates” that express different (partial) orders on the activities the process is
intended to perform.

Definition 1 (declare). Given a finite alphabet of activities Σ, a declare
process Φ is a set of constraints, intended to be in conjunction, inductively defined
as follows:

ϕ :: = decUn(A) | decBin(A1,A2)
Φ :: = {ϕ} | Φ1 ∪ Φ2

where A,A1,A2 ∈ Σ, decUn(·) is a unary declare template and decBin(·, ·)
is a binary declare template. We denote with D the set of declare processes
and with Σ(Φ) the set of activities occurring in Φ.

Together with a mnemonic name for specific ltl formulas, declare also offers
a graphical representation for each template. Table 2 reports the graphical nota-
tion, the formalization and a brief description of the declare templates that
we use in this paper. As examples, the binary response(A,B) template says that
each occurrence of activity A must be eventually followed by activity B, and it
indeed represents the ltl formula �(A → �B), where � is the ltl “always”
temporal operator and � is the “eventually” temporal operator, while the unary
template existence(A) (resp., absence(A)) says that activity A must be eventu-
ally performed (resp., never be performed), and its ltl formula is �A (resp.,
¬�A).

Given a declare process Φ, its semantics is given in terms of finite sequences
of activities, also called traces, satisfying Φ, which we denote by L(Φ), where
only one activity is performed at a time. This is formally achieved by taking the
finite-trace semantics of ltl [3,4] and by adding an (implicit) global constraint in
each process expressing the mutual exclusion among activities. From a practical
viewpoint, the reasoning tasks on processes Φ, Ψ ∈ D, namely, satisfiability

Declarative Process Models: Different Ways to Be Hierarchical 109

(is L(Φ) �= ∅?), validity (is every trace in L(Φ)?) and logical implication (is
L(Φ) ∈ L(Ψ)?), reduce to each other and can be solved by building the so-called
automaton for Φ (and Ψ) [3], which we denote by A(Φ). We observe that when
adopting the ltl finite-trace semantics, automata for formulas are actually finite-
state machines and as such, they can be manipulated by using well-known and
optimized algorithms (we exploit some of them in Sect. 6). In the remainder,
we refer to ltl by implicitly meaning ltl with finite-trace semantics, which
allows for using the term automata and finite-state machine as synonyms. We
stress that the result presented here do not carry to traditional (infinite-trace
semantics) ltl (see [4] for a dissertation on the difference between finite- and
infinite-trace semantics).

4 Conceptual Investigation

In this section, we provide a conceptual investigation of inheritance, rewriting
and modularization with the help of a running example inspired by [7].

In a typical loan application (LA) scenario, after a customer has
requested a loan (Request Loan (RL)), the customer application is assessed
(Assess Application (AA)) and, once assessed, a decision about the loan
(Decide on Loan (DL)) is taken. This is modeled in declare with the two
response constraints (see Sect. 3): response(RL,AA) and response(AA,DL),
whose graphical representation is:

Request Loan •−−−� Assess Application •−−−� Decide on Loan

The first dimension we study is process inheritance, whose bottom-up and
top-down directions are defined as specialization and generalization, respec-
tively. Intuitively, a process model specializes another (parent) process model
if the behaviors allowed by the specialization are a subset of the behaviors
allowed by the parent. Generalization is defined symmetrically. For instance,
let us consider the mortgage loan (ML) specializing the behavior of LA in
that it restricts the behaviors of the latter (i.e., those satisfying the two
response constraints) to those containing exactly one occurrence of the activ-
ity Send Home Insurance Quote (SHIQ), i.e., those focusing on house loans.

1

Send Home Insurance Quote Request Loan •−−−� Assess Application •−−−� Decide on Loan

As the above graphical representation of the declare constraints shows, in this
case, we have not only a behavioral inheritance between the two process models
but also a syntactical one, as the specialized process model is obtained by adding
constraints (e.g., the exactly1(SHIQ) in the example) to the set of constraints of
the parent.

