
Deriving Consistent GSM Schemas
from DCR Graphs

Rik Eshuis1, Søren Debois2,3(B), Tijs Slaats2,4, and Thomas Hildebrandt2

1 School of Industrial Engineering, Eindhoven University of Technology,
Eindhoven, The Netherlands

h.eshuis@tue.nl
2 IT University of Copenhagen, Copenhagen, Denmark

{debois,tslaats,hilde}@itu.dk
3 Exformatics A/S, Copenhagen, Denmark

debois@exformatics.com
4 Department of Computer Science, University of Copenhagen,

Copenhagen, Denmark

Abstract. Case Management (CM) is a BPM technology for sup-
porting flexible services orchestration. CM approaches like CMMN, an
OMG standard, and GSM, one of CMMN’s core influences, use Event-
Condition-Action rules, which can be inconsistent due to cyclic inter-
dependencies between the rules; repairing such an inconsistent case
management schema is difficult. To avoid the problem of inconsis-
tencies altogether, we provide a technique for automatically deriving
consistent GSM case management schemas from higher-level business
policies defined as DCR graphs, an alternative CM approach. Concretely,
we define a behaviour-preserving mapping that (1) removes the burden
from the modeller of GSM schemas to prove consistency and define the
ordering of rules, (2) provides high-level patterns for modelling GSM
schemas, and (3) gives a way to define a notion of progress (liveness) and
acceptance for GSM instances. The mapping is illustrated by a running
example of a mortgage loan application; and a prototype implementation
available at http://dcr.itu.dk/icsoc16.

1 Introduction

The standard notations for business process modelling and service orchestration
such as BPMN [4] and BPEL [3] are tailored to highly stable and repeatable busi-
ness processes, for which it makes sense to pre-specify an explicit control flow in
terms of classical imperative primitives for sequencing, looping and branching.
However, recently Case Management has emerged as a response to the need for
more flexibility when supporting knowledge workflows [23]. A knowledge work-
flow is characterised by having a more unpredictable sequencing of tasks and
service executions, e.g. depending on the concrete case at hand and its con-
text, individual tasks or service executions may need to be skipped or repeated,
thereby deviating from the “happy path”.

The OMG recently defined the standard Case Management Model and Nota-
tion (CMMN) [2], which takes a declarative approach and places a stronger focus
c© Springer International Publishing Switzerland 2016
Q.Z. Sheng et al. (Eds.): ICSOC 2016, LNCS 9936, pp. 467–482, 2016.
DOI: 10.1007/978-3-319-46295-0 29

http://dcr.itu.dk/icsoc16

468 R. Eshuis et al.

on describing the rules instead of the flow of a process. While CMMN is still
only in its early stages and has no formal semantics yet, it has been highly
influenced by the Guard Stage Milestone (GSM) model [16], which has both a
formal semantics [5,10] and is supported by an open source implementation [14].
Activities, e.g. human tasks or service calls, in GSM are tied to stages. Condi-
tions (“guards”) referring to events and data, govern which stages are open,
hence which activities/services are available, and which goals (“milestones”)
have been met. The constraint language used to specify guards in GSM is a
variant on Event-Condition-Action (ECA) rules.

A particular challenge in the creation of GSM and CMMN Schemas is that the
rules are cascading, i.e., the firing of one rule may require the firing of another in
the same reaction step. To avoid race conditions and infinite cascading, rules are
required to be ordered and consistent. The right ordering and consistency of rules
can however be difficult in practice to obtain for the modeller: It is dangerously
easy to accidentally specify two distinct rules where each trigger the condition of
the other. Recent research has explored both syntactic [5,10] and semantic [13]
approaches to discovering inconsistent rules. However, the question remains how
modellers can repair discovered inconsistencies and how consistent GSM schemas
can be modelled from high-level requirements and business policies.

In the present paper we address and answer this latter question by providing a
mapping from Dynamic Condition Response (DCR) graphs [15] to GSM Schemas
and prove that the resulting schema is always consistent. The DCR graph model
is a formal, declarative case management notation which is implemented in and
supported by an industrial modelling and simulation tool [12,17] and a commer-
cial case management software product [6,8,21]. Compared to GSM and CMMN,
the DCR graph model is centred around the high-level notion of events. An event
can e.g. be the start or end of an activity/service invocation. Five basic relations
between events allow to constraint their temporal ordering and define obligations
before the process can end, e.g. that one event is a condition for another event
to happen, or that an event is required as a response following another event.

The main technical contribution of the present paper is to provide a formal,
semantics-preserving translation from DCR to GSM. This translation is notable
for the following reasons.

1. It proves that any DCR graph has a semantically equivalent GSM schema
(Theorem 1, Corollary 1).

2. It demonstrates how the notion of acceptance of DCR graphs can be recovered
in GSM schemas even though GSM does not have a corresponding primitive
notion (Subsect. 4.4).

