
A Model-Driven Framework for Interoperable
Cloud Resources Management

Denis Weerasiri1(B), Moshe Chai Barukh1, Boualem Benatallah1,
and Jian Cao2

1 University of New South Wales, Sydney, Australia
{denisw,mosheb,boualem}@cse.unsw.edu.au

2 Shanghai Jiaotong University, Shanghai, China
cao-jian@cs.sjtu.edu.cn

Abstract. The proliferation of cloud computing has enabled power-
ful virtualization capabilities and outsourcing strategies. Suitably, a
vast variety of cloud resource configuration and management tools have
emerged to meet this needs, whereby DevOps are empowered to design
end-to-end and automated cloud management tasks that span across a
selection of best-of-breed tools. However, inherent heterogeneities among
resource description models and management capabilities of such tools
pose fundamental limitations when managing complex and dynamic
cloud resources. In this paper we thus propose the notion of “Domain-
specific Models” – a higher-level model-driven approach for describing
elementary and federated cloud resources as reusable knowledge arti-
facts over existing tools. We also propose a pluggable architecture to
translate these artifacts into lower-level resource descriptions and man-
agement rules. This paper describes concepts, techniques and a pro-
totypical implementation. Experiments on real-world federated cloud
resources display significant improvements in productivity. As well as
notably enhanced usability achieved by our approach in comparison to
traditional techniques.

Keywords: DevOps · Cloud resource management · Interoperability

1 Introduction

Cloud computing is evolving in both public and private cloud networks [14].
A third option involves a hybrid or federated cloud [2,16], drawing resources from
both public and/or private clouds. The benefits include virtualization capabilities
and outsourcing strategies. It is estimated that by 2016 the growth in cloud
computing will consume the bulk of IT spend, whereby nearly half of all large
enterprises will comprise hybrid cloud service deployments by end of 2017 [6].

However, exploiting cloud services poses great complexity. As development
becomes increasingly distributed across multiple heterogeneous and evolving
networks, it proves increasingly difficult to manage interoperable and portable

c© Springer International Publishing Switzerland 2016
Q.Z. Sheng et al. (Eds.): ICSOC 2016, LNCS 9936, pp. 186–201, 2016.
DOI: 10.1007/978-3-319-46295-0 12

A Model-Driven Framework for Interoperable Cloud Resources Management 187

cloud resource solutions. Moreover, cloud applications inherently possess vary-
ing resource requirements during different phases of their life-cycle [9,14]. Con-
sequently, designing effective cloud management solutions that cope with both
heterogeneous and dynamic environments remains a deeply challenging problem.

Existing cloud management solutions typically rely on procedural program-
ming (general-purpose or low-level scripting) languages [9,10,13,14,20]. Promi-
nent examples include: Puppet, Juju, Docker and Amazon OpsWorks, [5]. This
implies even DevOps (i.e. software and/or system engineers who design, develop,
deploy and manage cloud applications) are forced to understand the different
low-level cloud service APIs, command line syntax, Web interfaces, and proce-
dural programming constructs - in order to create and maintain complex cloud
configurations. Moreover, the problem intensifies with the increasing variety of
cloud services, together with different resource requirements and constraints
for each application. This inevitably leads to an inflexible and costly envi-
ronment which adds considerable complexity, demands extensive programming
effort, requires multiple and continuous patches, and perpetuates closed cloud
solutions.

Drawing analogies from service representation (e.g. Web Service Description
Language (WSDL)), and composition techniques (e.g. Business Process Execu-
tion Language (BPEL)), we are inspired to likewise support the abstract rep-
resentation and orchestration of cloud resource by devising rich abstractions to
reason about cloud resource requirements and their constraints. In this paper we
therefore investigate how to effectively represent, organize and manipulate oth-
erwise low-level, complex, cross-layer cloud resource descriptions into meaningful
and higher-level segments. We believe this would greatly simplify the represen-
tation, manipulation as well as reuse of heterogeneous cloud resources. To enable
this, we propose a methodology to support the automated translation of high-
level resource requirements to underlying provider-specific resource and service
calls. More specifically, this paper makes the following main contributions:

Domain-Specific Models to effectively represent, manage and share
Cloud Resources. The ability to share and reuse cloud artifacts offer a powerful
enhancement to DevOps’ productivity. However, as these artifacts are inherently
low-level and heterogenous between different cloud platforms, sharing such arti-
facts are almost useless in practice. To address this, we propose Domain-specific
Models (DSMs) for representing cloud resources and their management strate-
gies as high-level entities. Based on the Entity-Relationship (ER) model, our
proposed model features: a vocabulary and set of constructs for describing or rep-
resenting both elementary (e.g. VMs, DBs, load balancers), and federated cloud
resources (e.g. packaged virtual appliances); and their relationships (e.g. depen-
dencies, configuration parameters, resource constraints). We architect this layer
over existing cloud management platforms to harness interoperability capabili-
ties. This means cloud resources could be easily combined to create higher-level
virtual entities, called Federated cloud resources, thereby masking the complexity
and heterogeneity from the underlying cloud services. For instance, by identi-
fying common concepts among different tools, we can seamlessly merge those

