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Abstract. Shared ledger technologies, as exemplified by Blockchain,
provide a new framework for supporting business collaborations that
is based on having a high-reliability, shared, trusted, privacy-preserving,
nonrepudiable data repository that includes programmable logic in the
form of “smart contracts”. The framework has the potential to dramati-
cally transform business collaboration across numerous industry sectors,
including finance, supply chain, food production, pharmaceuticals, and
healthcare. Widespread adoption of this technology will be accelerated
by the development of business-level languages for specifying smart con-
tracts. This paper proposes that data-aware business processes, and in
particular the Business Artifact paradigm, can provide a robust basis
for a shared ledger Business Collaboration Language (BCL). The funda-
mental rationale for adopting data-aware processes is that shared ledgers
focus on both data and process in equal measure. The paper examines
potential advantages of the artifact-based approach from two perspec-
tives: conceptual modeling, and opportunities for formal reasoning (veri-
fication). Broad research challenges for the development, understanding,
and usage of a shared ledger BCL are highlighted.

1 Introduction

The shared ledger paradigm, as exemplified by Blockchain, was first introduced
in Bitcoin [39] to enable a cryptocurrency, but a number of industries are see-
ing strong potential for generalizations that will dramatically increase the effi-
ciency of many different kinds of business collaboration. A leading initiative
towards diverse applications of Blockchain is Hyperledger, a consortium led by
the Linux Foundation that includes a global family of partners from finance,
banking, Internet of Things, supply chains, manufacturing and Technology [31];
other initiatives include Etherium, R3, and Digital Asset. Widespread adop-
tion of this technology will be accelerated by the development of business-level
languages for specifying smart contracts, i.e., the programs that run on shared
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ledgers. This paper proposes that data-aware business processes [29], and in par-
ticular the Business Artifact paradigm [32,41], can provide a robust basis for a
shared ledger Business Collaboration Language (BCL).

The core value of Blockchain for business collaboration is that it provides
high-reliability, shared, trusted, privacy-preserving, non-repudiable data reposi-
tories. This is achieved through families of clever, intricate algorithms relating to
encryption, distributed computing, and consensus. Data updates to Blockchains
obey the “ACID” transactional properties of classical database systems. Fur-
thermore, updates to a blockchain can trigger execution of smart contracts, so
blockchains are reminiscent of active databases. Using a blockchain a group of
businesses can share data and invoke agreed upon processing in connection with
a collaboration in a secure and selective manner. In the absence of Blockchain
technology, most multi-party business collaborations are implemented in the
form of multiple binary relationships. This leads to more intricate modeling and
programming, and increased cost of tracking down the root causes of issues and
disagreements. In contrast, blockchains hold the promise of supporting a much
more holistic view of business collaborations, and can give immediate trans-
parency to all relevant stakeholders if conflicts arise. They can also simplify the
use of analytics to understand collaborations in the aggregate.

We recall the principle of “logical separation” from relational databases,
which helps to insulate relational database design and query langauges such
as SQL from the physical storage of data on disk. By analogy, we believe that a
shared ledger BCL can be designed based on abstractions suitable for business
leaders and analysts, and can be largely insulated from Blockchain implemen-
tation details. There is early evidence that this is quite feasible: reference [48]
shows how the business process language BPMN can be mapped into executable
smart contracts on the Ethereum Blockchain. This suggests that a BCL based
on various other abstractions can also be successfully mapped onto Blockchain.

A Business Collaboration Language will be a form of domain specific lan-
guage. As such, we expect that developing and maintaining smart contracts
with a BCL will be substantially faster and cheaper than using the base smart
contract languages on blockchains, e.g., Turing complete languages such as Go
or Java. Other domain specific languages for Blockchain include R3’s Corda
[10] and Digital Asset’s DAML [21], which focus on financial transactions, and
Ethereum’s Solidity [45], whose focus is more general.

Conceptually speaking, the data stored in a blockchain can provide a logical
“anchor” for a collaboration between businesses. Indeed, in typical blockchain-
enabled collaborations it is assumed that all business-relevant data shared
between two or more of the participants will be placed onto and persisted in
the blockchain (or an auxiliary data store). This brings a fundamental focus
on data that is not traditionally part of process-centric BPM paradigms, such
as the BPMN standard including the BPMN constructs for conversations and
choreography [9].

The data-centricity of Blockchain suggests that we should base a Business
Collaboration Language on the field of data-aware business processes [29], that is,
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business processes or workflows that incorporate data as a first-class citizen along
with process. This data-aware approach was introduced in 2003 by the Business
Artifact model [32,41] (see also [8,11,14,18,30]), and is also found in modern
case management [2,37], and in Business Objects [33,43,44]). The core construct
for these approaches focuses on key conceptual entities that progress through
business operations. Called business artifacts (or cases or business objects), these
entities are modeled using both an information model and a lifecycle model. A
classical example of a business artifact type is the concept of Fedex delivery, not
the package itself, but the overall phenomenon, starting with a customer request
to ship something, details about the shipping and delivery, and also details about
payment. For each such delivery, the corresponding business artifact will hold
a growing data set, and the progression of the artifact will follow one of the
possible paths in the lifecycle model. When modeling a typical scope of business
operations, a handful of interacting business artifact types will be used.