3. It provides a method for deriving consistent GSM schemas from a given set of
high-level rules, via formalisation of these rules in a DCR model (Lemma 1).

4. It relates the DCR notation via GSM to the emerging OMG CMMN stan-
dard [2,16].

In particular (3) shows that the present work embodies a potential solution to
the thorny issue of consistency of GSM schemas: Using DCR rule-patterns as

Deriving Consistent GSM Schemas from DCR Graphs 469

a high-level rule-specification mechanism, we can, using the translation, gen-
erate automatically a consistent GSM schema guaranteed to have the same
semantics (1).

Related Work. Both GSM and DCR models are so-called “declarative nota-
tions”, an approach introduced to the BPM community by the DECLARE [1]
notation. Compared to DECLARE, GSM is strongly data-centric, whereas DCR
combines a marking-based operational semantics with a smaller set of declarative
constraints, yet yielding a higher degree of formal expressiveness.

Tentative steps to relating GSM and DCR were taken already at the inception
of DCR graphs [18], but no full mapping has been developed prior to the present
work. DCR models were formally proven to express exactly the union of regular
and ω-regular languages in [7], via an encoding to Büchi automata. Otherwise,
we are unaware of work relating DCR to other languages via formal translations.

GSM models were formalised as Data-Centric Dynamic Systems (DCDS)
in [22], for the purposes of supporting automatic verification. The present work
takes the inverse approach: We use DCR Graphs as a declarative policy lan-
guage from which we can automatically derive consistent GSM models. Closer
to the present work, [11] proposes a semi-automated approach to synthesise
GSM models from UML activity diagrams, which specify the flow of multiple
stateful objects between activities. However, whereas the UML language empha-
sises describing the life-cycles of objects in an imperative way, DCR emphasises
describing in a declarative way compliance rules and policies that activity execu-
tion should adhere to. Finally, [19] provides a translation from Petri nets to GSM
models to enable the use of process mining algorithms (which output Petri nets)
for generating GSM models, while [20] maps GSM models to a public/subscribe
abstraction. These papers do not address repair of inconsistencies.

Overview. In Sect. 2 resp. 3, we recall the formal definitions of DCR graphs
and GSM schemas; we intertwine the formal definitions with a running example
of a mortgage application process from [8]. In Sect. 4, we give the formal trans-
lation from DCR to GSM and prove it is semantics preserving. In Sect. 5, we
conclude. Due to space limitations, proofs have been relegated to the technical
report [9]. A prototype implementation of the translation is available in the DCR
Workbench, available at http://dcr.itu.dk/icsoc16.

2 DCR Graphs

In this Section, we recall the theory of DCR graphs. We exemplify DCR
graphs by giving a model of a mortgage application process based a real-world
process [8]. The purpose of the process is to arrive at a point where a loan
application can be assessed. This requires in turn:

1. Collecting appropriate documentation,
2. collecting a budget from the applicant, and
3. appraising the property.

http://dcr.itu.dk/icsoc16

470 R. Eshuis et al.

The main actor in the process is the caseworker, who collects the documents,
may perform a statistical appraisal of the property, and finally assesses the appli-
cation. The budget needs to be submitted by the customer, then screened by an
intern. The case worker only proceeds to assess the application once the intern
has screened the budget.

If a statistical appraisal is unavailable or undesirable, a mobile consultant
may instead perform an on-site appraisal, however, only one type of appraisal
is required. In particular, if neighbourhood of the property will is marked as
irregular by the IT system, an on-site appraisal is required. An on-site appraisal
requires access to the property and therefore an appointment with the owner.

We shall shortly formalise this process as a DCR graph. First, let us define
exactly what is such a graph:

Definition 1 (DCR Graph [15]). A DCR graph is a tuple (E,R,M) where

– E is a finite set of (labelled) events, the nodes of the graph.
– R is the edges of the graph. Edges are partitioned into five kinds, named and

drawn as follows: The conditions (→•), responses (•→), milestones (→�),
inclusions (→+), and exclusions (→%).

– M is the marking of the graph. This is a triple (Ex,Re, In) of sets of events,
respectively the previously executed (Ex), the currently pending (Re), and the
currently included (In) events.

When G is a DCR graph, we write, e.g., E(G) for the set of events of G, as well
as, e.g., Ex(G) for the executed events in the marking of G.

The mortgage application process is formalised as a DCR graph in Fig. 1.
The events of the process are nodes in the graph. Each event (node) has certain
attributes, indicated graphically on the node: Assess loan application and Budget

screening approve are initially pending, shown by the blue exclamation mark—
they are the initial goals of the process. The label of the event provides both the
role and name of the event. In the present paper all events have unique labels,
so we will identify the event and its label.