A slightly different example of specialization of the LA process is the loan
application process for fidelity customers FCL which restricts the behaviors
allowed by the general LA process by imposing that fidelity customers are served
immediately after the loan request is presented:

Request Loan •=−=−=−� Assess Application •−−−� Decide on Loan

110 R. De Masellis et al.

As the above constraints shows, FCL does not inherit the syntactical description
of LA, as the response(RL,AA) is replaced by a chain response(RL,AA), indicat-
ing that Assess Application has to be executed immediately after Request Loan.
Nonetheless, it accepts a subset of the parent’s behaviors. In general, we can
have several layers of inheritance. We can think for instance at the process for
the mortgage loan for fidelity customers:

1

Send Home Insurance Quote Request Loan •=−=−=−� Assess Application •−−−� Decide on Loan

which is (i) a specialization of the mortgage loan process, restricting its behav-
iors to those dedicated to fidelity customers, (ii) a specialization of the fidelity
customers loan, restricting its behaviors to those related to the mortgage, and
(iii) a specialization of the loan process, restricting its behaviors to mortgage
processes and fidelity customers.

A second hierarchical dimension relates to rewriting. Intuitively, rewriting
refers to the case in which two (declarative) process models describe exactly the
same set of behaviors although their representation is different and, in particular,
one is more compact than the other. In other terms, the process models are only
semantically but not syntactically equivalent. Let us consider again the declare
model of the fidelity customer loan FCL and the one below (called FCLRed):

•=−=−=−�
Request Loan •−−−� Assess Application •−−−� Decide on Loan

Although the two declare descriptions are different (FCLRed contains an extra-
constraint with respect to the FCL) the behaviors they allow are exactly the same
ones since according to the declare order relationships [20], the chain response
is stronger than the response constraint. We can conclude that original FCL is
more compact, and indeed is also the minimal one, i.e., it cannot be further
reduced.

The third dimension of hierarchical models identified in Sect. 2 is modulariza-
tion, whose top-down direction is called refinement, and represents the process-
subprocess relation, whilst the bottom-up direction, called abstraction, is the
vice versa. Let us consider the LA model presented before: the behavior of the
Decide on Loan activity can be refined, by detailing that the loan decision consists
of either a loan request approval or a loan request rejection. The following figure
shows the refinement of the Decide on Loan activity, imposing a not coexistence
between the Approve Loan and the Reject Loan activities.

Approve Loan •−−−•‖ Reject Loan

We notice that, while inheritance can easily be defined in declare, mod-
ularization, although being very common and well-investigated in procedural
languages, cannot. In order to overcome this limitation, we extend the tradi-
tional declare language by defining and investigating the properties of the
different hierarchical dimensions it enables.

5 HiDec: Hierarchical Declarative Processes

We introduce HiDec, a declare extension that allows for the formal definition
and implementation of the three hierarchical dimensions.

Declarative Process Models: Different Ways to Be Hierarchical 111

Definition 2 (HiDec). Given a finite set of activities Σ, a HiDec process Φ is
a set of constraints, intended to be in conjunction, inductively defined as follows:

ϕ :: = decUn(A) | decUn(ϕ) |
decBin(A1,A2) | decBin(ϕ1, ϕ2) | decBin(A, ϕ) | decBin(ϕ,A)

Φ :: = {ϕ} | {A ↔ ϕ} | Φ1 ∪ Φ2

Where A,A1,A2 ∈ Σ, decUn(·) is a unary declare template and decBin(·, ·)
is a binary declare template. We denote with C the set of HiDec constraints,
i.e., the ϕ formulas of the above grammar, with H the set of HiDec processes,
i.e., the Φ formulas, and with Σ(Φ) the set of activities occurring in Φ.

HiDec allows us to represent all the three different types of hierarchies,
included modularization, which we would not have been able to represent with
traditional declare. Theorem 1 shows indeed that HiDec is more expressive
than declare.

Theorem 1. HiDec is more expressive than declare.

Proof (Sketch). Since Σ is finite, the number of different declare constraints
is finite, and, as a consequence, the number of (syntactically) different processes
of D is finite as well. This in turn implies that the number of semantically
different processes is finite (some syntactically different processes may, in fact, be
equivalent). Conversely, the number of HiDec syntactically different processes is
(countably) infinite, given that an arbitrary nesting of sub-processes is allowed.
Also, the capability of having an arbitrary nesting of temporal operators allows
us to express a (countably) infinite number of semantically different processes.
As an example, for each n ∈ IN, it is possible to express a formula Υn saying:
“Activity A occurs at least n times”, and for each i, j ∈ IN, L(Υi) �= L(Υj).