188 D. Weerasiri et al.

features for end-to-end configuration. For example, a VM deployed by Vagrant
can be modified by another tool, such as Puppet with fine-grained configuration
tasks (e.g., installing software within the VM) that are not supported by the
initial tool. We assume one particular DevOps who is an expert of a particular
cloud tool would specify the associated Domain-specific Model at the onset.

Connectors for automated translation of DSM-based models into
native resource artifacts. Connectors accomplish the magic behind the scenes.
As mentioned, there are a large variety of resource representation languages (e.g.
procedural, activity based and declarative); as well as several different types of
tools/APIs to manage/orchestrate these resources; that all may need to adapt to
different environments (i.e., public, private and federated). This three-fold level
of heterogeneity make cloud resource management a tedious task. We therefore
propose the notion of Connectors, which provide a high-level interface (i.e. API)
for DevOps to deploy, configure and manage cloud resources. As mentioned, the
proposed Domain-Specific Model could be used to represent resource configu-
ration using high-level entities and relationships. Behind the scenes, connectors
are thereby able to: (a) translate these high-level descriptions into their native
format (e.g., files, shell code snippets); and (b) interpret what are the required
management operations and transform them into low-level API calls. For exam-
ple, to create an Image using Docker’s Remote API, traditionally DevOps would
need to be skilled in the tool’s communication protocol1. This is alleviated using
our proposed approach. In addition, Connectors may include basic events that
are to be monitored by periodically querying for data using low-level APIs.
DevOps are thus empowered to write automated management processes such as
Event-Condition-Action (ECA) rules and workflows over the operations exposed
by the Connectors. We assume Connectors are implemented by DevOps, who
have expertise in programming and knowledge on the particular cloud tool.

The rest of this paper is organized as follows: In Sect. 2, we investigate in the
context of example scenarios, specific limitations amongst existing cloud man-
agement techniques. In Sect. 3, we present our proposed system architecture. In
Sect. 4, we elucidate our domain-specific model, with a case-study on Docker. In
Sect. 5, we discuss our implementation, while in Sect. 6 we present our imple-
mentation and evaluation. In Sect. 7, we examine related work, and conclude
with remarks and a discussion of future work.

2 Limitations in Current Cloud Management Solutions

As mentioned, current cloud management solutions rely on low-level script-based
languages. For example, Ubuntu Juju employs Charms2; and similarly Docker
employs Dockerfiles3). Charms and Dockerfiles are a collection of configuration
attributes and executable scripts that configure, install and start an applica-
tion. Inevitably constructs of these scripts typically include basic commands
1 http://docs.docker.com/reference/api/docker remote api/.
2 https://jujucharms.com/.
3 https://docs.docker.com/reference/builder/.

http://docs.docker.com/reference/api/docker_remote_api/
https://jujucharms.com/
https://docs.docker.com/reference/builder/

A Model-Driven Framework for Interoperable Cloud Resources Management 189

(e.g., RUN, COPY, CMD), which provide little or no abstraction for DevOps to iden-
tify the main attributes and relationships of the constituent cloud resources.

Scenario 1. Consider describing composite cloud resources: A Web Appli-
cation stack, with a Node.js application engine and MySQL database. DevOps
could describe attributes (e.g. memory, size) of these resources, as well as their
relationship (e.g. app engine stores data in database), using Dockerfiles. Docker
provides either a RESTful or CLI interface to interpret Dockerfiles in order to
build, deploy, monitor and control necessary resources known as Containers on
a given Virtual Machine (VM) (refer to Fig. 1(a)). However, as Docker does
not support configuring and deploying VMs4, another cloud management tool
would be needed, such as AWS-EC2 CLI or Rackspace CLI. This therefore forces
DevOps to employ multiple tools to automate end-to-end management tasks.

Moreover, considering that every cloud management tool employs their own
resource description models, management capabilities and interfaces – the chal-
lenges described above only increases several-fold. For example, Fig. 1(b) lists the
variety of heterogeneous configuration and management interfaces exposed by
different tools. Consequently, these ad-hoc scripts introduce hard-coded depen-
dencies among resources that are orchestrated by different tools. Reusing knowl-
edge artifacts, which include such ad-hoc scripts is not scalable as DevOps are
required to manually analyze those knowledge artifacts in order to apply cross-
domain relationships among resources within a composite cloud solution.