From the perspective of Business Process Management (BPM) and the field of
services interoperation (including orchestration and choreography), Blockchain
brings unique characteristics. It is logically similar to an orchestrator, in that it
can serve as a hub that communicates with each participant in a collaboration.
But while orchestrators are typically pro-active and controlling, collaborations
might use a blockchain in a more re-active manner. That is, the blockchain might
be relatively passive and wait for new updates from participants before producing
more data and perhaps alerting other participants of changes. In this sense, a
blockchain may act more as a facilitator, similar to the loosely coupled style of
choreographies. The Artifact-Centric Services Interoperation (ACSI) approach
of [7,8,27,34], developed before the emergence of Blockchain, enables this style
of collaboration and provides mechanisms for fine-grained control of data privacy
and sharing, and of permissions to make updates or invoke services.

The goal of this paper is to examine the suitability of constructs from business
artifacts and ACSI as the foundation for a shared ledger BCL. We focus on the
core conceptual abstractions of business artifacts, rather than detailed language
design. We consider the viability of using business artifacts as the basis for a BCL
from two perspectives: conceptual modeling (Sect. 4) and support for informal
and formal reasoning (Sect. 5). A brief overview of Blockchain is presented in
Sect. 2 and some research challenges are outlined in Sect. 6.

2 Short Overview of Blockchain: The Logical Level

There are several introductions to Blockchain and shared ledger technology avail-
able (e.g., [22,31,48]). We provide here a brief overview that focuses on the logical
level rather than on, e.g., encryption and consensus. This logical level provides
the basis upon which a BCL will be designed, implemented, and used.

While there are variations, a common set of core elements is shared across
most blockchain implementations. There are two classes of logical computational
actors that perform processing: peers that form a blockchain network (i.e., set
of computational actors working together to support a given blockchain deploy-
ment), and participants that are executing on behalf of the businesses (or other
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organizations) that are collaborating by using the network. Each participant con-
nects to a single peer, that serves as the connection point between the participant
and the network.

In traditional blockchain networks it is assumed that the organizations run-
ning the peers have no trust relationship established between them. The encryp-
tion, consensus, and other algorithms of blockchain guarantee trusted outcomes
in this context. Some recent blockchain initiatives, including Hyperledger [31],
are constructed to also enable contexts where groups of businesses have trust
relationships that exist outside of the blockchain network (e.g., a consortium
of banks, or a large retailer and all of its suppliers and transporters). In such
contexts the consensus algorithm may work with a subset of the peers, rather
than with all of the peers.

For this paper we are primarily concerned with the application-level data and
processing in a blockchain network, and largely ignore the additional data and
processing used to support encryption, consensus, and the like. At the applica-
tion level the basic unit of executable code on a blockchain is called a smart
contract (or a chaincode). In the context of business collaborations, it is typical
that a smart contract is focused on progressing some type of collaboration (or a
part of one) towards completion. A service invocation corresponds to recording a
particular step of a collaboration onto the blockchain and potentially computing
some additional values and/or generating alerts for interested participants. For
example, a smart contract might manage various activities associated with fulfill-
ing a Purchase Order, and one service invocation might focus on an update that
says, intuitively, that one line item of the Order has been succefully received.

The basic unit of application-level work on a blockchain is a transaction.
A transaction is initiated by a single participant that sends a service invoca-
tion to an identified smart contract running in the blockchain. (Technically,
the invocation might be against an already running smart contract instance,
or might deploy a new instance.) The service invocation is digitally signed by
the requestor, which allows tracing of who invoked which transactions. Speaking
intuitively, in workflow terms a transaction includes automated processing that
results from the service invocation; it will not include inputs or activity by any
participant except for the initial service invocation. (Actually, techniques are
emerging to enable secure, trusted queries to external sources [49], but this is
not considered here.) Once the service invocation is made the blockchain network
undergoes a significant amount of processing. The service invocation results in
one of two outcomes: (a) the associated transaction becomes committed, in which
case it is recorded on all (or some pre-determined subset) of the peers, or (b) it is
rejected, in which case it is essentially removed from all of the peers. Transactions
in blockchain follow the “ACID” properties of database transactions.

The processing for a service invocation involves distribution of the invocation
to all (or a subset) of the peers, checking for validity of the signature, execution
of the code invoked by the service invocation, and reaching consensus amongst
the peers. Depending in part on the number of peers, this can take seconds, 10’s
of seconds, or in some contexts up to a minute [22].
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If the transaction associated with a service invocation is committed then the
blockchain may return an output to the initiating participant. The transaction
may be a query that does not modify the application data on the blockchain.
Or, the transaction may be an update that potentially does modify the data. In
the case of updates, the blockchain may also generate alerts (with payloads) to
other participants about the transaction and/or about values in the blockchain
that are related to the transaction.