By means of such an extended language, we are able to represent
also process RefLA, a refinement of LA described in Sect. 4, where activity
Decide on Loan is defined as the subprocess Decide on Loan ↔ (�Accept Loan →
¬(�Reject Loan)). The Figure below shows a graphical representation of the
above constraint.

Request Application •−−−� Assess Application •−−−�
Decide on Loan

Approve Loan •−−−•‖ Reject Loan

6 Hierarchies in Declarative Models

In this section, we provide a precise mathematical structure to concepts intro-
duced before. Such a formalization is naturally originated by the definition of
hierarchy : an arrangement or classification of things according to some dimen-
sion. In what follows, indeed, the previous ideas take shape into formal relations
between processes which we prove to be (partial) orderings. We recall that a par-
tial order is a set equipped with a binary relation R among its elements which
satisfies the property of reflexivity (R(a, a)), antisymmetry (R(a, b) and R(b, a)
entails a = b) and transitivity (R(a, b) and R(b, c) entails R(a, c)). Our goal is
therefore to define such relations so that they reflect the informal intuitions as
well as provide fine properties on the set of HiDec formulas.

112 R. De Masellis et al.

6.1 The Inheritance Hierarchy

The inheritance dimension we explore is purely semantic. We say that process
Ψ specializes Φ if the set of traces accepted by Ψ is a subset of those accepted
by Φ, or, equivalently, if Ψ logically implies Φ.

Definition 3. Let Σ be a set of activities, H the HiDec language over Σ and
Φ ∈ H. Process Ψ ∈ H is a specialization of Φ, if L(Ψ) ⊆ L(Φ).

Generalization is defined symmetrically: a process generalizes another one
if the former is logically implied by the latter. Being semantic, such a defini-
tion applies to traditional declare as well. However, since HiDec subsumes
declare, we stick to HiDec to be consistent with the definitions of the other
hierarchical dimensions.

Unfortunately, relation ⊆ on the set of traces does not order the set H.
Specifically, the antisymmetry fails, as there are formulas Φ, Ψ for which L(Φ) ⊆
L(Ψ) and L(Ψ) ⊆ L(Φ) holds, i.e., L(Φ) = L(Ψ) but Φ �= Ψ . Intuitively, logical
languages contain synonyms, i.e., syntactically different formulas semantically
describing the same set of accepted traces. Next section formalizes this concept
and provides a way out.

6.2 The Rewriting Hierarchy

Definition 4. Let Σ be a set of activities, H the HiDec language over Σ and
Φ, Ψ ∈ H. Processes Φ and Ψ are equivalent, written Φ ∼ Ψ ,if L(Ψ) = L(Φ).

It is immediate to verify that relation ∼⊆ H × H is an equivalence relation,
i.e., it is reflexive, transitive and symmetric and as such, it partitions the set H
into equivalence classes. The equivalence class of an element Φ ∈ H is denoted by
[Φ], and contains all synonyms of Φ: this formally underpins the intuitive notion
of “horizontal” hierarchy among processes that can be obtained by rewriting a
model into an equivalent one. The set of all equivalence classes of H by ∼ is called
the quotient set, and denoted by H/∼. Since formulas in an equivalence class
are satisfied by the same traces, i.e., they are semantically indistinguishable,
they all behave the same with respect to the specialization relation: if Ψ is a
specialization of Φ, then for any other Ψ ′ ∈ [Ψ] and Φ′ ∈ [Φ] we have that Ψ ′ is a
specialization of Φ′. This motivates the extension of the specialization definition
to the set H/∼.

Definition 5. Let Σ, H, Φ and Ψ as before. We define relation
⊆ H/∼ ×H/∼
as follows: [Ψ]
 [Φ] if Ψ is a specialization of Φ.

Theorem 2. Relation
 is a partial order.

Proof (Sketch). The definition of
 grounds on the language inclusion ⊆ relation,
hence its reflexivity, antisymmetry and transitivity properties trivially follow
from those of ⊆, which is a partial order for any set.