Scenario 2. This time consider the case of federated cloud resource man-
agement. For example, VMs deployed and managed amongst two different cloud
services, such as AWS and Backspace. If additional VMs would want to be added
(in order to improve reliability and handle increasing demands of the Web appli-
cation), DevOps would need to implement additional orchestration scripts that
monitor the application load and deploy the Web application in either AWS
or Rackspace based on a certain load-balancing algorithm. However, both AWS
and Rackspace employ different formats of access credentials and management
interfaces to deploy VMs.

Overall the level of heterogeneity amongst current cloud solutions entails
great complexity when exploiting cloud services. More specifically, with existing
cloud delivery models, developing a new cloud-based solution generally leads

Tool Type of Interface Available

AWS CLI, SDKs, Web 2.0, REST and
SOAP APIs

Rackspace CLI, SDKs, Web 2.0, REST API
Puppet CLI, Web 2.0, REST API
Docker CLI, REST API

(a) (b)

Fig. 1. (a) Components and Relationships of a Node.js Web application Stack; (b) List
of available cloud Configuration and Management Interfaces

4 This feature was only later introduced by Docker (the principle remains the same).

190 D. Weerasiri et al.

to uncontrollable fragmentation across the use of different cloud languages and
tools (e.g., Puppet, Chef, Juju, Docker, SmartFrog, AWS OpsWorks) [4,5,7,8].
This makes it very difficult to develop interoperable and portable cloud solutions.
It also degrades performance as applications cannot be partitioned or migrated
easily into another cloud platform when demand cycles increase.

3 Next-Generation Cloud Resource Management:
Architecture Overview

The next-generation in cloud resource management with require ease of inter-
operability - enhanced productivity with a viable opportunity for reuse. The
limitations mentioned above is an immense setback. To overcome this, we pro-
pose a layered architecture (see Fig. 2) that enables: (a) Domain-Specific Models
(DSM) (for high-level representation and management models of cloud resources;
and (b) Connectors (to automate translation of these high-level DSMs into low
level resource descriptions and management scrips.

Fig. 2. System Overview

Domain-Specific Models layer consists of three sub-layers: (i) Tool-specific
resource layer; (ii) Federated resource layer; and (iii) Task-specific resource layer.
All sub-layers consist of a collection of DSMs. Starting from bottom-up, the tool-
specific resource layer include DSMs that represents cloud resource entities (e.g.,
resource descriptions, management rules) and relationships among those entities
of a ‘particular’ cloud tool. For example, Docker DSM describe linked entities
that are provided specifically by the Docker engine. Tool-specific Domain-specific
Models can also be combined to create higher-level DSMs that represent feder-
ated cloud resources, which may be managed by two or more existing cloud tools.

A Model-Driven Framework for Interoperable Cloud Resources Management 191

For example, a customer relationship management application of an organiza-
tion, which is deployed in a public cloud service (e.g., AWS), may access a
client information database server, which is managed within the organization’s
private cloud infrastructure (e.g., VMWare). Finally, the task-specific resource
layer represent “splices” of the fundamental DSM that are reformulated to spe-
cific types of categories. For example, DSMs for the Database Community may
include models that facilitate key-value storages, relational databases and graph
databases. The extended goals of DSMs are also to abstract unwanted hetero-
geneous notations in order to simplify for the end-developer. DSMs can thus be
customized to further accommodate this.

Connectors layer, are essentially the glue between the high-level DSM model
and underlying cloud tool – it serves to abstract an otherwise complex and het-
erogenous interface into a simplistic and interoperable one. Connectors assume a
DSM has been defined for a particular cloud tool. As we will describe in the next
section, a particular DSM has both a description model and actionable manage-
ment model. Connectors utilize both these models to auto translate high-level
calls into low-level actions. We have observed every cloud tool supports three
basic operations: deploy, control (or reconfigure) and undeploy. Accordingly, we
have built Connectors to function with the following interface:

init(resource model): Translates a high-level resource DSM-based
“description model” into its native script, (e.g. files, shell code) and returns
a unique-ID.

deploy(resource model): The runtime selects a particular connector imple-
mentation that can deploy the inputted resource configuration model. The con-
nector implements runs the tool-specific deploy command.

control(resource ID, actions): Actions are also described using the
high-level DSM-based “management model”. The connector implementation
maps this into low-level API calls to apply over the inputted resource ID.

undeploy(resource ID): The runtime detects the appropriate Connector
and calls the undeploy operation over the specified resource.

Additionally, connectors are also vital for enabling dynamic control. As we
will describe in the next section, our “management model” also support events
(e.g., connection failure to VM), and DevOps may annotate resource configura-
tions with simple rules that trigger actions upon particular events.

