
Semantic Pattern Mining Based Web Service
Recommendation

Hafida Näım(B), Mustapha Aznag, Nicolas Durand, and Mohamed Quafafou

Aix-Marseille University, CNRS, LSIS UMR 7296, 13397 Marseille, France
hafida.naim@etu.univ-amu.fr,

{mustapha.aznag,nicolas.durand,mohamed.quafafou}@univ-amu.fr

Abstract. This paper deals with the problem of web service recom-
mendation. We propose a new content-based recommendation system.
Its originality comes from the combination of probabilistic topic mod-
els and pattern mining to capture the maximal common semantic of
sets of services. We define the notion of semantic patterns which are
maximal frequent itemsets of topics. In the off-line process, the compu-
tation of these patterns is performed by using frequent concept lattices in
order to find also the sets of services associated to the semantic patterns.
These sets of services are then used to recommend services in the on-line
process. We compare the results of the proposed system in terms of pre-
cision and normalized discounted cumulative gain with Apache Lucene
and SAWSDL-MX2 Matchmaker on real-world data. Our proposition
outperforms these two systems.

Keywords: Web services · Recommendation · Topic models · Formal
concept analysis · Concept lattice · Maximal frequent itemsets

1 Introduction

Web services1 are defined as software systems designed to support interopera-
ble machine-to-machine interaction over a network. They are “loosely coupled,
reusable software components that semantically encapsulate discrete function-
ality and are distributed and programmatically accessible over standard Inter-
net protocols”. Web services are self contained, modular business applications
that have open, internet-oriented and standards based interfaces. The explosion
of web services with identical or similar functionalities over the internet has
become a problem for the users. How can they find the best services that match
their requirements from a large number of web services which have the requested
functionality? Recommendation systems and selection techniques can be used to
overcome this problem and assist users by recommending relevant web services
from a large number of available web services [26].

1 http://www.w3.org/standards/webofservices.

c© Springer International Publishing Switzerland 2016
Q.Z. Sheng et al. (Eds.): ICSOC 2016, LNCS 9936, pp. 417–432, 2016.
DOI: 10.1007/978-3-319-46295-0 26

http://www.w3.org/standards/webofservices

418 H. Näım et al.

Recent research efforts on web service recommendation focus on two
approaches: collaborative filtering and content-based recommendation. Collab-
orative filtering approaches [26,29] are used in almost all recommendation sys-
tems. They find relevant services for the current user by collecting information
from other similar users. For example, a list of services that many users like, can
be used as recommendations for other users that share a large overlap of services
with this list. Content-based approaches [5,7] recommend web services on the
basis of the similarity between the user request and the web service description
(e.g., service functionalities). If the similarity between the user request and a
service is high, this service is then recommended to the user.

In this paper, we propose a new content-based recommendation system. Its
originality comes from the combination of probabilistic topic models and pattern
mining to capture the maximal common semantic of sets of services. To the best
of our knowledge, this is the first time that such approach combining the two
domains is proposed. The core of the system is to identify the services which
are very semantically linked. For this purpose, we defined the notion of semantic
patterns. These latter correspond to maximal frequent itemsets of topics. Top-
ics (or latent factors) correspond to a family of generative probabilistic models
based on the assumption that documents (i.e., service descriptions) are generated
by a mixture of topics where topics are probability distributions on words [23].
Topic models are used as efficient dimension reduction techniques which are able
to capture semantic relationships between word-topic and topic-service [4]. The
maximal frequent itemset discovery computes the maximal sets of items (i.e.,
topics), with respect to set inclusion, that appear together in at least a certain
number of transactions (i.e., services) recorded in a database [12]. The semantic
patterns allow to group together the services which are similar. Indeed, to each
semantic pattern, the services containing this pattern can be associated. The
services of a semantic pattern are very interesting: they are semantically linked
and maximal. In order to compute semantic patterns and the corresponding sets
of services, we used frequent concept lattices [27]. These sets of services are then
stored in a special structure, called MFI-tree [11], in order to save space and
perform quick searches by the recommendation engine. From a specified service,
the recommendation engine uses this tree to find semantically similar services.
The obtained services are then ranked and recommended to the user. For eval-
uation purposes, we conducted experiments on real-world data, and evaluated
the quality of the recommended services. We also compared our system with two
existing approaches: Apache Lucene and SAWSDL-MX2 Matchmaker.

The remainder of this paper is organized as follows. Section 2 provides an
overview of related work. In Sect. 3 we describe in detail our service recommen-
dation system. The experiments and the results are presented in Sect. 4. Finally,
the conclusion and future work can be found in Sect. 5.

2 Related Work

Recommendation systems are assimilated to information filtering systems
because the ideas and the methods are very close. We focus on two main types of

Semantic Pattern Mining Based Web Service Recommendation 419

filtering: content-based filtering and collaborative filtering. The interested reader
can refer to [21] for further information about recommendation systems.