Constraints between activities are represented as edges in the graph. DCR
graphs have five kinds of constraints; we shall see all five in this example. First,
conditions. To be screened, the budget must first have been submitted. This is
require by the condition relation (→•) between Submit budget and Budget screening

approve.
Second, milestones. As long as the budget is awaiting screening, the appli-

cation cannot be assessed. The milestone relation (→�) from Budget screening

approve to Assess loan application ensures this.
Third, response. The customer may have an error in his submitted budget

and submit a new one. Even if Assess loan application has already been executed,
the blue response (•→) from Submit budget makes it a requirement to repeat that
assessment. We call such a “required activity” pending.

Unlike the condition relation, an event constrained by a milestone can become
blocked again, for example in our case, if a new budget is submitted then a new

Deriving Consistent GSM Schemas from DCR Graphs 471

Fig. 1. Declarative DCR model of a mortgage application process (Color figure online)

screening is required, denoted by the response relation (•→) from Submit budget

to Budget screening approve. If this occurs, the activity Budget screening approve

becomes pending and the activity Assess loan application becomes blocked again. A
new screening approval of the budget also requires a new assessment, denoted by
the response relation between Budget screening approve and Assess loan application.

There are three more conditions for Assess loan application: Collect documents,
Statistical appraisal and On-site appraisal. However, the two kinds of appraisals
should be mutually exclusive. Hence, the third and fourth relations, inclusions
and exclusion. The red exclusions (→%) between Statistical appraisal and On-site

appraisal mean that when either activity is performed, the other is removed from
the process.

Exclusions are dynamic and can be reverted: When the it system regis-
ters that the property is in an irregular neighbourhood Statistical appraisal is
excluded, On-site appraisal is included by the green arrow (→+) (in case a sta-
tistical appraisal was already performed and removed it), as is Make appraisal

appointment. Make appraisal appointment is a condition for On-site appraisal, but is
initially excluded (denoted by the dashed border) and therefore does not block

472 R. Eshuis et al.

doing an on-site appraisal, only after the IT system marks the neighbourhood
as irregular does it become included and a requirement for the on-site appraisal.

We proceed to give the operational semantics of DCR graphs; to answer the
question: “What does it mean to run a DCR graph”? First, the notion of an
event being enabled, ready to execute.

Notation. For a binary relation → ⊆ X × Y and set Z, we write “→Z” for the
set {x ∈ X | ∃z ∈ Z. x → z}, and similarly for “X →”. For singletons we usually
omit the curly braces, writing →e rather than →{e}.

Definition 2 (Enabled Events). Let G = (E,R,M) be a DCR graph, with
marking M = (Ex,Re, In). We say that an event e ∈ E is enabled and write
e ∈ enabled(G) iff (a) e ∈ In, (b) In ∩ (→•e) ⊆ Ex, and (c) In ∩ (→�e) ⊆ E\Re.
That is, enabled events (a) are included, (b) their included conditions are already
executed, and (c) have no included pending milestones. Note that enabledness
can be determined by considering the marking of the event itself and its imme-
diate conditions and milestones.

The enabled events for the DCR Graph in Fig. 1 are: Submit budget, Collect

documents, Statistical appraisal, On-site appraisal and Irregular neighbourhood.

Definition 3 (Execution). Let G = (E,R,M) be a DCR graph with marking
M = (Ex,Re, In). Suppose e ∈ enabled(G). We may execute e obtaining the
resulting DCR graph (E,R,M′) with M′ = (Ex′,Re′, In′) defined as follows.

1. Ex′ = Ex ∪ e
2. Re′ = (Re\e) ∪ (e•→)
3. In′ = (In\(e→%)) ∪ (e→+)

That is, to execute an event e one must: (1) add e to the set Ex of executed
events; (2) update the currently required responses Re by first removing e, then
adding any responses required by e; and (3) update the currently included events
by first removing all those excluded by e, then adding all those included by e.

Definition 4 (Transitions, Runs, Traces). Let G be a DCR graph. If e ∈
enabled(G) and executing e in G yields H, we say that G has transition on e to
H and write G −→e H. A run of G is a (finite or infinite) sequence of DCR
graphs Gi and events ei such that G = G0 −→e0 G1 −→e1 A trace of G is a
sequence of labels of events ei associated with a run of G. We write runs(G) and
traces(G) for the set of runs and traces of G, respectively

Not every run or trace represents an acceptable execution of the graph: We need
also that every response requested is eventually fulfilled or excluded.

Definition 5 (Acceptance). A run G0 −→e0 G1 −→e1 . . . is accepting iff
for all n with e ∈ In(Gn) ∩ Re(Gn) there exists m ≥ n s.t. either em = e, or
e
∈ In(Gm). A trace is accepting iff it has an underlying run which is.

Acceptance tells us which workflows a DCR graph accepts, its language.