4 Extracting Domain-Specific Models

As mentioned, we have adopted the Entity-Relationship (ER) notation to repre-
sent Domain-Specific Models. The process of building DSMs for a particular tool
involves analyzing existing knowledge sources (e.g. language specifications, user
documentations, forums and resource description repositories) to understand key
entities for describing resources. We assume at least one domain expert would
contribute this for a particular, which may then be reused multiple times by
other DevOps. Next, we extracted relationships between the entities by under-
standing how entities are associated when describing composite cloud resources.

192 D. Weerasiri et al.

Similarly, we extracted what actions and events are provided by these tools, such
as for manipulating the given resource. These events and actions allow DevOps
to annotate resource descriptions with ECA rules.
In essence, our embryonic data-model consists of the following elements:

1. Resource Description Model: It describes cloud resources in terms of
relevant entities (and their attributes), as well as their interconnection of
relationships. For example, a VM entity may include CPU, memory and storage
as attributes.

2. Resource Management Model: It allows to specify cloud management
operations, particularly to configure, deploy, monitor and control cloud
resources. This model consists of two sub-models:
(a) Action Model: It specifies available actions (e.g., deploy, configure,

migrate) to manage cloud resources. It is expressed a set of entities with
relevant attributes that express required input and output parameters.

(b) Event Model: It expresses events related to the lifecycle of cloud
resources in terms of entities with necessary attributes that describe
events [14]. It should be noted that, the issues of event detection while
important, are complementary to the research issues addressed in our
work and thus outside the scope of this paper.

The benefit of the model, as stated earlier, is that DSMs enables DevOps
to work with a high-level design that captures cloud resources as entities and
relationships. Concrete cloud configurations can be described based on the DSM.
Additionally, DSMs provide a lightweight documentation approach. In contrast
with existing script-based approaches, complex resource configurations are often
only documented separately in form of ad-hoc Wikis that quickly gets outdates
unless continuously maintained. Additionally, our ER-based model inherently
supports machine-readable syntax, which can be consumed by software like Con-
nectors to automatically generate cloud resource descriptions, deployment and
management scripts.

4.1 Docker Case-Study

We built DSMs for a diverse range of tools and languages, including: Docker, Juju
and TOSCA. Due to space constraints, we have chosen Docker as a case-study
to illustrate in this paper (see Fig. 3). Docker is an open-source and emerging
industry standard. (Example of other models have been published online5

By analyzing the provided specifications6,7, we identified six key resource
description entity types: (1) Container, (2) Image, (3) Application, (4)
Registry, (5) Hosting-Machine and (6) Cluster (refer to Fig. 3).

5 http://mosheb.web.cse.unsw.edu.au/DSM/appendix.html
(Appendix of this paper has been published online for readers’ further interest).

6 https://docs.docker.com/reference/builder/.
7 https://docs.docker.com/compose/reference/.

http://mosheb.web.cse.unsw.edu.au/DSM/appendix.html
https://docs.docker.com/reference/builder/
https://docs.docker.com/compose/reference/

A Model-Driven Framework for Interoperable Cloud Resources Management 193

The central entity: Container represents a virtualized software container
where DevOps may deploy an application. Deployment knowledge of the appli-
cation and its dependencies is represented via the entity, Image. Such knowl-
edge is either represented using one monolithic Image instance or a set of
Image instances. In other words, the Image possesses deployment knowledge
required to instantiate a Container. An Application represents a logical entity
that includes a collection of related Containers. Each Container constitutes
a component of the Application. The entity Registry represents a reposi-
tory of Images where DevOps organize, curate and share resource deployment
knowledge. The entity Hosting-Machine represents the location where a Con-
tainer is hosted (e.g., VM or physical machine). A Cluster represents a set
of Hosting Machines. This reduces the overhead of dynamically managing
multiple machines. For example, the Cluster may automatically decide which
Hosting Machine will be chosen to deploy the given container based on an opti-
mization algorithm [15].

We then derive the attributes that characterize each entity; and the relation-
ships amongst them. For example, the relationship between Hosting-Machine
and Container is Deployment. The Containment relationship defines the hier-
archical organization of entities. For example, a Containment relationships
exist between a Container and its related Application; and between a

Fig. 3. Domain-specific Model for Docker

194 D. Weerasiri et al.

Hosting-Machine and its related Cluster. Similarly, we derive all other rel-
evant relationships.

Next we extract actions. For example, create, start, stop, pause and
delete to manipulate Containers. As well as all other actions that Docker
offers.

We then extract basic events that are supported8. Such as: @Created,
@Started, @Stopped, @Paused, @Running and @Killed, to detect the runtime
state of Containers.