There is a lot of works on recommendation systems especially in the case of
web navigation. So, we present some works in this context before considering the
context of web services. Patterns are particularly used for collaborative filtering.
These systems are based, for instance, on frequent itemsets, maximal frequent
itemsets, clustering, formal concept analysis (i.e., concept lattices) or markov
model [24]. The semantic aspects can be introduced in content-based approaches
by using topic models or ontologies. In [20,25], the authors have computed topic
models. The probabilistic topic model is Latent Dirichlet Allocation (LDA).
They do not use patterns. Let us note that we do not use LDA but Correlated
Topic Model (see Sect. 3.1). A notion of semantic patterns has been proposed
in [14] but the definition does not correspond to ours. They do not consider
topics. A semantic pattern is a path that connects a source type to a target type
through pairs property-type. Our definition is: semantic patterns are maximal
frequent itemsets of topics.

Let us consider the context of web services. Generally, every web service
has a WSDL (Web Service Description Language) document that contains the
description of the service. To enrich web service descriptions, several Seman-
tic Web methods and tools are developed, for instance, the authors of [22] use
an ontology to annotate the elements in web services. Nevertheless, the cre-
ation and maintenance of ontologies may be difficult and involve a huge amount
of human effort [1]. The content-based approaches and/or the non-logic-based
semantic approaches [7,13,17,18] aim to reduce the complexity of the discovery
process by analysing the frequency of occurrence of some concepts and determine
semantics which are implicit in service descriptions. These approaches generally
use techniques such as information retrieval, data mining and linguistic analy-
sis [17]. As the context of web navigation, the collaborative filtering approaches
are widely used in web service recommendation systems [26,28,29]. In [29], the
authors propose a collaborative filtering based approach for making personalized
quality of service value prediction for the service users. In another context, Mehta
et al. [16], propose an architecture for recommendation-based service mediation
in which they take into account two more dimensions of service description:
quality and usage pattern. The usage pattern permits to find applications with
a similar usage pattern to the application making the request and then returns
a recommendation list containing the services used by such applications.

As we can see, recommendation systems can use topic models or ontologies
for considering semantics. Patterns are used especially for collaborative filtering
and for capturing usages. The maximal frequent itemsets are not considered. We
propose a content-based recommendation system leveraging probabilistic topic
models and pattern mining (more precisely, maximal frequent itemset mining).

3 Web Service Recommendation System

In this section, we first give an overview of the proposed system. We then describe
more in detail the different steps of our approach.

420 H. Näım et al.

Fig. 1. Overview of the proposed recommendation system.

The proposed system relies on the notion of topics and semantic patterns.
Topic models are used to capture semantic relationships between word-topic and
topic-service. Semantic patterns capture the maximal common semantic of sets
of services. The services corresponding to semantic patterns are used by the
system. Let us note that this work extends our previous works on probabilistic
web services clustering and discovery based on probabilistic topic models [2,4].

Figure 1 shows the overview of our system with the different steps involved.
As shown in this figure, we can distinguish two kinds of process: online process
and offline process. The different steps of the offline process are listed as follows:
(1) Topics extraction, (2) Semantic patterns extraction. Once all these tasks are
done, we can easily recommend web services from a service selected by the user
in the list of services returned by a discovery system. We note that this is the
only task of the online process.

3.1 Topics Extraction and Cluster Assignments

Topics (or latent factors) are a concept introduced by Probabilistic Topic Mod-
els [6]. They are a family of generative probabilistic models based on the assump-
tion that documents are generated by a mixture of topics where topics are

Semantic Pattern Mining Based Web Service Recommendation 421

probability distributions on words. Topic models are used, in our context, as
efficient dimension reduction techniques, which are able to capture semantic
relationships between word-topic and topic-service interpreted in terms of prob-
ability distributions. In [2,4], we investigated the use of three probabilistic topic
models PLSA, LDA and CTM [6] to extract topics from semantically enriched
service descriptions and propose a probabilistic method for web services clus-
tering and discovery. The results obtained from comparing the three methods
based on PLSA, LDA and CTM showed that the CTM model provides a scal-
able and interoperable solution for automated service discovery and ranking in
large service repositories. In this paper, we use the Correlated Topic Model
(CTM) [6] to extract latent factors from web service descriptions.

After the CTM model is trained, the distribution of textual concepts for
each topic is known and all the services in the dataset can be described as a
distribution of topics (i.e. a vector s = {z1, z2, ..., zK} where each dimension zk
reflects the probability of that service description being generated by sampling
from topic k). Let θ(s) refer to the multinomial distribution over topics in the
service description s and φ(j) refer to the multinomial distribution over concepts
for the topic zj . We create K clusters where K is the number of generated topics
(i.e. a cluster for each topic). The distribution over topics θ(s) for service s is
used to determine which topic best describes the service s. More precisely, if a
probability distribution θ(s) over a specific zj when given a web service s is high,
then the service s can be affected to the cluster Cj . If a service s has more than
one topic, the service will be assigned to each of the clusters corresponding to
these topics [3]. To simplify, we use the multiple topics assignment strategy to
assign a set of topics for each service by selecting a topK topics. Thus, a service
could be assigned to multiple clusters (e.g., the three best fitting clusters). This
will increase the scope of each search. Multiple cluster assignments achieve higher
recommendation accuracy. However, it comes at the cost of increased number of
comparisons and computations (see Sect. 4).