Declarative Process Models: Different Ways to Be Hierarchical 113

This result establishes that
 induces a hierarchy among equivalence classes,
which can be used to order HiDec processes, from the more “permissive” ones,
i.e., those that allow for more behaviors, to the “stricter” ones, which accept
only few traces.

We notice that equivalence classes are countably infinite and that there is
always a least element Ψ�, i.e., the most specialized process which does not allow
for any behavior (L(Ψ�) = ∅). Also, for any two processes Φ and Ψ one of the
following holds:

1. [Ψ]
 [Φ] meaning that Ψ is more restrictive than Φ (or, equivalently, Φ is
more permissive than Ψ);

2. the other way around;
3. both [Φ]
 [Ψ] and [Ψ]
 [Φ] meaning that Φ ∼ Ψ (or, equivalently [Φ] = [Ψ]),

i.e., they belong to same equivalence class; y
4. they are incomparable, because neither [Φ]
 [Ψ] nor [Ψ]
 [Φ] hold.

Example 1. The LA process in Sect. 4 is parent of both ML and FCL process,
namely, [ML]
 [LA] and [FCL]
 [LA], and ML and FCL are incomparable. Also,
FCL and FCLRed belongs to the same equivalence class, i.e., [FCL] = [FCLRed].

Notice that in HiDec we can express unsatisfiable processes, which all belong
to the most restrictive [⊥] equivalence class (no trace is accepted), but the [�]
class is missed, as there is no way to describe processes accepting all traces.

We conclude the section by remarking that relation
 is decidable. Indeed,
checking whether [Ψ]
 [Φ] amounts to checking if Ψ logically implies Φ, which
is known to be a Pspace-complete problem [3].

On Process Rewriting. Once the equivalence relation ∼ on H has been
defined, one is typically interested in electing a representative of each equiv-
alence class, i.e., a formula which has the same semantic properties of any other
in the same class, but that is different in other aspects. One interesting metric
can be the “compactness” of the formula (which can be simply defined as its
length) or the “understandability” of the process. As pointed out in Sect. 2, the
literature usually considers these two aspects related.

Unfortunately, it is very hard to find a procedure to transform a process
into an equivalent one that is, e.g., more compact, for at least two reasons. The
first one is that there is no effective way to syntactically reduce an ltl for-
mula by being sure it keeps the same semantic properties (apart from the trivial
well-known equivalences, such as ��Φ ∼ �Φ). Existing works in the litera-
ture address the problem specifically for declare formulas either by dropping
redundant constraints [6] or finding ad-hoc “reduction rules” for declare pat-
terns [10]. These works cannot therefore be used for HiDec. Moreover, there
is no guarantee, in general, to find the minimal formula. The second motiva-
tion concerns the intrinsic difficulty of the problem, as each equivalence class
of HiDec (as well as ltl), has in general (countably) infinite cardinality, thus
ruling out any brute-force approach.

Our motivation is foundational: do we really need to transform the syn-
tactic model? declare, HiDec and ltl formulas are just the “front-end” of a
process/dynamic system, and, as such, they are used for modeling purposes only.

114 R. De Masellis et al.

The whole reasoning machinery behind, which is highly affected, performance-
wise, by unnecessary redundancies, actually uses automata. We therefore move
to the semantic level and, as representative of each class, we find the minimal
and unique automaton accepting all and only the traces of that class, and use it
for the actual reasoning tasks. In this way we decouple the representation layer
from the semantic layer and leave the modeler free of choosing the representa-
tion he prefers. We believe that the process’ representation, i.e., the HiDec (or
declare, or ltl) constraints can possibly be redundant, as long as the reasoning
services are guaranteed to be efficient.

By notational abuse, let L(H) be the set of all possible traces that can be
represented by using formulas in H, A the set of all possible automata (we
stress again, on finite traces), A an automaton in A and L(A) the set of traces
recognized by A.

Definition 6. Let A, A′ ∈ A two automata. We say that A and A′ are equiva-
lent, written A ≈ A′ if L(A) = L(A′).

Trivially, ≈ is an equivalence relation, partitioning the set A into equivalence
classes. The quotient set of A by ≈ is A/≈. Notice that we can actually consider
the automaton A for a formula Φ ∈ H as a function A : H → A transforming
formulas into automata.