Deriving Consistent GSM Schemas from DCR Graphs 473

Definition 6 (Language). The language of a DCR graph G is the set of its
accepting traces. We write lang(G) for the language of G.

We exemplify the operational semantics of DCR graphs with a run of the model.

1. After executing the event Irregular neighbourhood in Fig. 1 this event is marked
as executed, the event Make appraisal appointment becomes included and the
event Statistical appraisal becomes excluded. Afterwards the event Make appraisal

appointment will be enabled, but the events Statistical appraisal and On-site

appraisal will no longer be enabled; the former because it is no longer included
and the latter because a condition that was previously excluded is now
included.

2. Executing the event Make appraisal appointment will mark it as executed, there-
fore satisfying the condition to On-site appraisal and making this event enabled
again. Executing On-site appraisal will satisfy its condition to Assess loan appli-

cation, but this event will not become included as there is still an unsatisfied
included condition and blocking milestone.

3. Executing Collect documents will satisfy the remaining included condition (note
that the condition from Statistical appraisal is no longer relevant as it was
excluded).

4. Executing Submit budget will satisfy its condition to (and enable) Budget screen-
ing approve, it will also make this event a pending response (but since it already
was a pending response this has no noticeable effect).

5. Executing Budget screening approve will remove it from the set of pending
responses and thereby satisfy the milestone relation to Assess loan application,
enabling it.

6. Finally, executing Assess loan application will remove the pending response on
this event, meaning that there are no pending responses left and making the
graph accepting. Note that it is not required to end the process at this point,
it would for example be possible to execute Submit budget again, once more
requiring Budget screening approve and thereafter Assess loan application.

3 GSM Schemas

In this Section, we recall the formal syntax and semantics of GSM [10]. Since we
focus on GSM features that are similar to DCR graphs, we omit data attributes,
hierarchy, and consider only external events that signify stage completions.

3.1 Syntax

A GSM schema defines the life cycles of artefacts. To simplify the presentation,
we focus on the life cycle of a single artefact here.

Definition 7. A GSM schema is a tuple Γ = (Ev,Stg,Mst, R), where

– Ev is a set of events that can occur; each event is a stage completion event
that refers to a stage in Stg or an internal change event;

474 R. Eshuis et al.

– Stg is a set of stages;
– Mst is a set of milestones;
– R is a set of rules, defined in Definition 8;

GSM schemas are governed by rules, also known as sentries. Rules can refer
to events denoting that a stage or a milestone has changed value. If a is a stage
or a milestone, then +a (resp. −a) denotes that a becomes true (resp. false).
Such changes are generated by the system in performing B-steps, whereas stage
completion events are generated by the environment.

Definition 8. A rule r ∈ R has the form on e if cond then � a, where � ∈
{+,−}. The on part is optional. The event e is either a stage completion event
or a change event +a or −a for some milestone or stage a. The condition cond
is a boolean constraint that only refers to milestones and stages. We call e the
trigger of ϕ and cond the condition of ϕ. The then part signifies the change:
+a means that a becomes true, while −a means that a becomes false. For a rule
r = on e if cond then � a, we let trigger(r) = e, condition(r) = cond, and
action(r) = �a.

A stage or milestone x is referenced by a rule r if x occurs in the on or if
parts. A stage or milestone x is triggered by a rule r if x occurs in the then
part. Note that triggering may be negative, i.e., action a = −x.

To illustrate these definitions, consider the partial GSM schema in Fig. 2 and
the rules in Table 1. The rules define for each stage and each milestone a when
the stage/milestone becomes true +a (odd numbered rules) and false −a (even
numbered rules). Note the inter-dependencies between the rules. For instance, if
rule R5 fires, it enables rule R3.
The GSM fragment expresses that:

– Submit budget is opened as soon as possible, but only once.
– If Submit budget completes, then the milestone Budget submitted is achieved,

stage Submit budget is closed, and the stage Budget screening approve is opened.
– If Budget screening approved completes, then the milestone Budget screening

approve is achieved, and the stage Budget screening approve is closed.

Note that this example GSM fragment is more restrictive than the DCR graph
model, where both Submit budget and Budget screening approve can be executed
repeatedly. A better GSM fragment can be derived from the DCR graph of the
previous Section through the translation presented in the next.

Fig. 2. Part of GSM schema of mortgage application process

Deriving Consistent GSM Schemas from DCR Graphs 475

Table 1. Rules for GSM model in Fig. 2 (not equivalent to Fig. 1)

R1 if true then +Submit budget

R2 on +Budget submitted then −Submit budget

R3 if Budget submitted then +Budget screening approve

R4 if Budget screened then −Budget screening approve

R5 on C:Submit budget then +Budget submitted

R6 on +Submit budget then −Budget submitted

R7 on C:Budget screening approve then +Budget screened

R8 on +Budget screening approve then −Budget screened

3.2 Semantics

A snapshot Σ of a GSM schema is a tuple (S,M), where S ⊆ Stg and M ⊆ Mst.
A stage completion event e is applicable to Σ if e refers to a stage s ∈ S.