3.2 Semantic Pattern Extraction

In order to define the notion of semantic patterns, we need to introduce some
definitions. A data mining context is denoted by D = (T , I,R) where T is a set of
transactions (i.e., web services), I is a set of items (i.e., topics), and R ⊆ T × I
is a binary relation between transactions and items. Each couple (t, i) ∈ R
denotes the fact that the transaction t is related to the item i (e.g., t contains i).
A transactional database is a finite and nonempty multi-set of transactions.
Table 1 provides an example of such database consisting of 6 transactions (each
one identified by its “Id”) and 8 items (denoted A . . . H). In our context, services
are transactions and topics are items. For each service, we assign the best topics
(see Sect. 3.1). This assignment forms the binary relation R.

An itemset is a subset of I (note that we use a string notation for sets, e.g.,
AB for {A,B}). An itemset is sorted in lexicographic order and is also called
pattern . A transaction t supports an itemset X iff ∀i ∈ X, (t, i) ∈ R. An itemset
X is frequent if the number of transactions which support it, is greater than

422 H. Näım et al.

Table 1. Example of transactional
database.

Id Items

1 A C E G

2 B C E G

3 A C E H

4 A D F H

5 B C F H

6 B C E F H

H
3 4 5 6

1 2 3 4 5 6

C
1 2 3 5 6

A C E
1 3

C E
1 2 3 6

B C E
2 6

C E G
1 2

C E H
3 6

C H
3 5 6

A H
3 4

F H
4 5 6

B C
2 5 6

O

A C E G
1

B C E G
2

A C E H
3

A B C D E F G H
O

B C E F H
6

B C F H
5 6

A D F H
4

A
1 3 4

Fig. 2. Example of concept lattice
(Bd+ is encircled for minsup = 2).

(or is equal to) a minimum threshold value, noted minsup. The set of all-frequent
itemsets is S = {X ⊆ I, |{t ∈ T , ∀i ∈ X (t, i) ∈ R}| ≥ minsup}. The set
of all maximal frequent itemsets (MFI), w.r.t. set inclusion, in D is the
positive border of S, noted Bd+(S), and is equal to {X ∈ S | ∀Y ⊃ X, Y /∈ S}
[15]. Let us take the example of Table 1, if minsup = 2 then the itemset H is
frequent because 4 transactions support it (3, 4, 5 and 6). BG is not frequent
because only 2 supports it. CE is frequent but not maximal because CEH is
also frequent. The set of MFIs is the positive border Bd+(S) and is equal to
{AH,ACE,BCE,CEG,CEH,BCFH}.

A semantic pattern is a maximal frequent itemset of topics. To each
semantic pattern, the transactions (i.e., services) containing this pattern can be
associated. The services of a semantic pattern are very interesting: they are
semantically linked and maximal. Thus, the proposed system uses these services.
The minimum support threshold, minsup, allows to fix the minimum number of
services for each semantic pattern. In order to extract the semantic patterns and
their associated services, we compute the frequent concept lattice. Then, the set
of services corresponding to each semantic pattern is selected and stored in a
special structure called MFI-tree.

Concept Lattice Computation and Positive Border Extraction. Given
D, there is a unique ordered set which describes the inherent lattice structure
defining natural groupings and relationships among the transactions and their
related items. This structure is known as a concept lattice or Galois lattice [10].
Each element of the lattice is a couple (I, T) composed of a set of items (i.e.,
topics, the intent) and a set of transactions (i.e., services, the extent). Each
couple (called formal concept) must be a complete couple with respect to R,
which means that the following mappings (noted f and g) hold. For T ⊆ T and
I ⊆ I, we have: (1) f(T) = {i ∈ I|∀t ∈ T , (t , i) ∈ R} and (2) g(I) = {t ∈ T |∀i ∈

Semantic Pattern Mining Based Web Service Recommendation 423

header table

1
2
3

head of
node−linksname

item

5
6
7
8

root

8

1

(a)

header table

1
2
3

head of
node−linksname

item

5
6
7
8

root

8

1

3

5

(b)

rootheader table

1
2
3

head of
node−links

6

name
item

8
5
6
7
8

8

1

3

55

3

2

5

3

7

8

(c)

Fig. 3. MFI-tree construction.