We then specify additional events that are not directly supported by the tool,
but are required by the Connector for resource management. For example, we
may specify a periodic event that includes memory usage data of a particular
Container. In addition, we may specify composite events based on previously
extracted events using an existing event-pattern specification language (e.g.,
Esper EPL). For example, we may specify a composite event, which gets triggered
if the memory usage of a Container exceeds 95 % and then the Container is
killed, to identify Containers that get crashed due to the shortage of available
memory.

5 Implementation

Curating DSMs and Connectors. Our design is based on crowd-driven incre-
mental contributions, whereby domain experts of a particular tool collectively
participate in curating (i.e. creating and/or updating) DSMs. In our current
implementation, we serialize entities and relationships using JSON-Schema.
DSMs therefore produce high-level cloud resource schemas that enforce con-
straints over entity attributes (e.g. datatype, optionality); and relationships (e.g.
cardinality). Additionally, actions and events of DSMs may also be defined. Com-
plex or customizable events are also supported using Esper EPL9.

Similarly, experts may also contribute Connectors, by providing the necessary
business logic for each specified operations that make up the connector interface.
Earlier at Sect. 3, we defined a generic programmable interface for DevOps to
implement connectors, this include four mandatory operations. Additionally, a
Connector may have any number of operations that implement the actions speci-
fied in the relevant DSM. For example, Docker defines a createContainer method,
which: (i) accepts the name of an Image; (ii) prepare the Hosting-Machine to
deploy a Container; and (iii) invoke docker run command in the Docker CLI10

along with an Image. A snippet of a connector interface is shown at Fig. 4.
Once both the DSM and Connector/s are registered, DevOps are then able

to create cloud resources and moreover, implement management processes/rules
based on the simplicity offered by the high-level DSM.
User-Interface. Our current implementation provides a Command-Line Inter-
face (CLI), as well as a prototypical Graphical User Interface (GUI). Our GUI
8 https://docs.docker.com/engine/reference/commandline/events/.
9 http://rsper.codehaus.org.

10 https://docs.docker.com/reference/commandline/cli/.

https://docs.docker.com/engine/reference/commandline/events/
http://rsper.codehaus.org
https://docs.docker.com/reference/commandline/cli/

A Model-Driven Framework for Interoperable Cloud Resources Management 195

includes DSM Editor that enables curators to graphically specify the structure
of entities, relationships, actions and events when describing a DSM. We reuse
Java-script library named JSON Schema Based Editor11 for the generation and
verification of JSON schemas.

The CLI can also accomplish DSM specifications albeit programmatically. In
addition, the CLI enables DevOp to invoke operations. For example, calling the
init and deployContainer actions in order to deploy a Container within the
Docker runtime (refer to Code 1.1). Behind the scenes an appropriate connector
is selected, which fires the action call. DevOps are required to first locate the
DSM, as shown at Listing 1.1.

Code 1.1. CLI command to deploy a container in Docker

1 cd ~/base -git -repo/node -app -1 #location of the JSON -based

resource description

2 cloudbase docker.rest -action=init

3 cloudbase docker.rest -action=deployContainer

4 -input ={"resource":"node -engine.json"}

Automated Translation into Native Artifacts. Figure 4 provides an illus-
trative overview. The translation logic utilizes both the preregistered DSM and
Connector/s. A DevOp may then describe a resource configuration: in this exam-
ple, a MySQL and Node.js Web application (based on Scenario 1 we described
in Sect. 2). Subsequently, a Dockerfile and build.sh file is automatically gen-
erated for each resource. Note: The files shown in Fig. 4 are for illustrative pur-
poses only. For larger print, readers are directed to our online appendix (See
footnote 5).

Similarly, the build.sh file is generated based on a sequence of commands,
which: (a) reads the Dockerfile; (b) generates a concrete Image; (c) uploads
the generated Image to a specified Registry (i.e., Registry-1); and (d) creates a
concrete Container from the concrete Image in a specified Hosting-Machine (i.e.,
HostingMachine-1). The build.sh file may also include commands to instantiate
relationships (e.g. Links and Volumes) between dependent concrete Containers.
The transformation logic extracts the required input data for these commands
from attributes that were defined in Docker’s DSM.

In addition, management scripts such as event/action rules are also auto-
translated into low-level API calls. For example, a management rule, that cre-
ates new Containers to handle increasing load is depicted at the bottom of
Fig. 4. The generated file depicts a sequence of API calls which: (a) logs-in to a
particular Hosting-Machine; (b) creates an Image (if it doesn’t already exist);
and (c) creates and starts a Container.