Traditional blockchain networks incorporate a notion of cryptocurrency pay-
ments for participation in the blockchain. For example, Bitcoin and Ethereum
have constructs relating to the transaction fee to be paid for transaction process-
ing. Other approaches, such as Hyperledger, do not have built-in cryptocurrency,
and optionally enable payment for participation through a separate mechanism
that is essentially outside of the application-level processing on the blockchain.

In a typical setup, a blockchain network works on multiple initiated trans-
actions in a group. A specific sequencing of the transactions in this group is
determined as part of the consensus building process. Once it is determined
which of the transactions in the group are to be committed or rejected, and
in which order, the application-level data relating to the results of executing
the committed transactions is recorded as a block. (In some cases, some of the
transaction data is recorded into an auxiliary data store rather than in the block
itself; see next paragraph.) No semantic relationship is implied about the trans-
actions that are combined into a block. The blockchain itself is essentially a
sequential linked list of these blocks. All peers hold an identical copy of this list.
(A variation is used for networks in which subsets of peers perform consensus
building.)

A blockchain network may maintain a persistent, replicated data store that is
referred to by transactions and is updated according to the committed transac-
tions. As one example, Hyperledger maintains a store organized around key-value
pairs. In some networks the cost or time involved in storing large volumes of data
may be prohibitive. In this case auxiliary stores might be maintained to hold
selected data that is encrypted but not widely replicated (see [48]).

In most networks one smart contract can invoke another one. In typical
setups, at the logical level the call to the second smart contract is synchronous,
i.e., the first smart contract will wait until the second smart contract finishes
its work and returns a value or a handshake. There may be a family of smart
contract invocations stemming from a single service invocation by a participant.
All of these invocations are considered to be part of a single transaction; if it is
successful at the consensus level then the combined result of the invocations are
committed to the blockchain.

It is common to use a “factory” paradigm when working with smart con-
tracts. That is, most smart contracts are written to be used to support numer-
ous instances of collaborations (e.g., financial trades, importing contracts, etc.),
where each instance may involve a different set of participants. As the indus-
try’s ability to work with blockchains grows, we anticipate that eco-systems
of smart contracts and executing instances of them will emerge. For example,
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a large manufacturer might maintain two levels of smart contract: “umbrella”
contracts that focus on establishing shipping costs, etc., for a year-long period,
and “shipping” contracts that focus on supporting individual shipments. Also,
different development or standards organizations might create smart contracts
for different aspects of large-scale business collaborations (e.g., one might focus
on import/export and another on trucking within a country); and a single col-
laboration might rely on instances of smart contracts that were developed by
the different organizations.

While many use cases today involve one or several smart contracts that inter-
act within a single blockchain network, we also anticipate a future with interact-
ing smart contracts that run on different blockchain networks [31]. The messaging
between such smart contracts will most likely be asynchronous, because of the
time it takes for single blockchain transactions to commit, and the fact that the
block commit cycles on different networks will not be aligned.

Blockchain technologies are still evolving, and new features and capabilities
will continue to emerge. As such, the selection of abstractions for a BCL should
not depend too closely on the capabilities of one blockchain technology. Also,
the needs of a BCL may imply the desirability of certain capabilities in the
underlying networks, and help to guide how the core blockchain technologies
evolve.

3 Overview of Business Artifacts and ACSI Approach

This section overviews the business artifact approach for modeling business oper-
ations, including the notion of Artifact-Centric Services Interoperation (ACSI).
The presentation here is informal and by example; the reader is referred to the
numerous articles about business artifacts, including the surveys [11,14,18,30].
We illustrate some of the core notions of business artifacts with an example
that could be executed on a shared ledger. The illustration is based on the use
of Finite State Machines (FSM’s) for the artifact lifecycles, but quite different
styles of lifecycle meta-models can also be used (see below).

The modeling focus in business artifacts is on key business-relevant entities
that progress through a business, or through a collaboration amongst businesses.
Some of the literature uses the phrases Business Entities or Business Entities
with Lifecycles to refer to business artifacts. Typical examples are a Purchase
Order or a Financial Transaction; each of these might go through various stages
of activity, achieve various business objectives along the way, and access and
create data values. In a typical business modeling context there will be a handful
of relevant kinds of business entity, that interact in specified ways.

A (business) artifact type (or schema) consists primarily in an information
model and a lifecycle model. There are numerous options for the meta-model used
for the information models, we focus here on nested relations that satisfy the
natural property that for each relation (top-level or nested) the scalar columns
form a key (see [3,26]). There are also several options for the meta-model used
for the lifecycle models. Our running example uses FSM’s; other options are
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discussed below. Various mechanisms have been studied for specifying the inter-
action between business artifacts, including messages [46], service invocations
[13], and the ability for conditional triggering to refer to multiple artifacts [28].
In the running example we use service invocations, which parallels the typical
style of communication between smart contracts on blockchains.