I , (t , i) ∈ R}. f(T) returns items common to all transactions t ∈ T , while g(I)
returns transactions that have at least all items i ∈ I. The idea of maximally
extending the sets is formalized by the mathematical notion of closure in ordered
sets. The operators h1=f ◦g and h2=g◦f are the Galois closure operators. Let
X be an itemset, if h1(X) = X, then X is a closed itemset. A formal concept is
composed of a closed itemset and of the set of transactions containing this closed
itemset. The frequent concept lattice is formed using the formal concepts
that have at least minsup transactions in their extent. The “bottom” concept
(i.e., (I, ∅)) is kept. Due to the fact that the intents of the frequent formal
concepts form the set of all-frequent closed itemsets [19] and that the set of all-
maximal frequent itemsets is a subset of frequent closed itemsets, we can easily
find Bd+(S) (i.e., the set of semantic patterns) from the frequent concept lattice.
The positive border corresponds to the frequent formal concepts just above the
bottom. Figure 2 presents the concept lattice obtained using the example of
Table 1. The bottom is (A B C D E F G H, ∅). With minsup = 2, the frequent
formal concepts are above the dashed line. The formal concepts corresponding to
the Bd+(S) are encircled. So, the semantic patterns are {AH, . . . , BCFH} and
the corresponding sets of services are {{3, 4}{1, 3}{1, 2}{2, 6}{3, 6}{5, 6}}. Let
us remark that the concepts of Bd+(S) can have more than minsup transactions
in their extent (see Sect. 4.3).

Service Pattern Extraction and MFI-tree Construction. The result of
the previous step is the set of formal concepts corresponding to the Bd+(S) (i.e.,
the set of semantic patterns). The proposed system selects the extents of these
formal concepts to form the sets of services which will be used by the online
recommendation engine. These sets of services are considered as patterns. To
facilitate the recommendation, we store these patterns of services in a variant
of FP-tree (Frequent Pattern tree) called MFI-tree (Maximal Frequent Itemsets
tree) [11]. This allows a space saving and a quick search of the patterns con-
taining a given service by using indexes. Every branch of the tree represents a
pattern. Compression is achieved by building the tree in such way that overlap-
ping patterns share prefixes of the corresponding branch. The tree has a root
labelled with “root”. Children of the root are item prefix subtrees. Each node in

424 H. Näım et al.

the subtree has four fields: item-name, children-list, parent-link and node-link.
All nodes with same item-name are linked together. The node-link points to
the next node with same item-name. A header table is constructed for items in
the MFI-tree. Each entry in the header table consists of two fields, item-name
and head of a node-link. The node-link points to the first node with the same
item-name in the MFI-tree. Let us take a new example (more complete than the
first one) where we have extracted the semantic patterns and then found these
patterns of services: {{1, 8}{1, 3, 5}{2, 3, 5}{3, 5, 7}{3, 5, 8}{2, 3, 6, 8}}. Figure 3
illustrates the construction of the tree. We get the first pattern {1, 8}. It is
inserted into the tree directly (see Fig. 3(a)). We then insert {1, 3, 5} into the
tree (see Fig. 3(b)). Figure 3(c) presents the complete tree.

3.3 Web Service Recommendation Task

From a service s, the proposed system find the services present with s in the
patterns of services computed in the offline process. These services are ranked
and recommended to the user. Algorithm1 present the search of recommended
services from a service s by using the MFI-tree constructed in the previous step.
It returns the items (i.e., services) present in the patterns containing s. The
idea of the algorithm is to use the header table of the tree to access directly to
the different patterns containing the item s. For each node N corresponding to s
(Step 2), we need to find the common prefix (PX) of the patterns (Steps 3 to 8).
It corresponds to go up to the root node via the parent links. Then we find all
the possible ends of the patterns (i.e., the suffixes SX) (Step 10). The items of
the prefix and of the suffixes are merged (Steps 11 and 12) and will be returned
at the end of the algorithm. Let us take an example: the service 5 and the tree
of Fig. 3(c). For the first node corresponding to 5, PX = {1, 3} and SX = {},
we have R = {1, 3}. For the second node, PX = {2, 3} and SX = {}, so we have
R = {1, 2, 3}. For the last node, PX = {3} and SX = {{7}, {8}}. The services
R to recommend are {1, 2, 3, 7, 8}. Let us note that it is possible to recommend
services from a set of services S by intersecting the set of recommended services
obtained for each service s ∈ S.

Once the recommended services are discovered using Algorithm 1, these ser-
vices are ranked in order of their similarity score to the service request. Thus, we
obtain automatically an efficient ranking of the recommended services. In our
approach, we use the proximity measure called Multidimentional Angle (also
known as Cosine Similarity); a measure which uses the cosine of the angle
between two vectors. We calculate the similarity between the service request
and each recommended web service by computing the Cosine Similarity between
a vector containing the service request distribution over topics q and a vector
containing the recommended service’s distribution of topics p. The multidimen-
sional angle between a vector p and a vector q can be calculated using Eq. 1
where t is the number of topics.

