
Cross-Device Integration of Android Apps

Dennis Wolters1(B), Jonas Kirchhoff1, Christian Gerth2, and Gregor Engels1

1 Department of Computer Science, Paderborn University, Paderborn, Germany
{dennis.wolters,engels}@uni-paderborn.de, jonaskir@mail.uni-paderborn.de

2 Faculty of Business Management and Social Sciences,
Osnabrück University of Applied Sciences, Osnabrück, Germany

c.gerth@hs-osnabrueck.de

Abstract. Integrating apps on mobile devices into applications running
on other devices is usually difficult. For instance, using a messenger on a
smartphone to share a text written on a desktop computer often ends up
in a cumbersome solution to transfer the text, because many applications
are not designed for such scenarios. In this paper, we present an app-
roach enabling the integration of apps running on Android devices into
applications running on other devices and even other platforms. This is
achieved by specifying adapters for Android apps, which map their ser-
vices to a platform-independent service interface. For this purpose, we
have developed a domain-specific language to ease the specification of
such mappings. Our approach is applicable without the need to modify
the existing Android apps providing the service. We analyzed its feasibil-
ity by implementing our approach and by specifying mappings for several
popular Android apps, e.g., phone book, camera, and file explorer.

Keywords: Cross-Device · Integration · Android · Adapter · DSL

1 Introduction

Android devices like smartphones or tablets incorporate a high degree of inter-
action between apps. For instance, users usually have two choices when changing
the profile picture in a messenger app: they can either select an existing picture
from the gallery app or capture and insert a new picture with the help of the
camera app. In this service-oriented interaction the messaging app is acting as
the service requestor and the gallery/camera app is acting as service provider,
who provides a service returning a picture. Furthermore, it is very easy for the
user to add new integrable services by simply installing additional apps using an
app store. However, this integration of another app’s services is only available
to apps on the same Android device. An integration of apps running on differ-
ent devices is usually not supported, forcing users to find workarounds in order
to integrate these apps to some extent [16]. For example, when users want to
update their profile picture using their desktop computer with a picture taken
on their smartphone, they have to transfer the picture somehow, e.g., manually
or by using file synchronization tools like DropBox.
c© Springer International Publishing Switzerland 2016
Q.Z. Sheng et al. (Eds.): ICSOC 2016, LNCS 9936, pp. 171–185, 2016.
DOI: 10.1007/978-3-319-46295-0 11

172 D. Wolters et al.

It would be highly beneficial from a user’s perspective if functionality pro-
vided by apps running on mobile devices could be integrated and accessed by
applications on devices like desktop computers as well. However, these apps
usually do not provide a public interface that is accessible by applications on
other devices, e.g., via the internet. Therefore, application developers wanting
to integrate apps running on other devices are missing both integrable services
and an infrastructure to access these services from their applications. But as we
have described earlier, apps on Android devices already provide services that can
be integrated by other apps on the same device. In fact, the Android platform
encourages app developers to program their apps in a way such that they can be
integrated by other apps. Thus, integrable services already exist but until now
they cannot be accessed from other devices. Hence, a solution is required that
enables developers to integrate those services into their application, providing
users a seamless cross-device experience as envisioned by Satyanarayanan [17].

In this paper, we present an approach that enables the cross-device integra-
tion of Android apps into applications running on different devices. In order
to realize this without requiring any changes to the implementation of the
Android apps providing the services, our approach allows the specification of
adapters which map these services to platform-independent service interfaces,
e.g., a RESTful interface. Thereby, services can be integrated by applications
running on other devices and on other platforms. To ease the specification of
such adapters, we present an extensible domain-specific language (DSL). Using
this DSL it is possible to develop adapters for existing apps with only a fraction
of the complexity that native code would require.

Additionally, we have implemented a prototype of our approach, which allows
to find and integrate services provided by apps on Android devices. Along with
our prototype we specified adapters using our DSL for several standard Android
apps like the camera, phone book, or the file explorer. Thereby, we demonstrate
the capabilities of our approach as well as the expressiveness of our DSL, and
enable developers to integrate these services into their own applications.

The remainder of this paper is structured as follows: In Sect. 2, we explain
fundamental concepts of the Android platform needed to understand our app-
roach. Section 3 gives an overview of our approach and in Sect. 4 we present our
DSL to specify adapters, followed by Sect. 5 describing our implementation. In
Sect. 6, we discuss the feasibility of our approach and its limitations. Related
work is presented in Sect. 7. Finally, Sect. 8 concludes the paper and gives an
outlook on future work.

2 Fundamentals of the Android Platform

Since our approach focuses on the Android platform, some basic knowledge of
the Android platform is needed. In particular, we explain how Android apps can
provide services for other apps on the same device.