Storage. We utilize a JSON Object Store; a Git12 repository to store and share
DSMs and their objects as JSON files. Related cloud resource descriptions are
organized into separate folders within the repository. The JSON Object Store
11 https://github.com/jdorn/json-editor.
12 https://git-scm.com/.

https://github.com/jdorn/json-editor
https://git-scm.com/

196 D. Weerasiri et al.

allows keeping multiple versions of JSON files and trigger events when cer-
tain modifications (e.g., store, update, delete cloud resource descriptions) occur.
These features are very useful to dynamically reconfigure cloud resources and
roll-back to a previous stable configuration if an error occurs.

Event Management System. We detect and process lower-level monitoring
events (e.g., (re)starting, CPU and memory usage) from different cloud ser-
vices (e.g., Docker, AWS), and thereby generate higher-level events for DevOps.
Events to be collected are defined as part of the DSM. We support both Pull and

Fig. 4. Automated translation of high-level models into native artifacts

A Model-Driven Framework for Interoperable Cloud Resources Management 197

PuSH -based detection. We use Fluentd13 to perform polling and extract JSON-
based events. For example, events related to state changes of Containers as per
Docker’s DSM. For extracting PuSH -based events, we leverage Apache Camel14.
For specifying, processing and generating high-level events we use Esper EPL.
High-level events enable defining events based on a series of low-level events.
For example, Esper may trigger an event named CPULoad-High for a particular
Application in Docker if the CPU usage of each Container of the Application
is over 95 %, (as illustrated in Fig. 4). We also implement a Java-based event
publishing channel for consumers (such as the Rule Processor) to subscribe.

Rule Processor. We also support automation capabilities via simple reactive
rules. For example, DevOps may specify if @Stopped then #notify, which
implies if some resource has stopped, perform some notification action. We
greatly simplify the definition of by reusing our previous work [3], where we
adopted a “knowledge-based” approach, which means APIs and their constituents
(i.e. operations, input/output types) of the orchestration tools are loaded in
a knowledge-base. This makes it possible to write high-level rule definitions
and translate into concrete actions. At Fig. 4, we showed a simple rule. The
listen-to construct specifies events to detect; the trigger construct speci-
fies what actions to invoke; and the map construct describes the required input
parameters for the invocation.

6 Evaluation

We conducted a user-study to evaluate the following hypotheses: H , the Domain-
Specific Model approach is more efficient to accurately configure and deploy
cloud resources. We measured efficiency as the time taken to complete the tasks
and the number of lines-of-code excluding whitespace; whereas accuracy was
determined by deploying each cloud resource description and checking whether
the resultant deployment complied with the initial deployment specification.

Participant Selection and Grouping. Participants were sourced with diverse
levels of technical expertise. For the sake of analysis, we classified a total of 14
participants into 2 main groups: (I) Experts (8 participants) with sophisticated
understanding of cloud orchestration tools with 2–8 years of experience. And (II)
Generalists (6 participants) who have average knowledge of cloud orchestration
tool for day-to-day requirements, with around 1–5 years of experience.

Use-Case. We asked participants to configure and deploy the following scenario:
A platform that requires an AWS-EC2 VM where a Docker Container resides
within. The container includes Redmine15, a project management service, and
a Git client16. The Redmine service is intended to: (i) extract commits from a

13 http://www.fluentd.org/.
14 http://camel.apache.org/.
15 http://www.redmine.org/.
16 http://git-scm.com/.

http://www.fluentd.org/
http://camel.apache.org/
http://www.redmine.org/
http://git-scm.com/

198 D. Weerasiri et al.

specified source repository in GitHub via the Git client; and (ii) link them with
relevant bug reports. In addition an AWS-S3 bucket (i.e. key-value store), which
acts as a software distribution repository, is required.

Experimental Setup. Prior to the experiment, participants attended an indi-
vidual training session, where our tool was explained via a hands-on presentation.
We also explained them the use-case scenario. For quantitative comparison pur-
poses, we conducted the same experiment against two third-party tools: Docker
and Juju. Only a total of 8 and 5 out of 14 DevOps participated in the Docker
and Juju based experiments respectively. This was due to some DevOps not
having expertise and confidence to use those tools. In addition, a total of 7 par-
ticipants implemented the same deployment specification using Shell scripts to
estimate an upper bound of the test results.

6.1 Experiment Results and Analysis

Evaluation of H. The hypothesis H was evaluated based on the time taken and
number of lines-of-code. Alternatively, we sought to disprove the null hypothesis
H 0. The hypothesis was examined by conducting a t-test with a probability
threshold of 5 %, and assuming unequal variance.