The semantics of a GSM schema is event-based: If a stage completion event
occurs in a snapshot, the system takes a B-step in response, in which a set of
“relevant rules” is fired.

Definition 9. (Relevant Rules). Let e be a stage completion event. A rule in
R is relevant for e if it may be fired in the subsequent B-step. The set of relevant
rules Re is defined inductively as follows

– each sentry of the form on e if condition is in Re;
– if a sentry in Re triggers a stage or milestone a, then each sentry that refer-

ences a is in Re.

Each relevant rule that is fired results in a change of the stage or milestone
that is triggered by the rule. To ensure that the rules have maximal effect, the
rules are evaluated in a pre-specified order. A rule r1 is evaluated before r2,
written r1 ≺ r2 if r1 triggers a stage or milestone that is referenced in r2. For
instance, if r1 = on e then +m1 and r2 = on f if m1 then +S2, then r1 ≺ r2
because of m1 triggered by r1 and referenced by r2.

There are two healthiness constraints on GSM schema [10]. First, the induced
≺ ordering must be acyclic. This ensures that when an event e is processed, the
set Re of relevant rules can be evaluated and fired one by one according to the
order specified by ≺, until eventually a snapshot is reached in which no rule is
relevant and can be fired.

Second, the set of Re of relevant rules should not specify contradictory effects,
i.e. there are no two rules in Re such that one rule has +a and the other rule
−a as effect. If the set of rules is consistent, then each stage and milestone will
change at most once during a response to an event (toggle-once property [5]).
Toggle-once can also been ensured by defining a more liberal constraint that is,
however, more intricate [10] and not needed for the purpose of this paper.

476 R. Eshuis et al.

Definition 10. (Consistency). A set Re of relevant rules is consistent if the
induced ≺ ordering is acyclic and the rules do not specify contradictory effects.
A GSM schema Γ has consistent rules if for each event e its set of relevant rules
Re is consistent.

Rules in B-steps are evaluated relative to snapshots Σ and a set I of input
events. We write (Σ, I) |= on e if cond then � a, if e ∈ I and Σ |= cond.

Let (Σ, I) |= r, where r = on e if cond then� a. The effect of rule r on Σ,
denoted apply(Σ, r), is Σ′ = (S′,M ′) where:

– if a ∈ S and � = + then S′ = S ∪ {a} and M ′ = M ;
– if a ∈ S and � = − then S′ = S\{a} and M ′ = M ;
– if a ∈ M and � = + then S′ = S and M ′ = M ∪ {a};
– if a ∈ M and � = − then S′ = S and M ′ = M\{a}.

We next define B-steps.

Definition 11 (B-step, Run [10]). Let Γ = (Ev,Stg,Mst, S,R) be a GSM
schema, let Σ,Σ′ snapshots of Γ , and e a stage completion event that is applica-
ble to Σ, and let Re be the set of relevant rules. The tuple (Σ, e,Σ′) is a B-step
of Γ if there is a sequence Σ0 = Σ,Σ1, Σ2, . . . , Σn = Σ′ of snapshots of Γ , such
that e ∈ StgΣ and each Σi is the result of applying a rule r ∈ Re to Σi−1, so
Σi = apply(Σi−1, r), for each i ∈ [1..n] and the ordering of the applied rules is
compatible with ≺.

A GSM run is a sequence Σ0, Σ1, .., Σn of snapshots interleaved with a
sequence of events e0, e1, .., en such that for each pair Σi, Σi+1 of snapshots,
where i ≥ 0, (Σi, ei, Σi+1).

4 Translating DCR to GSM

We define a translation from DCR graphs to GSM schemas. First, we define how
GSM stages and milestones are derived from a DCR graph. Next, we define how
GSM rules are derived from a DCR graph.

4.1 Defining GSM Stages and Milestones

We first need to interpret the DCR concept of an event in terms of GSM concepts.
The obvious interpretation is to see a DCR event as being similar to a GSM event.
However, each GSM event is either a stage completion event or an internal change
event. Since a DCR event relates to an activity in DCR graphs, we interpret a
DCR event as a GSM stage completion event. The corresponding stage is inferred
from the label of the DCR event. For instance, the DCR event Submit budget
in Fig. 1 translates into a GSM completion event C:Submit budget, which signals
that stage Submit budget has completed.

So each DCR event e maps into a GSM stage se with stage completion event
C:se. We shall arrange our encoding such that an enabled DCR event e has its
corresponding stage se active. Execution of the DCR event will correspond to

Deriving Consistent GSM Schemas from DCR Graphs 477

completion of the stage. We shall see below how a stage se is opened precisely
when e becomes enabled.