We first have a look at the internal structure of Android apps. Android apps
are written in Java and are divided into several components, where each com-
ponent is an instance of the following component types: Activity , Background

Cross-Device Integration of Android Apps 173

Service1, Broadcast Receiver , or Content Provider . An app may contain arbi-
trary many instances of each component type. An Activity represents one screen
of an app, e.g., a phone book app would contain an Activity for the contact list
as well as one for displaying the details of a single contact. Activities are used
to interact with the user. In contrast, Background Services are used in the back-
ground, usually invisible for the user, to perform certain long-running operations
like downloading a file. Broadcast Receivers can react on events, e.g., when the
device is plugged into a docking station, and invoke corresponding logic, mostly
by starting an Activity or a Background Service. Content Providers encapsulate
access to data stores like relational databases. For instance, Android’s phone
book app has a Content Provider storing all contacts.

In order to start components of type Activity, Background Service, or Broad-
cast Receiver, Android uses a message data structure called Intent . Such Intents
can be sent by the Android system or by app components. In case of Activi-
ties and Background Services, an Intent can explicitly specify which Activity or
Background Service should be started. In addition, an Intent can contain data
which is passed to the started component. For Activities, it is also possible to
implicitly define which Activity should be started by specifying only the action
to be performed, e.g., “Take Picture”. At runtime the Android system resolves
these implicit Intents by offering the user a list of apps capable of performing
this action. For this purpose, developers have to declare at design time which
Activities can handle certain actions. By only implicitly defining the providing
app, a loose coupling between the requesting and providing app can be realized.

In addition to this unidirectional style of communication, where only one
Intent is sent to the providing app, the Intent-based communication with Activ-
ities can also be bidirectional. For instance, if an Intent is used to start an
Activity in order to get a certain result, e.g., a phone number from the phone
book, the result is encapsulated in a second Intent and sent back to the com-
ponent from where the request originated. Additionally, Intents can be used to
broadcast events, which are received by Broadcast Receivers that subscribed to
receive those events.

In contrast to other component types, Content Providers cannot be accessed
via Intents. Instead, apps have access to predefined system functions in order
to query or manipulate data items encapsulated in a Content Provider. Even
though Content Providers can be used as front ends for other kinds of data
stores, their whole interface is inspired by interfaces of relational databases.
Furthermore, some parts of RESTful interfaces are adopted as well, like using
Uniform Resource Identifiers (URIs) to identify Content Providers as well as
every single data item being stored in those providers.

By default, interaction between components is limited to components within
an app. However, apps can declare their components as public. By doing so, these
public components become entry points into the app and other apps on the device

1 A Background Service component is actually just called Service but it is not nec-
essarily a service being provided for other apps. To avoid confusion, we call this
component Background Service.

174 D. Wolters et al.

can integrate these components. For instance, a public Content Provider can
be queried or manipulated by other apps. In the case of Activities, Background
Services, or Broadcast Receivers, it means that they accept Intents sent by other
apps. From a requesting app’s perspective, public components are distinct units
of logic, and therefore, they can be seen as services provided by the corresponding
app. In this sense, Intents can be seen as Android-specific service request. Since
Intents are also used to encapsulate the result that is sent back to the service
requestor, it is also the Android-specific response format.

3 Cross-Device Integration of Android Apps

As explained in the previous section, services offered by Android apps can be
integrated by other apps on the same device. In this section, we introduce our
approach that enables the integration of apps running on Android devices into
applications running on other devices. First, we present requirements for such
an approach, and subsequently, we provide a general overview of our approach.

3.1 Requirements

We have identified the following requirements for an approach to enable the
cross-device integration of Android apps:

– R1 Applicable on existing apps: The approach shall enable the cross-
device integration of existing Android apps without having to alter them in
any form. Thereby, it enables the reuse of a huge number of existing services,
provided by currently available apps.

– R2 Usage of platform-independent service technologies: Intents are an
Android-specific concept which is barely used outside of the Android domain.
Hence, it must be possible for requestors running on different platforms to use
platform-independent standards like RESTful or SOAP-based web services to
access the services provided by apps on Android devices.

– R3 Service registry and device management: It must be possible to find
and select devices offering certain services.

3.2 Overview of Our Approach

In this section, we provide an overview of our approach and explain how it
addresses requirements R1 to R3. A visualization of our approach is given in
Fig. 1. As stated in Requirement R1, the approach shall be applicable on exist-
ing apps and services offered by those apps shall be provided in a platform-
independent manner (see Requirement R2) to requesting applications on other
devices. Consequently, we chose to build adapters for existing Android apps,
similar to using adapters to integrate legacy systems into service-oriented
architectures [14]. In particular, we use adapter apps installed on the same device
as the app providing the service. Adapter apps utilize Android’s inter-app com-
munication and map services provided by Android apps to platform-independent

Cross-Device Integration of Android Apps 175

service technologies. For the remainder of this paper, we call the services pro-
vided by apps on Android devices internal services, because they are only avail-
able for apps on the same device and have an Android-specific interface. Adapter
apps convert these internal services to external services, which have a platform-
independent service interface and can therefore be integrated by applications
running on other device/platforms.