We now introduce a simplified example that uses business artifacts to support
business collaborations in the space of manufacturing commerce. This example
loosely follows the running example of [48], and is focused on the management of
orders for industrial equipment (e.g., freeze driers for large-scale pharmaceutical
packaging), including management of ordering and shipping of the component
parts to the manufacturer. In the example there are five kinds of participants:
Buyers (who issue Purchase Orders for machines), Manufacturers (who build
them), Middlemen (who facilitate purchases and shipments of component parts
for the Manufacturers), Suppliers (of component parts), and Shippers.

PO
Received

CO Received 
By Middleman

Shipment 
Picked Up

CO’s Sent Collecting
CO’s

CO Received 
By Supplier

CO Waybill
Issued

CO Shipment 
Successful

PO Waybill 
Issued

Shipment 
Delivered

Shipment
Lost

Recreate CO 
Shipment 
Requested

Purchase 
Order

Component 
Order

Shipment

PO
Delivered

Fig. 1. Sketch of the lifecycle schemas of three interacting business artifact types,
including interactions between them (simplified)

Figures 1 and 2 together provide a high-level, simplified illustration of three
business artifact types that can support this collaboration. The three artifact
types are Purchase Order (PO), Component Order (CO), and Shipment. The
first figure shows sketches of their FSM-based lifecycles (many details have been
omitted), and the second one shows a snapshot of the data that might be held
by an instance of PO at one point in its progression. Importantly, the artifact
types are focused on data and processing that are relevant to the collaboration
itself; the tasks performed individually by the respective participants are out of
scope for the model supported on the blockchain.
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In a typical execution of artifacts based on these artifact types, a Buyer
would issue a purchase order for a machine, leading to the creation of a PO
artifact. After analyzing the order, the Manufacturer would determine which
component parts are needed and order them from one or more Middlemen. A
new CO artifact instance is created for each component part. Focusing on the
lifecycle for CO, each FSM state can be viewed intuitively as a milestone, i.e., a
key business objective that the collaboration around the CO may achieve. The
CO’s would progress through a lifecycle involving receipt by the Middleman,
posting onto the blockchain by the Middleman of a Supplier Order, posting onto
the blockchain of a Waybill by the Supplier (e.g., after the Supplier has created
the component and chosen a Shipper), and (hopefully) reaching the state where
the component has been shipped to the Manufacturer. In this simplified example
most exception handling is not included, except for the case of lost shipments.
In particular, if a Shipment moves into the Shipment Lost state this will invoke
a service to the CO that another shipment should be created.

PO ID PO State Price Mfr. Component CO ID Middleman Received Date

PO123 Collecting CO’s $1,500,000 JLH Inc.
Vacuum Pump CO111 AllPro Solutions 10 July 2016
Condenser CO222 Central Logistics 24 June 2016
Shelving CO333 AllPro Solutions –

Fig. 2. Representative snapshot of data held by the information model in an instance
of the Purchase Order artifact type (simplified)

Figure 2 shows a simplifed example of the information held by a PO artifact
instance. In practice, a PO will typically hold a wealth of information about a PO
that is business-relevant to the progression of the collaboration, including dates,
contract signatories, relevant history of exceptions and how they were handled,
etc. It would also be natural to include a history of service invocations and FSM
states visited. The artifact information model provides a conceptually convenient
place for storing any information of interest, in business-digestable form. This
contrasts with typical BPMN-based solutions, where a lot of business-relevant
data may become buried in message bodies and system logs.

The solid lines in Fig. 1 correspond to state transitions of the FSM’s that
result from service invocations. The dashed edges indicate synchronous service
invocations that are made between artifact instances. (The synchronous call will
result in one state transition in the called FSM, after which control will return
to the calling FSM.) Solid edges without incoming dashed edges correspond to
services that are invoked from outside the blockchain, i.e., by participants to
the collaboration. Some dashed edges have the effect of launching new artifact
instances, while others in this simplifed example have the effect of causing state
transitions in the called artifact. (In the diagram each dashed line points to
a transition; in practice, a service invocation might cause different transitions
depending on the payload of the service invocation and the data held by the
called artifact.)
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The approach to supporting business collaboration illustrated in this example
follows the basic form of Artifact-Centric Services Interoperation (ACSI) hubs as
introduced in [27] in 2009. That paper developed access control constructs that
seem especially well-suited for use in the shared ledger context. Three forms
of access control are defined there. First, a view over an artifact type includes
restrictions on both the data and the lifecycle. The data portion of a view is
essentially a projection of the data (i.e., subset of the columns). For the life-
cycle, a view specifies a condensation of the FSM, that is, a mapping of the
FSM to a new FSM, where multiple states of the source FSM might get mapped
to a single state of the target FSM (certain well-formedness restrictions must
be followed). This has the effect of hiding from some participants the possible
steps that other participants might be involved in. The second form of access
control is window, which is essentially a selection condition on what artifact
instances a participant can see. For example, we would expect that a Shipper
can see only the Shipment instances that he is directly involved in supporting.
Finally, [27] supports the specification of Create-Read-Update-Delete-Append-
Execute (CRUDAE) access controls, to limit the ways that participants can
modify artifact instances. The BizArtifact system [7,8,34] supports variations of
the view, window, and CRUDAE constructs of [27] for two artifact lifecycle meta-
models. These abstractions are important for a BCL, because they provide intu-
itive mechanisms for specifying confidentiality constraints in a business-oriented
framework. These constructs will also be useful for understanding compatibility
of smart contracts for interoperation.