Cos(p, q) =
p.q

‖ p ‖ . ‖ q ‖ =
∑t

i=1 piqi
√∑t

i=1 p2i
∑t

i=1 q2i

. (1)

Semantic Pattern Mining Based Web Service Recommendation 425

Algorithm 1. MFI-tree based web service recommendation algorithm
Require:

- s : a service
- T : the MFI-tree containing the patterns of services

Ensure: R: the set of recommended services
1: N ← T.header-table[s]; // node N: head of node links for s
2: while N != null do
3: Parent ← N.parent-link; // parent node of N
4: PX ← ∅; // common prefix
5: while Parent != null do
6: PX ← PX ∪ {Parent.item-name};
7: Parent ← Parent.parent-link;
8: end while
9: SX ← ∅; // set of patterns starting from N

10: findSuffixes(N, ∅, SX); // find patterns starting from N
11: merge(SX); // union of all the patterns contained in SX
12: R ← R ∪ PX ∪ SX; // add services to recommend
13: N ← N.node-link; // next node corresponding to s
14: end while
15: return R;

The multidimensional angle takes values in the interval [0, 1] where 0 indi-
cates no similarity and 1 indicates identical vectors.

4 Evaluation

4.1 Web Services Corpus and Data Preprocessing

The experiments are performed out based on real-world web services obtained
from the WSDL service retrieval test collection called SAWSDL-TC3 2. The
WSDL corpus consists of 1088 semantically annotated WSDL 1.0-based Web
services which cover 9 different application domains. Each web service belongs to
one out of nine service domains named as: Communication, Education, Economy,
Food, Geography, Medical, Military, Travel and Simulation. The dataset contains
42 queries (i.e., requests). A service request is defined as a service that would per-
fectly match the request. Furthermore, a binary and graded relevance set for each
query is provided which can be used in order to compute Information Retrieval
(IR) metrics. The relevance sets for each query consists of a set of relevant ser-
vices and each service s has a graded relevance value relevance(s) ∈ {1, 2, 3}
where “3” denotes high relevance to the query and “1” denotes a low relevance.
Table 2 lists the number of services and requests from each domain.

To manage efficiently web service descriptions, we extract all features that
describe a web service from the WSDL document. Before representing web ser-
vices as a TF-IDF (Text Frequency and Inverse Document Frequency) vectors,

2 http://www.semwebcentral.org/projects/sawsdl-tc.

http://www.semwebcentral.org/projects/sawsdl-tc

426 H. Näım et al.

Table 2. Number of services and queries for each domain.

Domain Services Queries Domain Services Queries

Communication 58 2 Medical 73 1

Economy 358 12 Military 40 1

Education 285 6 Simulation 16 3

Food 34 1 Travel 164 6

Geography 60 10

we need some preprocessing. The objective of this preprocessing is to identify
the textual concepts of services, which describe the semantics of their function-
alities. There are commonly several steps: Features extraction, Tokenization, Tag
and stop words removal, Word stemming and Service Transaction Matrix con-
struction (see [2] for more details). After identifying all the functional terms, we
calculate the frequency of these terms for all web services. We use the Vector
Space Model (VSM) technique to represent each web service as a vector of these
terms. In fact, it converts service description to vector form in order to facilitate
the computational analysis of data. In IR, VSM is identified as the most widely
used representation for documents and is a very useful method for analyzing
service descriptions. The TF-IDF algorithm is used to represent a dataset of
WSDL documents and convert it to VSM form. We use this technique, to rep-
resent a services descriptions in the form of Service Transaction Matrix. In the
service matrix, each row represents a WSDL service description, each column
represents a word from the whole text corpus (vocabulary) and each entry rep-
resents the TF-IDF weight of a word appearing in a WSDL document. TF-IDF
gives a weight wij to every term j in a service description i using the equation:
wij = tfij . log(n

nj
) where tfij is the frequency of term j in WSDL document i,

n is the total number of WSDL documents in the dataset, and nj is the number
of services that contain term j. The observed textual concepts are represented
in a Service Transaction Matrix (STM).

4.2 Protocol and Evaluation Metrics

To compute topics, we use the STM as training data for our implementation of
the CTM model (based on the Blei’s implementation3, which is a C implemen-
tation of CTM using Variational EM for Parameter Estimation and Inference).

We analyse the impacts of the parameters minsup (i.e., the minimum sup-
port threshold) and assign (i.e., number of topic assignments) on the quality
of the recommendations. For some minsup values and for some assign values,
we adopted the following protocol: For the offline part: (1) Computation of the
semantic patterns (by using CHARM-L [27] to generate the frequent concept lat-
tice), (2) Extraction of the patterns of services, (3) Construction of the MFI-tree.

3 http://www.cs.princeton.edu/∼blei/ctm-c/index.html.

http://www.cs.princeton.edu/~blei/ctm-c/index.html

Semantic Pattern Mining Based Web Service Recommendation 427

The steps to simulate the online part are: For each query present in the dataset:
(4) Search the recommended services by using Algorithm 1, (5) Ranking of the
list of recommended services, (6) Evaluation of the quality of the first n recom-
mended services.

In order to compare our web service recommendation system (labelled Topic-
MFI) to two existing systems, Step 4 is redone twice by replacing our system
by a syntax-based approach powered by Apache Lucene4 and a method from
the SAWSDL-MX2 Matchmaker5 hybrid semantic matchmaker for SAWSDL
services, respectively.