Theorem 3. Let Φ, Ψ ∈ H. Function A : H → A is an equivalence-preserving
function, i.e., if Φ ∼ Ψ then A(Φ) ≈ A(Ψ). Moreover, for each A′ ∈ [A(Φ)], we
have that L(A′) = L(Φ).

Proof. If Φ ∼ Ψ , then, by Definition 4, L(Φ) = L(Ψ). By the correctness of
automata construction in [3], it follows that L(A(Ψ)) = L(A(Φ)), and hence
A(Ψ) ≈ A(Φ). By Definition 6 and from ≈ being an equivalence relation, it also
follows that L(A′) = L(Φ).

This result allows us to use, as a representative of a class [Φ], the minimum
automaton min(A(Φ)) recognizing the language L(Φ), that can be obtained by
using any automata minimizing algorithm on A(Φ) based on the Myhill-Nerode
Theorem (see, e.g., [8]), which guarantees min(A(Φ)) to be:

– sound, i.e., L(min(A(Φ))) = L(Φ);
– the smallest automaton for L(Φ), i.e., for each A′ ∈ [A(Φ)], |min(A(Φ))| ≤ |A′|

(where |A| measures number of states and transitions) and
– unique, i.e., for each A′ ∈ [A(Φ)], min(A′) = min(A(Φ)) (modulo isomor-

phisms, namely, renaming of states).

Example 2. The (non-trimmed) automaton for the redundant process FCLRed
in Sect. 4 obtained with the algorithm1 in [3], has 14 states and 85 transitions,
while after the minimization, it has 6 states and 24 transitions.

1 An ongoing implementation is available at: https://github.com/RiccardoDeMasellis/
FLLOAT.

https://github.com/RiccardoDeMasellis/FLLOAT
https://github.com/RiccardoDeMasellis/FLLOAT

Declarative Process Models: Different Ways to Be Hierarchical 115

6.3 The Modularization Hierarchy

The last dimension we study is syntactical, and covers the intuitive process/sub-
process relation. We propose a step-by-step methodology to refine a HiDec
process model by specifying its subprocesses, which notably defines a (partial)
order.

Definition 7. Let Σ be an alphabet of activities, and let Φ ∈ H. Process Ψ ∈ H
is a refinement of Φ, written Ψ � Φ, if Ψ can be obtained from Φ by applying
n ≥ 0 refinement steps Φ0 ⇒ . . . ⇒ Φn where:

– Φ0 = Φ and
– Φn = Ψ and
– each Φi i ∈ {1, . . . n − 1} is such that either:

• Φi = Φi−1 ∪ {A ↔ ϕ} with A ∈ Σ(Φi−1) and ϕ ∈ C (recall C is the set
of HiDec constraints as in Definition 2) or
• Φi can be obtained from Φi−1 by applying a partial function ri :
Σ(Φi−1) → C which intuitively substitutes (some) activities occurring in
Φi−1 with a constraint in C.

Abstraction can be defined analogously, with an abstraction step consisting
in either removing a A ↔ ϕ constraint or applying function r−1

i : C → Σ which
substitutes a HiDec constraint with an activity. Intuitively, a process is refined
when a single activity, say A, is “expanded” in a complex subprocess ϕ. Such an
expansion can take place either by adding a constraint A ↔ ϕ2 or by substituting
all occurrences of A with ϕ. This two variants are worth to be discussed. First
of all, we observe that the two procedures are semantically different, as the
following example illustrate.

Example 3. Let Φ = {¬�A}, and let us assume we want to refine A with sub-
process ¬�A. By adding the (unsatisfiable) constraint A ↔ ¬�A, the whole
process Φ becomes unsatisfiable. Conversely, by using the substitution r(A) =
¬�A, the refined process Ψ = {��A} is still satisfiable.

Furthermore, the two choices covers different practical needs. The first option
is more suitable for refining a process with a bottom-up approach, as it follows
the natural human procedure of specifying a process from a more abstract level
to a more specific one, still allowing a comprehensive view of all levels, being
“conservative”. The second one is instead a more “destructive” option for refine-
ment, as, after few steps, the structure of the original process is lost. However,
it is more appropriate for abstraction, as when a complex process contains no
A ↔ ϕ constraints, it can only be abstracted by applying the r−1 function.