As shown in Fig. 5, it was pleasantly surprising that even generalists demon-
strated a significant increase in efficiency (i.e. reduction in time and lines-of-
code). More specifically, the time taken to complete the task was reduced by 31 %
in comparison to there other approaches. Similarly, the number of lines-of-code
was reduced by 37.2 %. Participants reported that they much rather preferred an
entity-relationship (ER) based abstraction for describing resources, as opposed
to script-based languages that are provided by otherwise widely adopted cloud
management tools, such as Docker and JuJu. DevOps confirmed this greatly
helped improve their configuration and deployment time.

Fig. 5. Results (Time, grouped by expertise); t-test Results; and Lines-of-Code

A Model-Driven Framework for Interoperable Cloud Resources Management 199

On the other hand, our approach assumes that appropriate Domain-Specific
Models and Connectors have been defined and registered. This does incur addi-
tional costs to implement, however we argue this is typically a one-off for the
benefit of many. Once registered, countless DevOps would benefit over many
occasions. Moreover, our knowledge-driven approach implies knowledge (such
as high-level representations of cloud resource configurations) can be incremen-
tally shared and collectively reused, which significantly improve productivity to
implement federated management spanning across multiple cloud services.

Due to the vast number of alternative tools, and project-based constraints, a
more exhaustive comparative experiment was outside the scope. However, given
the notable differences in times (mean of 63, against 93, 72 and 101 min), we
postulate it is unlikely to observe fundamental differences when comparing with
any other tools similar to Docker or Juju. Accordingly, given our observations
the likelihood of H 0 (equal mean modeling time) was around 5 %. Therefore,
we could safely reject these null hypotheses, and imply the truth of H .

7 Related Work and Concluding Remarks

Tools such as, Puppet, Chef, Juju, Docker, SmartFrog and AWS OpsWorks, as
well as various research initiatives [4,5,7,8,19], all provide domain specific lan-
guages to represent and manage resources in a cloud environment. These lan-
guages are either template-based or model-driven [11].

Cloud Resource Representation and Management Languages.
Template-based approaches (e.g., Open Virtualization Format) aggregate
resources from a lower-level of the cloud stack and expose the package, along with
some configurability options, to a higher-layer. Model-driven approaches (e.g.,
TOSCA [12]) define various models of the application at different levels of the
cloud stack, and aim to automate the deployment of abstract pre-defined com-
posite solutions on cloud infrastructure [9,14]. Our approach proposes Domain-
specific Models – a methodology to extract cloud resource management entities
from such model-driven and template-based languages. In contrast, our approach
invites an interoperable vocabulary to build elementary and federated cloud
resources, as an abstract-layer over these “multiple and diverse languages”.

Enabling Federated Cloud Management. Federation of cloud resources
implies building cross-provider solutions. For example, Hosting-Machine in
Docker represents a VM where Containers are deployed, albeit the Docker
run-time itself cannot provision VMs. JuJu on the other hand focuses on man-
aging a set of VMs, and can provision these VMs. To support this, we require
a middleware that either: (i) defines a unified cloud resource language; or (ii)
provide a pluggable architecture that accepts and interprets different resource
models. The former is clearly not feasible, would be costly and require existing
tools to undergo major architectural changes or complex model transformations
to conform to a new language provided by the middleware. We thus believe the
latter approach provides a more pragmatic and adaptive solution that can be

200 D. Weerasiri et al.

integrated amongst a set of already existing and prevalent tools. To solve this
gap, we thus precisely propose the notion of Domain-specific models, to automate
end-to-end deployment (e.g. Docker Containers on VMs which are provisioned
by Juju).

Model-Driven Approach and Combating Heterogeneity. TOSCA is an
open-standard for unified representation and orchestration of cloud resources
[12]. Wettinger et al. proposes a model transformation technique that gener-
ates TOSCA-based descriptions from resource descriptions in Chef and Juju
[18]. MODAClouds [1] is another approach to design and manage multi-cloud
applications. It proposes four layers that incrementally transform functional
and non-functional requirements of applications into tool-specific resource tasks.
Konstantinous et al. [8] presents a description and deployment model that
first models a resource as a provider-independent resource configuration, called
“Virtual Solution Model”, and then another party can transform the provider-
independent model to a provider-specific model called, “Virtual Deployment
Model”. However, this approach only allows users to compose federated resource
configurations from a single provider for a single deployment. In contrast, our
approach considers the resource federation from multiple providers as a first class
citizen.