In the test collection, we have the queries together with the correct/expected
web services (see Sect. 4.1). Thus, we estimate how well is a recommendation
method by discovering services corresponding to each query in the data. After
that, we compare the returned list of services with the expected one. Finally, we
evaluate the accuracy of the recommendation system by using standard mea-
sures used in IR. Generally, the top most relevant retrieved services are the
main results which are selected and used by the user. Thus, we evaluated the
quality of the first n recommended services by computing Precision at n (Pre-
cision@n) and Normalized Discounted Cumulative Gain (NDCGn). These are
standard evaluation techniques used in IR to measure the accuracy of a search
and matchmaking mechanism.

In our context, Precision@n is a measure of the precision of the service
discovery system taking into account the first n retrieved services. Therefore,
Precision@n reflects the number of services which are relevant to the user query.
The Precision@n for a list of retrieved services is given by Eq. 2 where the list
of relevant services to a given query is defined in the collection.

Precision@n =
|RelevantServices ∩ RetrievedServices|

|RetrievedServices| . (2)

NDCGn uses a graded relevance scale of each retrieved service from the
result set to evaluate the gain, or usefulness, of a service based on its position in
the result list. This measure is particularly useful in IR for evaluating ranking
results. The NDCGn for n retrieved services is given by Eq. 3 where DCGn is the
Discounted Cumulative Gain and IDCGn is the Ideal Discounted Cumulative
Gain.

NDCGn =
DCGn

IDCGn
, DCGn =

n∑

i=1

2relevance(i) − 1

log2(1 + i)
. (3)

The IDCGn is found by calculating the DCGn of the first n returned services.
n is the number of retrieved services and relevance(s) is the graded relevance
of the service in the ith position in the ranked list. The NDCGn values for
all queries can be averaged to obtain a measure of the average performance of
a ranking algorithm. NDCGn values vary from 0 to 1. NDCGn gives higher
scores to systems which rank a search result list with higher relevance first and
penalizes systems which return services with low relevance.

4 http://lucene.apache.org/.
5 http://projects.semwebcentral.org/projects/sawsdl-mx.

http://lucene.apache.org/
http://projects.semwebcentral.org/projects/sawsdl-mx

428 H. Näım et al.

Table 3. Number and size of the patterns obtained for assign-4 (according to minsup).

minsup # patterns of services Avg. size of a pattern

1 307 3.54

2 205 5.01

3 159 6.37

4 137 7.21

5 111 8.71

6 101 9.71

In addition to these metrics, we also compute some statistics (the number of
computed patterns and the average size of a pattern) and we measure the query
response times. All experiments were performed on a personal computer with a
Intel Core2Duo processor, 2.4 GHz, and 6 GB of RAM.

4.3 Results and Discussion

Figure 4 presents the comparaison of average Precision@n values over 42 queries
obtained for our method with different values of minsup (1 to 6) and assign (2 to
10 topics assigned to each service). A low or a high value of assign does not give
the best results. The worst precision is obtained with assign = 7. Our method
gives the higher precision values with assign = 4 (for each minsup values). So,
we investigated more precisely the system when the assign value is equal to 4.

Table 3 shows the number of service patterns obtained and the average num-
ber of services in a pattern, for assign = 4 and minsup varying from 1 to 6.
As we can expected, the more the minsup value is low, the more the number of
patterns is high. The average size of a pattern is more interesting. For instance,
if minsup is equal to 1, a pattern can contain only one service. Nevertheless, we
can observe that the average number of services is higher than the minsup value.
The services are often correlated. Our system is able to find these correlations
and is not restricted to the minsup value.

Figure 5 (left) and (right) present the average Precision@n and NDCG@n
values, respectively. These measures are obtained over all 42 queries for our
method Topic-MFI, ApacheLucene and SAWSDL-MX2 Matchmaker. In both
cases, the results show that Topic-MFI gives a higher average Precision@n and
NDCGn for all 42 queries. In fact, our method perform better than all methods.
The results show that ApacheLucene and SAWSDL-MX2 were unable to find
some of the relevant web services that were not directly related to some of the
requests through keywords or logic descriptions. This reflects that the retrieved
services obtained by our method are specific to the user’s query. ApacheLucene
and SAWSDL-MX2 have a low NDCGn because, as shown in the Precision@n
results, both approaches are unable to find some of the highly relevant services.
The results obtained for our method reflect the accuracy of our recommendation
system.