The notion of refinement (and abstraction) naturally defines an ordering �
on set H.

Theorem 4. Relation �⊆ H × H is a partial order.
2 To match the intended semantics of the “↔” used for expanding a process, we relax

the assumption of one activity true at the time by leaving out activities occurring in
the left-hand part of double implication constraints, which, after the refinement, do
not intuitively represent activities anymore, but rather “placeholders” or syntactic
“shortcuts” for sub-processes.

116 R. De Masellis et al.

Proof (Sketch). Reflexivity is trivial, given that every process is a refinement of
itself (by applying 0 steps). Transitivity is also immediate since the composition
of refinement steps is a refinement. Antisymmetry is proven by noticing that
each step increases the length of the process. Since processes of different lengths
are necessarily syntactically different, the only way to have Φ � Ψ and Ψ � Φ is
when both refinements consists of 0 steps, thus entailing Φ = Ψ .

Relation � therefore induces a hierarchy among HiDec processes, from the
more “abstract” ones, i.e., those providing a high-level view of the process, to
the more “refined” ones, i.e., those showing the details. We notice that HiDec
allows for expressing countably many syntactically different processes and that
� does not define a greatest nor least element. However, given Φ and Ψ one of
the following holds:

1. Ψ � Φ, that is, Ψ is more refined than Φ (equivalent., Φ more abstract than
Ψ);

2. Φ � Ψ ;
3. both Φ � Ψ and Ψ � Φ hold, hence Φ = Ψ ;
4. they are incomparable, because neither Φ � Ψ nor Ψ � Φ hold.

Example 4. Process RefLA in Sect. 5, obtained from LA by adding the constraint
Decide on Loan ↔ (�Accept Loan → ¬(�Reject Loan)), is therefore a child of LA
according to the modularization hierarchy, i.e., RefLA � LA.

Given a set of processes, a refinement/abstraction hierarchy can be built in
practice: given Φ and Ψ ∈ H, checking whether Ψ � Φ is decidable. Refinement
steps can be indeed seen as grammar production rules which never decrease the
length of the process. Since Σ is finite, to check whether Ψ � Φ we start from Φ,
we apply the production rules in all possible ways and we stop when the current
process exceeds the length of Ψ .

On the Satisfiability of the Refined Process. The refinement relation is
syntactical. As such, it is of interest to study syntactical restrictions on refine-
ments which guarantee semantic properties of the refined processes. One of such
semantic properties may be inheritance itself (see [19] for a similar analysis in
the context of object-oriented systems). Given the lack of space, here we focus
on a more basic yet useful semantic property: satisfiability. Given Ψ � Φ, are
there straightforward restrictions on refinements that guarantee the (semantic)
satisfiability of Ψ? We provide a negative answer.

Definition 8. Let Φ, Ψ ∈ H and let Ψ be a refinement of Φ, i.e., Φ0 ⇒ . . . ⇒ Φn,
with Φ0 = Φ and Φn = Ψ . We define the set of constraints introduced by the
refinement as the set Δ =

⋃
i∈0,...n Δi where Δ0 = ∅ and each Δi with i ∈ 1 . . . n

is the set of constraints (in C) introduced by the i − th refinement step, namely:

– Δi = ϕ if the step added a formula A ↔ ϕ to Φi or
– Δi = �(ri), where �(ri) is the image of ri, otherwise.

As a first remark, we observe that the satisfiability of both Φ and Δ is
not a sufficient condition to establish the satisfiability of Ψ , as the following
counterexample shows.

Declarative Process Models: Different Ways to Be Hierarchical 117

Example 5. Let Φ = {¬�A,�B} and Ψ = {¬�A,�(�A))} obtained from Φ by
applying one refinement step with r(B) = �A. Clearly, Φ is satisfiable, as well as
Δ = {�A}, but Ψ is not.

This is not surprising, as, intuitively, new constraints in Δ may generate inconsis-
tencies with other constraints in the original process Φ. It is also interesting that
the unsatisfiability of some constraints in Δ does not entail the unsatisfiability
of Ψ .