Next, we define for a DCR event e, which corresponds to a GSM stage se,
three different milestones. These milestones are needed to capture the different
possible states of that event, according to DCR graphs.

1. An “executed” milestone mexec
e is achieved when the stage se has completed

for the first time. It stays true even after reopening of that stage.
2. A “response” milestone mres

e is false when the stage se must be opened in
the future. When the stage is subsequently opened, it becomes true, i.e., the
response has been given.

3. An “inclusion” milestone minc
e , which is achieved when the corresponding

stage is relevant. If the stage is not relevant, its execution is out of scope.
Inclusion milestones represent varying scopes of the process, depending on
the specific execution.

The use of these milestone is somewhat unconventional, compared to tradi-
tional GSM schemas. They are necessary to have the GSM schema reflect DCR
notions of dynamic change of rules.

4.2 Defining GSM Rules

We first analyse the rules needed for opening and closing stages. A stage se should
be open iff the underlying DCR event e is enabled. We derive the following three
conditions, based on Definition 2.

First, an enabled DCR event e must be included. In the GSM translation,
the milestone minc

e should be achieved. E.g., in Fig. 1 stage On-site appraisal can
only open if milestone On-site appraisalinc is achieved.

Second, for a DCR event e to become enabled, each predecessor event f
of e that is a condition for e must have occurred, but only if f is included.
In the translated GSM schemas, this means that stage se is only opened if
for each DCR constraint f →• e, if the milestone minc

f has been achieved,
then milestone mexec

f has been achieved too. E.g., in Fig. 1 event Make appraisal
appointment is a condition for On-site appraisal. Hence stage On-site appraisal
can only open if milestone Make appraisal appointmentinc is not achieved (corre-
sponding to event Make appraisal appointment not being included) or if milestone
Make appraisal appointmentinc is achieved and Make appraisal appointmentexec is
achieved too. Translating the DCR graph in Fig. 1 leads to stage On-site appraisal
with guard:

On-site appraisalinc

∧ (Make appraisal appointmentinc ⇒ Make appraisal appointmentexec).

Third, for a DCR event e to become enabled, for each predecessor event f of
e that is a DCR milestone for e, if f is included, then f must not be pending, i.e.,
f does not have to be executed in the future. In the translated GSM schemas,

478 R. Eshuis et al.

Table 2. Definition of rule set R

Rule ID Generated by Rule definition

R1 ∀e, f. e →+ f on e then +minc
f

R2 ∀e, f. e →% f ∧ ¬e →+ f on e then −minc
f

R3 ∀e. ¬ (e •→ e) on e then +mres
e

R4 ∀e, f. e •→ f ∧ e �= f on e then −mres
f

R5 ∀e on e then +mexec
e

R6 ∀e if enabled(e) then +se

R7 ∀e if ¬enabled(e) then −se

this means that stage se is only opened if for each DCR constraint f →� e, if
the GSM milestone minc

f has been achieved, then GSM milestone mres
f has been

achieved too (recall that mres
f signifies that stage sf does not have to executed

in the future). For instance, in Fig. 1 event Budget screening approve is a DCR
milestone for Assess loan application. Therefore, stage Assess loan application can
only open if either GSM milestone Budget screening approveinc is not achieved or
if GSM milestones Budget screening approveinc and Budget screening approveres

are both achieved.
Altogether, these three conditions dictate, for a given DCR event e, when the

corresponding stage se should be open. We capture these three conditions for
a DCR event e in the predicate enabled(e), which states under what condition
stage se opens:

enabled(e) = minc
e ∧

∧

f→•e

(minc
f ⇒mexec

f) ∧
∧

f→�e

(minc
f ⇒mres

f)

If the predicate enabled(e) becomes true, stage se opens. If the predicate
enabled(e) is no longer true, stage se needs to close.

Table 2 summarises the rules discussed so far. Rules R1-R5 define when the
milestones minc, mres and mexec are achieved and invalidated, respectively. Rules
R6 and R7 define when stages are opened and closed.

4.3 Formal Translation

Having discussed the ingredients of the translation, we present it in its entirety:

Definition 12. Let G = (E,R,M) be a DCR graph. We define the corresponding
GSM schema �G� = (Ev,Stg,Mst, R) where

– Ev = E;
– Stg = {se | e ∈ E};
– Mst = {mexec

e | e ∈ E} ∪ {minc
e | e ∈ E} ∪ {mres

e | e ∈ E}; and
– rules R are defined as indicated in Table 2.

Deriving Consistent GSM Schemas from DCR Graphs 479

Assume the DCR marking is M = (Ex, In,Re). We define the corresponding
snapshot Σ�G� as follows.