Semantic Pattern Mining Based Web Service Recommendation 429

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30

Av
er

ag
e

pr
ec

is
io

n
at

 n

Number of services retrieved − MINSUP = 1

Topics assignment 2
Topics assignment 3
Topics assignment 4
Topics assignment 5
Topics assignment 6
Topics assignment 7
Topics assignment 8
Topics assignment 9

Topics assignment 10
 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30

Av
er

ag
e

pr
ec

is
io

n
at

 n

Number of services retrieved − MINSUP = 2

Topics assignment 2
Topics assignment 3
Topics assignment 4
Topics assignment 5
Topics assignment 6
Topics assignment 7
Topics assignment 8
Topics assignment 9

Topics assignment 10

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30

Av
er

ag
e

pr
ec

is
io

n
at

 n

Number of services retrieved − MINSUP = 3

Topics assignment 2
Topics assignment 3
Topics assignment 4
Topics assignment 5
Topics assignment 6
Topics assignment 7
Topics assignment 8
Topics assignment 9

Topics assignment 10
 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30

Av
er

ag
e

pr
ec

is
io

n
at

 n

Number of services retrieved − MINSUP = 4

Topics assignment 2
Topics assignment 3
Topics assignment 4
Topics assignment 5
Topics assignment 6
Topics assignment 7
Topics assignment 8
Topics assignment 9

Topics assignment 10

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30

Av
er

ag
e

pr
ec

is
io

n
at

 n

Number of services retrieved − MINSUP = 5

Topics assignment 2
Topics assignment 3
Topics assignment 4
Topics assignment 5
Topics assignment 6
Topics assignment 7
Topics assignment 8
Topics assignment 9

Topics assignment 10
 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 10 15 20 25 30

Av
er

ag
e

pr
ec

is
io

n
at

 n

Number of services retrieved − MINSUP = 6

Topics assignment 2
Topics assignment 3
Topics assignment 4
Topics assignment 5
Topics assignment 6
Topics assignment 7
Topics assignment 8
Topics assignment 9

Topics assignment 10

Fig. 4. Comparaison of average Precision@n values over 42 queries obtained for our
method with different values of minsup and assign (# topics assigned to each service).

Table 4 presents the average query response times for ApacheLucene,
SAWSDL-MX2 and our method (Topic-MFI) for all 42 queries. As we can see,
Topic-MFI gives a faster query response time than the other search methods.
Our recommendation system is efficient and not time-consuming.

430 H. Näım et al.

Table 4. Average query response times.

Method Avg. query response time (ms)

Topic-MFI 68

ApacheLucene 1163

SAWSDL-MX2 3045

 0.3

 0.4

 0.5

 0.6

 0.7

 5 10 15 20 25 30

Av
er

ag
e

pr
ec

is
io

n
at

 n

Number of services retrieved − Topics assignment = 4

SAWSDL−MX2 Matchmaker
Apache Lucene

TOPIC−MFI (Assign=4, Minsup=1)
TOPIC−MFI (Assign=4, Minsup=2)
TOPIC−MFI (Assign=4, Minsup=3)
TOPIC−MFI (Assign=4, Minsup=4)
TOPIC−MFI (Assign=4, Minsup=5)
TOPIC−MFI (Assign=4, Minsup=6)

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 5 10 15 20 25 30

Av
er

ag
e

N
D

C
G

 a
t n

Number of services retrieved

SAWSDL−MX2 Matchmaker
Apache Lucene

TOPIC−MFI (Assign=4, Minsup=1)
TOPIC−MFI (Assign=4, Minsup=2)
TOPIC−MFI (Assign=4, Minsup=3)
TOPIC−MFI (Assign=4, Minsup=4)
TOPIC−MFI (Assign=4, Minsup=5)
TOPIC−MFI (Assign=4, Minsup=6)

Fig. 5. (Left) Comparaison of average Precision@n values over 42 queries. (Right)
Comparaison of average NDCGn values over 42 queries obtained for our method Topic-
MFI and other baseline methods.

5 Conclusion

We have introduced a new content-based recommendation system leveraging
probabilistic topic models and pattern mining. Its originality comes from the
combination of the two domains for capturing the maximal common semantic
of sets of services. For this purpose, we defined the notion of semantic patterns
which are the maximal frequent itemsets of topics. To compute these patterns
and the corresponding sets of services, we used frequent concept lattices. In
order to save space and perform quick searches among the computed sets of
services, the system stores them in a special structure, called MFI-tree. The rec-
ommendation engine uses this tree to find services from a specified service. The
obtained services are ranked and recommended to the user. The experimental
results obtained on real-world web services show that our system outperforms
ApacheLucene and SAWSDL-MX2 Matchmaker. In future work, we will use the
approximation of frequent itemset border [8,9] in order to extend our system and
recommend supplementary services based on approximate semantic patterns.