Example 6. Let Φ = {�A,¬�B} and Ψ = {�A,¬�B,B ↔ (�C ∧ ¬�C)}. Set
Δ = {�C ∧ ¬�C} is unsatisfiable, but Ψ is not, as it is satisfied by every trace
that eventually contains A but never contains B (which would imply the incon-
sistency).

Given the above results, we investigate a reasonable restrictions on refine-
ments. The intuition suggests that inconsistencies are typically generated by
adding constraints which include activities that are already mentioned in other,
existing, constraints. We follow this idea and study special refinements in which
each refinement step talk about “fresh” activities only, i.e., activities not that do
not appear where else in the process, in order to understand if this is a sufficient
condition to guarantee the satisfiability of the refined process. Unfortunately,
this is not the case, as the following Theorem prove.

Theorem 5. Let Φ and Ψ as in Definition 8. Let Φ and each Δi be satisfiable
and such that for each i �= j we have Σ(Δi)∩Σ(Φ) = ∅ and Σ(Δi)∩Σ(Δj) = ∅.
Then Ψ can be unsatisfiable.

Proof. By using the r function is easy to nest temporal operators to generate a
formula that can only be satisfied by a trace where two (or more) activities must
be true at the same time, which clashes with the assumption of only one activity
performed at the time (see Sect. 3). An example follows. Let Φ = {¬�A,¬�B}
and let Ψ = {¬�(¬�C),¬�(¬�D)} obtained from Φ by using the refinement
function r(A) = ¬�C and r(B) = ¬�D. Using the well-known equivalence rules
we get Ψ = {��C,��D}, which is true only if in the last instant both C and D
are true.

7 Concluding Remarks

The formal investigation about declarative hierarchies carried out in this work
allows us to provide a number of interesting results. First of all, the inheri-
tance, rewriting and modularization dimensions, widely investigated for proce-
dural models, are tailored to fit the declarative setting, thus providing a com-
prehensive perspective on hierarchical dimensions on declarative processes. We
concretize such a conceptual view in HiDec, a language extending declare
that, beyond the formalization of inheritance, rewriting and modularization,
supports the following results. The mathematical definition of the inheritance
dimension based on logical implication allows us to carry any formal prop-
erty entailed by a specialized process to all its parents, and provide a concrete
way for optimizing reasoning tasks on redundant models while preserving the
representation designed by the modeler. Finally, the definition of refinement

118 R. De Masellis et al.

(and abstraction) offers an actual methodology to refine (abstract) any HiDec
model, which is an essential feature when dealing with complex processes.

As future work, we plan to empirically investigate a suitable graphical nota-
tion for specifying modular HiDec processes, which is only sketched here, as well
as to develop a tool for supporting modelers in defining reduction/abstraction
steps.

References

1. Basten, T., van der Aalst, W.M.P.: Inheritance of behavior. J. Log. Algebr. Pro-
gram. 47(2), 47–145 (2001)

2. Basu, A., Blanning, R.W.: Synthesis and decomposition of processes in organiza-
tions. Inf. Syst. Res. 14(4), 337–355 (2003)

3. De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F.M., Montali, M.: Monitor-
ing business metaconstraints based on LTL and LDL for finite traces. In: Sadiq,
S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 1–17. Springer,
Heidelberg (2014)

4. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on finite traces:
Insensitivity to infiniteness. In: Proceedings of the AAAI 2014, pp. 1027–1033
(2014)

5. Burattin, A., Maggi, F.M. Sperduti, A.: Conformance checking based on
multi-perspective declarative process models. Expert Syst. Appl. (2016).
http://www.sciencedirect.com/science/article/pii/S0957417416304390, http://dx.
doi.org/10.1016/j.eswa.2016.08.040

6. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Ensuring model consistency
in declarative process discovery. In: Motahari-Nezhad, H.R., Recker, J., Weidlich,
M. (eds.) BPM 2015. Lecture Notes in Computer Science, vol. 9253, pp. 144–159.
Springer, Heidelberg (2015)

7. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013)

8. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley Longman Publishing Co. Inc., Boston
(2006)