– Σ�G� |= se ⇔ e ∈ enabled(G);
– Σ�G� |= mexec

e ⇔ e ∈ Ex;
– Σ�G� |= minc

e ⇔ e ∈ In;
– Σ�G� |= mres

e ⇔ e /∈ Re.

In words: The events of �G� are simply the DCR events of G. Each such event
has an associated stage se, which is open iff e is enabled in G. Moreover, e also
has associated milestones mexec

e ,minc
e , and mres

e , modelling the executed, included,
and response states of e.

Note that the milestone for response is true iff e does not have a pending
response. This is in accordance with GSM intuition where a milestone is true if
we have achieved some goal; if e is pending, we have yet to achieve that goal.

We prove that the translation preserves DCR semantics. First, the next key
Lemma states that consistency is guaranteed by the translation.

Lemma 1. For any DCR graph G, the rules R of �G� are consistent.

We next show that the encoding both preserves and reflects semantics, i.e., the
GSM Schema �G� has exactly the same behaviour as the DCR graph G.

Lemma 2. Let G be a DCR graph. Then for any event e of G we have

1. If G −→e G′ then Σ�G� −→e Σ�G�′ ; and
2. If Σ�G� −→e Σ′ then there exists exactly one G′ such that G −→e G′ and

�G′� = Σ�G′�.

It follows that trace semantics is preserved:

Theorem 1. Let G be a DCR graph. G has a trace α = e0, e1, . . . iff �G� has a
trace ᾱ = e0, e1,

Proof. By induction on the length of the trace using Lemma 2.

4.4 Accepting Runs

Note that the notion of “accepting run” from DCR does not have a correspondent
in the semantics of GSM, and so cannot be encoded into the GSM semantics:
GSM does not make a distinction between “complete” and “incomplete” runs or
workflows. It is, however, straightforward to transport the notion of acceptance
from DCR to GSM as part of the translation: Simply stipulate that a run is
accepting if whenever at step i a milestone mres

e is not achieved yet minc
e is, then

at some subsequent step j > i either mres
e is achieved or minc

e is not.

480 R. Eshuis et al.

Corollary 1. Let G be a DCR graph. G has an accepting trace α iff ᾱ of
Theorem 1 is accepting in the above sense.

4.5 Prototype

The translation can be improved by removing unnecessary milestones, as
explained in an accompanying technical report [9]. A prototype implementa-
tion of the translation is available at http://dcr.itu.dk/icsoc16. The prototype
allows the user to input a DCR graph G (using existing mechanics of the DCR
Workbench), and produces in response a CMMN 1.1 XML serialisation of the
translated model �G�. For readability, this output is generated in terms of the
trimmed translation, suppressing semantically pointless milestones. As the non-
finalised CMMN 1.1 standard does not support the full rule schemas of GSM,
the output assumes certain extensions, e.g., that the expression language allows
references to the achieved-state of milestones.

5 Conclusion

In this paper we introduced a formal mapping from DCR Graphs to GSM
schemas. We showed that for any DCR Graph, a semantically equivalent GSM
schema exists, and that the notion of acceptance of DCR graphs can be recovered
in GSM schemas. This means that, when extended with the right acceptance cri-
teria, GSM schemas are at least as expressive as DCR graphs1. An important
practical application of the mapping is the possibility of deriving consistent GSM
schemas from a given set of rules formalised in a DCR model, which provides
a clear advantage over existing approaches where consistency of a GSM schema
is typically checked after-the-fact by model checking. It also makes an impor-
tant first step in relating the DCR notation to the CMMN standard, thereby
increasing the industrial applicability of DCR Graphs.

In future work we intend to also develop the reverse mapping from GSM
schemas to DCR Graphs. Because GSM schemas have a strong data-centric
aspect to them, the addition of data concepts to the DCR notation is critical for
obtaining a meaningful such mapping. While some initial work on adding data
to DCR exists [18,21], many questions remain open. In addition the proposed
technique for deriving consistent GSM schemas from a rule-based DCR model
needs to be developed in more detail. Finally, to be able to relate DCR Graphs to
the CMMN standard, a mapping from GSM to CMMN is required. While such
a mapping may appear to be straightforward given the large influence GSM has
had over the development of the standard, a lack of a formally defined semantics
for CMMN presently hampers its development.