References

1. Atkinson, C., Bostan, P., Hummel, O., Stoll, D.: A practical approach to web
service discovery and retrieval. In: ICWS, pp. 241–248 (2007)

2. Aznag, M., Quafafou, M., Jarir, Z.: Correlated topic model for web services ranking.
IJACSA 4(6), 283–291 (2013)

Semantic Pattern Mining Based Web Service Recommendation 431

3. Aznag, M., Quafafou, M., Jarir, Z.: Leveraging formal concept analysis with topic
correlation for service clustering and discovery. In: ICWS (2014)

4. Aznag, M., Quafafou, M., Rochd, E.M., Jarir, Z.: Probabilistic topic models
for web services clustering and discovery. In: Villari, M., Zimmermann, W.,
Lau, K.-K. (eds.) ESOCC 2014. LNCS, vol. 8745, pp. 19–33. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40651-5 3

5. Blake, M.B., Nowlan, M.F.: A web service recommender system using enhancing
syntactical matching. In: ICWS (2007)

6. Blei, D.M., Lafferty, J.D.: A correlated topic model of science. Ann. Appl. Stat. 1,
17–35 (2007)

7. Cassar, G., Barnaghi, P., Moessner, K.: Probabilistic matchmaking methods for
automated service discovery. TSC 7(4), 654–666 (2013)

8. Durand, N., Quafafou, M.: Approximation of frequent itemset border by computing
approximate minimal hypergraph transversals. In: Bellatreche, L., Mohania, M.K.
(eds.) DaWaK 2014. LNCS, vol. 8646, pp. 357–368. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-10160-6 32

9. Durand, N., Quafafou, M.: Frequent itemset border approximation by dualiza-
tion. In: Hameurlain, A., Küng, J., Wagner, R., Bellatreche, L., Mohania, M.
(eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXVI.
LNCS, vol. 9670, pp. 32–60. Springer, Heidelberg (2016)

10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical foundations.
Springer, Heidelberg (1999)

11. Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using FP-Trees.
TKDE 17(10), 1347–1362 (2005)

12. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and
future directions. Data Min. Knowl. Disc. 15, 55–86 (2007)

13. Ma, J., Zhang, Y., He, J.: Efficiently finding web services using a clustering seman-
tic approach. In: CSSSIA, pp. 1–8 (2008)

14. Maccatrozzo, V., Ceolin, D., Aroyo, L., Groth, P.: A semantic pattern-based recom-
mender. In: Presutti, V. (ed.) ESWC 2014. CCIS, vol. 475, pp. 182–187. Springer,
Cham (2014)

15. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Min. Knowl. Disc. 1(3), 241–258 (1997)

16. Mehta, B., Niederée, C., Stewart, A., Muscogiuri, C., Neuhold, E.J.: An architec-
ture for recommendation based service mediation. In: Bouzeghoub, M., Goble, C.,
Kashyap, V., Spaccapietra, S. (eds.) ICSNW 2004. LNCS, vol. 3226, pp. 250–262.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30145-5 15

17. Mohebbi, K., Ibrahim, S., Khezrian, M., Munusamy, K., Tabatabaei, S.G.H.:
A comparative evaluation of semantic web service discovery approaches. In: iiWAS,
pp. 33–39 (2010)

18. Nayak, R., Lee, B.: Web service discovery with additional semantics and clustering.
In: WI, pp. 555–558 (2007)

19. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association
rules using closed itemset lattices. Inf. Syst. 24(1), 25–46 (1999)

20. Mao, Q., Feng, B., Pan, S.: Modeling user interests using topic model. JATIT
48(1), 600–606 (2013)

21. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook,
1st edn. Springer, New York (2011)

22. Sivashanmugam, K., Verma, A., Miller, J.: Adding semantics to web services stan-
dards. In: ICWS, pp. 395–401 (2003)

http://dx.doi.org/10.1007/978-3-642-40651-5_3
http://dx.doi.org/10.1007/978-3-319-10160-6_32
http://dx.doi.org/10.1007/978-3-540-30145-5_15

432 H. Näım et al.

23. Steyvers, M., Griffiths, T.: Latent Semantic Analysis: A Road to Meaning, chap.
Probabilistic topic models (2007)

24. Suguna, R., Sharmila, D.: An efficient web recommendation system using collabo-
rative filtering and pattern discovery algorithms. IJCA 70(3), 37–44 (2013)

25. Xu, G., Zhang, Y., Yi, X.: Modelling user behaviour for web recommendation using
LDA model. In: WI-IAT, pp. 529–532 (2008)

26. Yao, L., Sheng, Q.Z., Ngu, A.H.H., Yu, J., Segev, A.: Unified collaborative and
content-based web service recommendation. TSC 8(3), 453–466 (2015)

27. Zaki, M., Hsiao, C.J.: Efficient algorithms for mining closed itemsets and their
lattice structure. TKDE 17(4), 462–478 (2005)

28. Zheng, Z., Ma, H., Lyu, M.R., King, I.: WSRec: a collaborative filtering based web
service recommender system. In: ICWS, pp. 437–444 (2009)

29. Zheng, Z., Ma, H., Lyu, M.R., King, I.: QoS-aware web service recommendation
by collaborative filtering. TSC 4(2), 140–152 (2011)

	Semantic Pattern Mining Based Web Service Recommendation
	1 Introduction
	2 Related Work
	3 Web Service Recommendation System
	3.1 Topics Extraction and Cluster Assignments
	3.2 Semantic Pattern Extraction
	3.3 Web Service Recommendation Task

	4 Evaluation
	4.1 Web Services Corpus and Data Preprocessing
	4.2 Protocol and Evaluation Metrics
	4.3 Results and Discussion

	5 Conclusion
	References