Essentially any process-oriented meta-model can be used for the lifecycle
models of business artifacts, including, e.g., Petri nets, BPMN [9], or state charts.
For example, the proclets meta-model [1] uses Petri nets to specify a family of
interacting processes; similar to business artifacts they provide a top-down way
to factor business operations into coherent chunks, although data is not explicitly
modeled. Business Objects (e.g., [33,43,44]) use FSMs for the lifecycle models
and messages for communication between objects. The Guard-Stage-Milestone
(GSM) variant of business artifacts [15,28] provides a declarative, rules-based
lifecycle meta-model in which condition-based milestones are supported, and
where tasks are hierarchically grouped into stages that are launched if certain
conditions are met. GSM was used as a basis for the OMG Case Management
Model and Notation (CMMN) standard [37]. As discussed in Sect. 4, the modu-
larity, hierarchy, and declarative characteristics of GSM and CMMN may prove
useful when specifying intricate smart contracts at the business level.

4 The Case for Business Artifacts: Conceptual Modeling

Business artifacts were developed to reduce the conceptual distance between
(i) how business leaders and analysts think about the processes supporting
business operations, and (ii) how those processes are implemented in practice
[14,41]. This section reviews this and other benefits of the business artifacts
and ACSI approaches in the context of supporting business collaborations on
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shared ledgers. The section includes comparison with process-centric approaches
to model collaborations and choreographies.

Holistic, top-down factoring based on business-relevant concepts. The
central tenet of business artifacts modeling of business operations is to focus on
the key business entities, including milestones they may achieve and the data
needed and/or produced to achieve them. These business entities are often the
conceptual building blocks used by business leaders to think about their oper-
ations, and the milestones provide the basis for many of the Key Performance
Indicators (KPI’s) that the operations are measured by [35]. Additional infor-
mation that naturally fits into a business artifact information model, such as the
price paid, production cost, time taken, etc., provides the basis for additional
KPI’s, some of which relate directly to a business’s financial performance.

An effective business modeling method. The Business Entity Lifecycle
Analysis (BELA) method [46] was developed at IBM to support business opera-
tions modeling using business artifacts. The approach follows a five-stage process
(with some back-and-forth) as follows: (1) Identify the key business artifact types
in the business scope; (2) Identify key milesteons for these artifact types and
place these into a sequencing diagram (e.g., an FSM or something more declara-
tive); (3) Identify the data needed and/or produced to achieve these milestones;
(4) Identify the tasks needed to achieve the milestones; and (5) Identify inter-
actions between the artifacts. The BELA method has been applied in numer-
ous application areas (e.g., [5]), and is supported in the IBM Service-Oriented
Method and Architecture (SOMA) tool suite [40].

In multiple situations the BELA method (and its precursors) solved busi-
ness modeling and deployment challenges that the Lean Six Sigma approach
was unable to effectively resolve [5,12]. The BELA method was found most
effective in two kinds of contexts: (a) where the targeted business operations
spanned across multiple business silos, and (b) where multiple organizations
(e.g., obtained through acquisitions) were performing essentially the same func-
tion for different geographic areas. Context (a) is of course very relevant to
Blockchain-enabled collaborations.

Modeling flexible processes. Business artifacts information models provide a
unified store of business-relevant data, which enables natural, declarative, rules-
based approaches such as GSM and CMMN for specifying process. This in turn
enables artifacts to model rich flexibility in processes. Consider for example the
use case of mortgage origination, that is, the processing involved in obtaining a
mortgage loan for a house. In this process a broad variety of documents and data
is gathered from numerous stakeholders, and then evaluated in various ways by
a small set of stakeholders (e.g., bank, underwriter, insurance company). The
documents and data arrive in various orders, processing can be done on subsets
of the incoming data, and sometimes new versions of the documents or data
are needed. A rules-based lifecycle specification enables flexible response to the
data as it arrives. Combining a rules-based style with hierarchy further increases
modeling flexibility. For example, it makes it easier to support variation as might
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arise when working on a given use case across differently-sized contracts, with
various partners, and involving different countries.

Another kind of flexibility relates to distribution of responsibilities between
participants. Business artifacts enable a separation of concerns, with business-
relevant data and milestones at one level, and distribution across participants at
a second level. This enables the use of a single family of business artifact types
to support instances of business collaboration where responsibilities are divided
among participants in differing ways.

Support for evolution. It has been argued that the business artifact [5,46]
and Business Objects [33,43,44] approaches enable evolution of process models
in ways that are both intuitively natural and relatively inexpensive. This again
stems from the top-down factoring of models created using these approaches.
This flexibility will be useful as business needs change and new variations on
existing smart contracts are created.