9. Kock Jr., N.F., McQueen, R.J.: Product flow, breadth and complexity of business
processes: an empirical study of 15 business processes in three organizations. Bus.
Process Re-eng. Manag. J. 2(2), 8–22 (1996)

10. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: A knowledge-based integrated
approach for discovering and repairing declare maps. In: Salinesi, C., Norrie, M.C.,
Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433–448. Springer, Heidelberg
(2013)

11. Malone, T.W., Crowston, K., Lee, J., Pentland, B., Dellarocas, C., Wyner, G.,
Quimby, J., Osborn, C.S., Bernstein, A., Herman, G., Klein, M., O’Donnell, E.:
Tools for inventing organizations: Toward a handbook of organizational processes.
Manage. Sci. 45(3), 425–443 (1999)

12. Mendling, J., Reijers, H.A., Cardoso, J.: What makes process models understand-
able? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 48–63. Springer, Heidelberg (2007)

13. Moody, D.L.: The “Physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE TSE 35(6), 756–779 (2009)

14. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

http://www.sciencedirect.com/science/article/pii/S0957417416304390
http://dx.doi.org/10.1016/j.eswa.2016.08.040
http://dx.doi.org/10.1016/j.eswa.2016.08.040

Declarative Process Models: Different Ways to Be Hierarchical 119

15. Reijers, H.A., Mendling, J.: Modularity in process models: review and effects. In:
Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp.
20–35. Springer, Heidelberg (2008)

16. La Rosa, M., van der Aalst, W.M., Dumas, M., Milani, F.P.: Business process
variability modeling: a survey. Technical report (2013). http://eprints.qut.edu.au/
61842/

17. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction tech-
niques. Inf. Syst. 25(2), 117–134 (2000)

18. Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: A framework for efficiently
mining the organisational perspective of business processes. Decis. Support Syst.
89, 87–97 (2016)

19. Schrefl, M., Stumptner, M.: Behavior-consistent specialization of object life cycles.
ACM Trans. Softw. Eng. Methodol. 11(1), 92–148 (2002)

20. Schunselaar, D.M.M., Maggi, F.M., Sidorova, N.: Patterns for a log-based strength-
ening of declarative compliance models. In: Derrick, J., Gnesi, S., Latella, D., Tre-
harne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 327–342. Springer, Heidelberg
(2012)

21. Schunselaar, D.M.M., Maggi, F.M., Sidorova, N., van der Aalst, W.M.P.: Config-
urable declare: designing customisable flexible process models. In: Meersman, R.,
et al. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 20–37. Springer, Heidelberg
(2012)

22. Sharp, A., McDermott, P.: Workflow Modeling: Tools for Process Improvement
and Application Development, 1st edn. Artech House Inc., Norwood (2001)

23. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data Knowl.
Eng. 66(3), 438–466 (2008)

24. Wynn, M.T., Verbeek, H.M.W., van der Aalst, W.M.P., ter Hofstede, A.H.M.,
Edmond, D.: Soundness-preserving reduction rules for reset workflow nets. Inf.
Sci. 179(6), 769–790 (2009)

25. Wynn, M.T., Verbeek, H.M.W.E., van der Aalst, W.M.P., ter Hofstede, A.H.M.,
Edmond, D.: Reduction rules for YAWL workflows with cancellation regions and
or-joins. Inf. Softw. Technol. 51(6), 1010–1020 (2009)

26. Zeising, M., Schönig, S.S., Jablonski, S.: Towards a common platform for the sup-
port of routine and agile business processes. In: CollaborateCom 2014, 94–103
(2014)

27. Zugal, S., Soffer, P., Haisjackl, C., Pinggera, J., Reichert, M., Weber, B.: Inves-
tigating expressiveness and understandability of hierarchy in declarative business
process models. Softw. Syst. Model. 14(3), 1081–1103 (2015)

http://eprints.qut.edu.au/61842/
http://eprints.qut.edu.au/61842/

	Declarative Process Models: Different Ways to Be Hierarchical
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Conceptual Investigation
	5 HiDec: Hierarchical Declarative Processes
	6 Hierarchies in Declarative Models
	6.1 The Inheritance Hierarchy
	6.2 The Rewriting Hierarchy
	6.3 The Modularization Hierarchy

	7 Concluding Remarks
	References