Summary. The “cloud” plays an increasingly vital role in modern-computing
technology. Accordingly, a vast variety of configuration and management tools
have been proposed, albeit they differ with respect to representation language,
as well as user-interface. Overall they assume a low-level and sophisticated pro-
grammatic approach. The paper provides an innovative approach for dealing
with this: Firstly, in stead of competing with existing approaches, we embrace
them by providing a “higher-level” and “interoperable” layer via the notion of
Domain-specific Models. Such models can recompose to even higher-level models,
in order to capture a particular use-case. Moreover, we encourage a knowledge-
sharing paradigm unlike any other existing approach. We realized our approach
via a pluggable architecture (i.e., Connectors) – a programmable interface that
allows DevOps to deploy and manage high-level cloud resource representations.
Behind the scenes, Connectors translate high-level models into native scripts.
We evaluated our work with a user-study that yielded significantly promising
results. We are therefore confident our work provides an innovative approach
to a new way of cloud management. As future work, we plan to integrate a
recommender system, and visual notations based on our previous work [17].

References

1. Ardagna, D., et al.: Modaclouds: a model-driven approach for the design and exe-
cution of applications on multiple clouds. In: MISE, pp. 50–56, June 2012

2. Bahga, A., Madisetti, V.K.: Rapid prototyping of multitier cloud-based services
and systems. Computer 46(11), 76–83 (2013)

3. Barukh, M.C., Benatallah, B.: ProcessBase: a hybrid process management plat-
form. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS,
vol. 8831, pp. 16–31. Springer, Heidelberg (2014)

A Model-Driven Framework for Interoperable Cloud Resources Management 201

4. Chieu, T.C., et al.: Solution-based deployment of complex application services on
a cloud. In: SOLI, pp. 282–287. IEEE (2010)

5. Delaet, T., Joosen, W., Vanbrabant, B.: A survey of system configuration tools.
In: 24th International Conference on LISA, pp. 1–8. USENIX Association (2010)

6. Gartner says cloud computing will become the bulk of new it spend by 2016.
http://www.gartner.com/newsroom/id/2613015. Accessed 07 Dec 2014

7. Goldsack, P., et al.: The smartfrog configuration management framework. ACM
SIGOPS Oper. Syst. Rev. 43(1), 16–25 (2009)

8. Konstantinou, A.V., et al.: An architecture for virtual solution composition and
deployment in infrastructure clouds. In: VTDC, pp. 9–18. ACM (2009)

9. Liu, C., Loo, B.T., Mao, Y.: Declarative automated cloud resource orchestration.
In: Proceedings of the SOCC 2011, pp. 1–8. ACM (2011)

10. Lu, H., et al.: Pattern-based deployment service for next generation clouds. In:
2013 IEEE Ninth World Congress on SERVICES, pp. 464–471, June 2013

11. Misic, V., et al.: Guest editors’ introduction: special issue on cloud computing.
IEEE Trans. Parallel Distrib. Syst. 24(6), 1062–1065 (2013)

12. OASIS: Topology and Orchestration Specification for Cloud Applications
(TOSCA), Version 1.0 (2013)

13. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Analysis and applications of
timed service protocols. ACM Softw. Eng. Methodol. 19(4), 11:1–11:38 (2010)

14. Ranjan, R., Benatallah, B.: Programming cloud resource orchestration framework:
operations and research challenges. CoRR abs/1204.2204 (2012)

15. Schulte, S., Janiesch, C., Venugopal, S., Weber, I., Hoenisch, P.: Elastic business
process management: state of the art and open challenges for BPM in the cloud.
Future Gener. Comput. Syst. 46, 36–50 (2015)

16. Veeravalli, B., Parashar, M.: Guest editors’ introduction: special issue on cloud of
clouds. IEEE Trans. Comput. 63(1), 1–2 (2014)

17. Weerasiri, D., Barukh, M.C., Benatallah, B., Jian, C.: Cloudmap: a visual notation
for representing and managing cloud resources. In: Nurcan, S., Soffer, P., Bajec, M.,
Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 427–443. Springer, Heidelberg
(2016)

18. Wettinger, J., Breitenbucher, U., Leymann, F.: Standards-based devOps automa-
tion and integration using TOSCA. In: 2014 IEEE/ACM 7th International Con-
ference on Utility and Cloud Computing (UCC), pp. 59–68, December 2014

19. Wilson, M.S.: Constructing and managing appliances for cloud deployments from
repositories of reusable components. In: Proceedings of the 2009 Conference on
HotCloud 2009. USENIX Association (2009)

20. Zeng, L., et al.: QoS-aware middleware for web services composition. IEEE Trans.
Softw. Eng. 30(5), 311–327 (2004)

http://www.gartner.com/newsroom/id/2613015

	A Model-Driven Framework for Interoperable Cloud Resources Management
	1 Introduction
	2 Limitations in Current Cloud Management Solutions
	3 Next-Generation Cloud Resource Management: Architecture Overview
	4 Extracting Domain-Specific Models
	4.1 Docker Case-Study

	5 Implementation
	6 Evaluation
	6.1 Experiment Results and Analysis

	7 Related Work and Concluding Remarks
	References