Comparison with process-centric approaches. It is informative to com-
pare and contrast the use of business artifacts and ACSI to support business
collaboration vis-a-vis process-centric approaches. We focus here on the embodi-
ment found in the BPMN version 2.0 [9] frameworks for collaboration and chore-
ography. Reference [48] mentioned above provides an illustration of a BPMN
collaboration and the corresponding BPMN choreography.

BPMN collaboration focuses on the parties in a collaboration, where the
internal process of each party is represented in a separate BPMN pool (that
is, a specification of a BPMN process, possibly spread across swimlanes that
are performed by different participants and/or roles). Messages between those
pools (in particular, between send tasks and receive tasks) guide the collabora-
tive process. BPMN choreography enables a complimentary view. The primary
building block is the choreography activity, which in turn may be a choreography
task, a subchoreography, or a “call choreography” which acts as a placeholder for
a choreography. A choreography task corresponds to an interaction between two
or more partipants, where one of these is the initiator. Choreography activities
are strung together using flow constructs (including gateways for conditionals,
joins, etc.)

In both BMPN collaboration and choreography the information shared
between businesses is modeled using a family of individual messages that go
between susbsets of participants. The ACSI approach provides a paradigm shift,
because the information shared between businesses is modeled in a single, logi-
cally coherent data store. This data store is organized around business artifacts
that can hold all business-relevant information about the collaboration, regard-
less of which participants create or use it. Data privacy is layered on top. This
paradigm shift, from modeling shared information in messages to modeling it
in a top-down unified way, can provide substantial benefits in design, imple-
mentation, maintenance, reporting on progress, and tracking of disputes and
exceptions. As noted above, the use of a unified data model permits the use
of rules-based lifecycle models, which in turn enables intuitive specification of
highly flexible kinds of collaborations.
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The artifact-centric approach provides a natural, flexible way to represent 1-
many relationships between the conceptual entites. The example of Sect. 3 illus-
trates a 1-many relationship between PO’s and CO’s; more complex 1-many rela-
tionships can arise in shipping scenarios where shipments and invoices may refer
to overlapping sets of line items, or in financial applications where, e.g., mort-
gage loans are bundled into mortgage-backed securities, grouped into tranches
(e.g., groupings based on differing risk levels), and then divided amongst multiple
buyers. BPMN processes support multi-instance tasks and sub-processes, BPM
collaborations support multi-instance pools, and BPMN collaborations support
multi-instance choreography activities. All of these use constructs that essentially
package the multi-instance aspect into a sub-process of the parent instance. As a
result, it may be very cumbersome in BPMN to faithfully represent some styles
of business artifact interactions, e.g., where a parent artifact progresses through
several states, and in parallel the child artifacts progress through their states,
with interleaved interactions between parent and children. In contrast, rules-
based artifact lifecycle models can support such interactions in an intuitive and
succinct manner.

Potential for community adoption. Case management has emerged as an
important style of Business Process Management, especially in connection with
knowledge-worker intensive processes. The number of case management deploy-
ments continues to grow, and so does the number of case management savvy
business analysts and developers. The underlying paradigms of case manage-
ment and business artifacts are very close [37]. Business analysts and developers
will be able to bring their experiences and knowledge of case management to the
creation of artifact-centric smart contracts.

Turning now to FSM-based artifacts in particular, we mention a report from
the U.S. Office of Financial Research [23], that argues that many financial con-
tracts can and should be represented using FSM’s. The paper encourages work-
ers in the financial field, who have had little or no exposure to programming
or Computer Science abstractions, to make the effort to understand how FSM’s
can bring value and systematic, repeatable approaches to financial exchanges.

Academic foundations. The business artifact and related approaches have
spawned a broad and growing body of academic and industrial research since
the first publications in 2003, as indicated in the surveys [11,30].

5 The Case for Business Artifacts: Formal Reasoning

The ability to reason about smart contracts, including their interaction with
each other and with external business processes, will be a crucial enabler in the
success and wide-spread adoption of the shared ledger approach. Both informal
and formal styles of reasoning will be significant. By “informal reasoning” we
mean the kind of reasoning that developers and others often carry out to convince
themselves that programs will operate as desired. By “formal reaoning” we mean
both mathematical styles of reasoning (such as a proof of that two-phase locking
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ensures serializability of transactions) and automated reasoning (as in automatic
verification by tools such as SPIN [25] or WAVE [16]). Smart contracts involve
both data and process at fundamental levels, and so reasoning about process,
reasoning about data, and reasoning about process together with data will all
bring important value.

Effective support of informal reasoning will rely in part on conceptual models
that are natural and intuitive for both business analysts and developers, and
that enable focus on critical aspects of the processing, including achievement
of key business goals, smart contract interactions, and privacy guarantees. The
discussion in Sect. 4 suggests several reasons why the business artifact approach
can provide an appropriate basis for this informal reasoning.