1 with unique labels, see comments after Definition 1.

http://dcr.itu.dk/icsoc16

Deriving Consistent GSM Schemas from DCR Graphs 481

References

1. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: towards a truly declarative service
flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

2. BizAgi, et al.: Case Management Model and Notation (CMMN), v1, OMG Docu-
ment Number formal/2014-05-05, Object Management Group, May 2014

3. Web Services Business Process Execution Language (BPEL), Version 2.0 (2007).
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

4. Business Process Model and Notation (BPMN), Version 2.0 (2011). http://www.
omg.org/spec/BPMN/2.0/PDF

5. Damaggio, E., Hull, R., Vacuĺın, R.: On the equivalence of incremental and fixpoint
semantics for business artifacts with guard-stage-milestone lifecycles. Inf. Syst. 38,
561–584 (2013)

6. Debois, S., Slaats, T.: The analysis of a real life declarative process. In: CIDM
2015, pp. 1374–1382 (2015)

7. Debois, S., Hildebrandt, T., Slaats, T.: Safety, liveness and run-time refinement
for modular process-aware information systems with dynamic sub processes. In:
Bjørner, N., Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 143–160. Springer,
Heidelberg (2015)

8. Debois, S., Hildebrandt, T.T., Marquard, M., Slaats, T.: Hybrid process technolo-
gies in the financial sector. In: BPM 2015 (Industry track), pp. 107–119 (2015).
http://ceur-ws.org/Vol-1439/paper9.pdf

9. Eshuis, R., Debois, S., Slaats, T., Hildebrandt, T.: Deriving consistent GSM
schemas from DCR graphs (full version). IT University of Copenhagen (2016).
http://itu.dk/people/debois/tr.pdf

10. Eshuis, R., Hull, R., Sun, Y., Vacuĺın, R.: Splitting GSM schemas: a framework
for outsourcing of declarative artifact systems. Inf. Syst. 46, 157–187 (2014)

11. Eshuis, R., Van Gorp, P.: Synthesizing data-centric models from business process
models. Computing 98(4), 345–373 (2016)

12. Exformatics: Dcrgraphs editor and simulator. http://DCRGraphs.net
13. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Verifying GSM-based business arti-

facts. In: Proceedings of the 2012 IEEE 19th International Conference on Web
Services (ICWS), pp. 25–32. IEEE Computer Society (2012)

14. Heath, F., Vacuĺın, R., Hull, R.: Barcelona: a design and runtime environment for
modeling and execution of artifact-centric business processes. In: Proceedings of
the 9th International Conference on Business Process Management, BPM (2011)

15. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as distrib-
uted dynamic condition response graphs. In: PLACES, pp. 59–73 (2010)

16. Marin, M., Hull, R., Vacuĺın, R.: Data centric BPM and the emerging case man-
agement standard: a short survey. In: Rosa, M., Soffer, P. (eds.) BPM Workshops
2012. LNBIP, vol. 132, pp. 24–30. Springer, Heidelberg (2013)

17. Marquard, M., Shahzad, M., Slaats, T.: Web-based modelling and collabora-
tive simulation of declarative processes. In: Motahari-Nezhad, H.R., Recker, J.,
Weidlich, M. (eds.) BPM. LNCS, vol. 9253, pp. 209–225. Springer, Heidelberg
(2015)

18. Mukkamala, R.R.: A formal model for declarative workflows: dynamic condition
response graphs. Ph.D. thesis, IT University of Copenhagen, June 2012

19. Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery. Int. J. Coop. Inf.
Syst. 24(1) (2015). http://dx.doi.org/10.1142/S021884301550001X

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.omg.org/spec/BPMN/2.0/PDF
http://www.omg.org/spec/BPMN/2.0/PDF
http://ceur-ws.org/Vol-1439/paper9.pdf
http://itu.dk/people/debois/tr.pdf
http://DCRGraphs.net
http://dx.doi.org/10.1142/S021884301550001X

482 R. Eshuis et al.

20. Sadoghi, M., Jergler, M., Jacobsen, H., Hull, R., Vacuĺın, R.: Safe distribution and
parallel execution of data-centric workflows over the publish/subscribe abstraction.
IEEE Trans. Knowl. Data Eng. 27(10), 2824–2838 (2015)

21. Slaats, T., Mukkamala, R.R., Hildebrandt, T., Marquard, M.: Exformatics declar-
ative case management workflows as DCR graphs. In: Daniel, F., Wang, J., Weber,
B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 339–354. Springer, Heidelberg (2013)

22. Solomakhin, D., Montali, M., Tessaris, S.: Formalizing guard-stage-milestone meta-
models as data-centric dynamic systems. Technical report (2012)

23. Swenson, K.D.: Mastering the Unpredictable: How Adaptive Case Management will
Revolutionize the Way that Knowledge Workers Get Things Done. Meghan-Kiffer,
Tampa (2010)

	Deriving Consistent GSM Schemas from DCR Graphs
	1 Introduction
	2 DCR Graphs
	3 GSM Schemas
	3.1 Syntax
	3.2 Semantics

	4 Translating DCR to GSM
	4.1 Defining GSM Stages and Milestones
	4.2 Defining GSM Rules
	4.3 Formal Translation
	4.4 Accepting Runs
	4.5 Prototype

	5 Conclusion
	References