The use of FSM’s for artifact lifecycles can bring strong advantages, because
of their intuitive simplicity and the wealth of widely known informal intuitions
and formal algorithms and results about them. However, reasoning about data
will be essential, given the importance of ensuring data privacy across different
participants. Data can be incorporated in varying degrees, e.g., as follows.

(a) Ignore data, and furthermore focus on situations where there is a bounded
number of artifact instances (e.g., at most 10 CO’s per PO).

(b) Include modeling of 1-many relationships between artifact instances, e.g.,
between a PO and its CO’s. In one variation, the number of CO’s may be
unbounded and essentially unrestricted. In another variation, the number
of CO’s might be unbounded in general, but for each PO there might be a
bound on the number of CO’s based on the initial input.

(c) Ability to specify structural properties on the data held by one or more
artifact instances. This might include referential constraints, e.g., for each
instance of Shipment there must be a CO that refers to it, and in turn
the ID of that CO is held in the PO data. It might also include key and
functional dependencies, perhaps extended to the nested relation context,
e.g., that across all CO instances, each shipper can be associated with only
one middleman.

(d) It might include arithmetic properties, e.g., that the price of a PO must be
below $5M. The arithmetic properties might cut across artifact instances
and rely on aggregation, e.g., that the total price of all CO’s is below some
percentage of the overall price of the PO.

(e) Finally, these might include privacy ensuring constraints. An informal exam-
ple is that no middleman can see the price associated with any CO that he
is not handling.

We now turn more specifically to automatic verification. This relies on pre-
cisely defined abstractions that capture key elements of a framework. This some-
times brings a loss of completeness in the model being studied (e.g., by ignoring
data, or arithmetical relationships between data values). In the context of auto-
matic verification, achieving decidability and relatively low complexity in the
presence of data can require carefully designed restrictions on the model stud-
ied. It is typical for verifiers to support algorithms that are sound (they are
never wrong when they claims correctness of a specification) but not necessarily
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complete (they may produce false negatives, i.e., candidate counter-examples to
the desired property, which need to be validated by the user). Importantly, the
perspectives and tools developed from the formal perspective may also be helpful
for the informal reasoning. As just one example, formal languages developed to
specify integrity constraints (both static and temporal) may help in the formu-
lation of targets for informal reasoning, and also lead to design principles. The
theory of relational database integrity constraints illustrates how these kinds of
mathematical models can have far-reaching practical impact.

A primary goal of formal reasoning about smart contracts is to ensure that
during operation they will achieve certain goals, and they will avoid various con-
ditions. The conditions to avoid may be specified in terms of static constraints.
In the running example, e.g., we may want to avoid any situation where there
is a CO and a corresponding Shipment, where the CO is in the state Shipment
Delivered and the Shipment is in state Recreate Shipment Requested. This can be
thought of as a constraint on a cross-product of all the FSM’s of the relevant
artifact instances. Richer static constraints involving data might be considered,
e.g., relating to structural properties and (aggregate) arithmetic properties.

For such constraints, formal reasoning will typically focus on reachability, that
is, given (i) a static constraint and (ii) a class of possible input sequences, deter-
mine if there is any input sequence that leads to a family of artifact instances that
violates the constraint. If data is ignored (and the number of artifact instances is
bounded) this reduces essentially to reachability in FSMs. In some contexts this
has complexity nlogspace-complete and is tractable. In more general settings,
e.g., if the FSM’s have non-determinism (as might arise when data is abstracted
away), or with the richer kinds of temporal constraints discussed below, verifi-
cation is pspace-complete. Approaches have been developed (e.g., state vector
models [24]) to enable practical algorithms for such verification problems. The
modeling approach of Petri Nets provides another broad family of verification
results to draw upon for contexts where data is ignored [20].

Reachability of states violating a static constraint is in fact a form of temporal
constraint. More broadly, it is common to reason about the behaviors of a system
by using temporal operators, such as those from Linear Temporal Logic (LTL)
[42]: G (always), F (eventually), X (next), and U (until). For example, Gp
(where p is a propositional variable) says that p holds at all times in the run,
Fp says that p will eventually hold, and G(p →Fq) says that whenever p holds,
q must hold sometime in the future. While LTL (and its variants) are useful for
FSM’s and other models without data, an extension is needed to include data-
aware properties, such as items (b) through (e) in the list given above. To this
end an extension of LTL is used, called here LTL-FO [36], in which First-Order
(FO) logic formulas are used in place of propositional variables in LTL formulas.

Verification problems for smart contracts with data can be formulated along
the lines originally developed in [6,17] for business artifacts. In that setting,
each (parameterized) invocable action (a.k.a., “service”) is associated with (para-
meterized) pre- and post-conditions expressed in FO. A common restriction is
that the pre- and post-conditions be expressed in existential FO (that is, only
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existential quantifiers). Suppose now that we are given a system SC with one or
more smart contracts, which includes a family A of invocable actions. Suppose
further that ϕ is an LTL-FO formula. The basic verification problem for SC and
ϕ can be stated as follows: Does every run of SC satisfy ϕ?

There is already a rich family of results for automatic verification of data-
aware processes [11,18]. Several restricted classes of artifact systems have been
studied, along with temporal properties expressed in restricted variants of LTL-
FO. This includes classes that impose restrictions on how the actions (services)
manipulate set-valued attributes, and classes that permit orderings on domain
elements, permit arithmetic operators, etc. In most cases the verification problem
for the restricted family has worst-case complexity of pspace-complete, which
is reasonable given that the classical propositional model-checking problem is
pspace-complete. Further, the WAVE verification tool [16] provides evidence
that verification for data-aware processes can be practical. Also, recent theoret-
ical work leverages hierarchy in GSM artifact specifications to enable optimiza-
tions in verification algorithms [19].

6 Conclusions

This paper has discussed the merit of using abstractions from business arti-
facts and its relatives as the basis for a shared ledger Business Collaboration
Language (BCL). The use of these abstractions for Blockchain brings several
research challenges, some of which are highlighted below.

Modeling abstractions. There are several variations on the basic theme of
business artifacts, based mainly a spectrum of possible lifecycle meta-models,
ranging from the fully procedural to the fully declarative. A key challenge is
choosing the right mix of abstractions that cover the use cases from multiple
industry sectors. Designing a coherent BCL that supports the more procedural
style of, e.g., FSM’s, and also the more declarative style of, e.g., GSM and
CMMN, is a particular challenge.

Views. An important aspect of the meta-model underlying a BCL will be sup-
port for intuitive ways to specify access rights, that is, to ensure privacy of data
and processing steps. Another important area concerns specifying interfaces for
how business artifacts from one smart contract will interact with business arti-
facts from smart contracts. Some notion of business artifact view and related
constructs (e.g., [27]) will be central in helping to make progress in these areas;
see also [4,38].

“On-ramps” to Blockchain: If Blockchain is successful in providing a new
level of efficiency for business collaborations, then many businesses will need to
convert existing collaborating business processes into blockchain-enabled ones.
Adapting legacy business processes will bring many challenges, including the
impedance mismatch between the data-aware style of coordination enabled by
Blockchain vs. the process-centric style of most legacy processes. The BELA
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method [46] for business process design can be adapted to help with the conver-
sions, and [47] may provide a useful starting point for managing linkages between
data on a blockchain and data maintained by collaboration participants.

Reasoning and Validation. A variety of tools are needed to give strong con-
fidence in the smart contracts that people deploy and mix together. This will
include well thought out testing strategies and frameworks, and also succinct
representations to simplify human reasoning about the contracts. As suggested
in Sect. 5, automatic verification techniques and results for business artifacts can
be extended to the Blockchain context. This brings new questions to the fore-
front, including how to obtain practical verification results in connection with
1-many relationships between business artifacts.

Implementation. Realizing the vision of Blockchain, including scalability and
reasonable running speeds, is an on-going work. Finding accurate and efficient
ways to support a BCL on top of Blockchain adds another dimension to the
engineering challenges. The use of a BCL may permit certain optimizations,
analogous to optimizations of database query languages. It remains open whether
it will be better to implement a BCL using auto code generation, i.e., mapping
a BCL program into, e.g., a Go or Java smart contract, or to create a BCL
interpreter that can run on top of blockchains.

Smart Contract Eco-systems. In the coming years we anticipate large
libraries of smart contracts that are designed to interact. In a BCL each smart
contract might be based on one or several business artifact types. Tools are
needed for discovering smart contracts based on artifact types and their mile-
stones, for quickly checking compatibility between them, and for reasoning about
and testing behaviors resulting from their interactions.
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ACSI hub: a data-centric environment for service interoperation. In: Proceedings
of BPM Demo Sessions (2014)

9. Business Process Model and Notation (BPMN), version 2.0, 3 January 2011.
http://www.omg.org/spec/BPMN/2.0. Accessed 10 July 2016

10. Brown, R.G.: Introducing R3 CordaTM: A Distributed Ledger
Designed for Financial Services. http://r3cev.com/blog/2016/4/4/
introducing-r3-corda-a-distributed-ledger-designed-for-financial-services.
Accessed 20 July 2016

11. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data-aware process
analysis: a database theory perspective. In: International Symposyum Principles
of Database Systems (PODS) (2013)

12. Chao, T., Cohn, D., Flatgard, A., Hahn, S., Linehan, M., Nandi, P., Nigam, A.,
Pinel, F., Vergo, J., Wu, F.: Artifact-based transformation of IBM global financing.
In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol.
5701, pp. 261–277. Springer, Heidelberg (2009)

13. Cohn, D., Dhoolia, P., Heath III, F., Pinel, F., Vergo, J.: Siena: from powerpoint
to web app in 5 minutes. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.)
ICSOC 2008. LNCS, vol. 5364, pp. 722–723. Springer, Heidelberg (2008)

14. Cohn, D., Hull, R.: Business artifacts: a data-centric approach to modeling business
operations and processes. IEEE Data Eng. Bull. 32, 3–9 (2009)
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