Fig. 1. General overview of our approach

Integrating the external services into the requesting application is not part
of our approach. However, since we support the provisioning of external services
using well-known service technologies like RESTful web services, developers of
requesting applications can use well-supported, mature client implementations
of those technologies to integrate these services. Additionally, if a requesting
application already supports the integration of other applications via an import
interface, an external service can be defined in such a way that it is directly usable
by the requesting application. Alternatively, existing adapter-based approaches,
as discussed in Sect. 7, can be utilized to deal with interface mismatches on the
requesting side.

In addition to adapter apps, our approach includes a central entity called
mediator, which addresses Requirement R3. A mediator serves as a service
registry [14] and as a registry for devices. Moreover, when dealing with hetero-
geneous communication technologies, e.g., when a requestor wants to use HTTP
and a provider is only reachable via push notification, the mediator can bridge
between these different technologies. In order to deal with connectivity prob-
lems, the mediator can be used for indirect communication between requestor
and provider, which includes buffering of requests and responses if either side is
temporarily not available, which is common when using mobile devices.

To find devices and services, users must first register them at the mediator.
If this has been done, we provide several ways to find devices providing a certain
service: (i) select the provider from a list of accessible devices on the requesting
device, (ii) send a broadcast to all accessible devices and claim the request on

176 D. Wolters et al.

the providing device, or (iii) perform an indirect binding based on a PIN or
QR code. By default, users can only see and access services offered by their
own devices. However, the indirect binding also allows to use services offered by
devices owned by other users.

Figure 2 visualizes how an adapter app converts an internal to an external
service. Applications on other devices send a service request to an external service
interface (see ❶). Details on the representation of external requests/responses
are discussed in Sect. 5. An external request is received by an adapter which
delegates the service request to internal services by converting the request to an
equivalent Intent (see ❷). Subsequently, this Intent is sent explicitly or implicitly
to an existing app on the Android device. In order to use our approach for
existing apps, we must provide the data as expected by the existing app. Hence,
if the app requires input data to be stored in a Content Provider, we must copy
the data provided in the request to the corresponding Content Provider and
must add a data reference to the Intent (see ❸). We must proceed in the similar
manner if the app expects data to be provided within files. Mapping external
requests to internal requests is sufficient to allow unidirectional communication
with existing apps, e.g., sharing information via a messenger app.

Fig. 2. Internal view of an adapter app

If the communication is bidirectional, we must map the internal result
returned by the existing app to an external service response that is understood
by the requestor on the other device. Thus, if the result references data in a
Content Provider or as a local file, we must resolve these references and include
the data in the service response (see ❹), or alternatively, create external ser-
vices granting access to the corresponding Content Provider or the file system.
While the former is privacy preserving since only necessary data is exchanged,
the latter exposes more data than needed and is not advisable if privacy is a
concern.

Cross-Device Integration of Android Apps 177

4 A DSL to Specify Adapter Apps

Initially, we implemented adapter apps for various common services offered by
Android apps, e.g., selecting a file, taking a picture, and sharing text or images.
Even though these adapters work, their source code is not easily understandable,
because a lot of boiler plate code is needed, e.g., for error handling. Addition-
ally, the Android API as well as the asynchronism of certain actions lead to the
distribution of coherent code fragments across various methods and classes. Fur-
thermore, extensive knowledge about the Android platform is needed to build
these adapters. To ease the applicability of our approach, we decided to develop
a DSL to specify adapters.

In the following, we present requirements as well as the definition of our
DSL, which includes a discussion of the metamodel, the concrete syntax, the
interpretation of our DSL, and an example mapping.

4.1 Requirements for a DSL to Specify Adapter Apps

Based on prototypical implementations of adapters for various internal services,
we have identified the most common steps an adapter performs and defined them
as requirements for a DSL to specify mappings performed by adapter apps:

– D1 Specification of Intents: The DSL must allow to specify Intents, which
are sent explicitly or implicitly to other apps. This includes the specification
of data embedded into an Intent.

– D2 Specification of CRUD2 operations on files and Content
Providers: In order to provide the data as needed for the providing app
and abstract from local data stores for external requesting applications, the
DSL must provide means to specify CRUD operations on the local file system
and on Content Providers.

– D3 Specification of a response: The DSL must allow the specification of
a response, which is sent back to the requestor (see Fig. 2).

– D4 Value passing: Data being received in a request or as part of a result shall
be usable as input for other operations. For instance, a service provided by
an Activity might return a reference to a data item being stored in a Content
Provider. To resolve this reference, we need to use it as an input for a read
operation on this Content Provider. The return value of the read operation
might again be included into the response sent to the requesting application.

4.2 Language Definition

Based on the Requirements D1 to D4, we developed the DSL presented in this
subsection. We start by explaining the metamodel and how mappings are being
interpreted, followed by an explanation of the concrete syntax.

2 Create, Read, Update, and Delete.

178 D. Wolters et al.

Metamodel. Figure 3 shows the metamodel of our DSL as an UML class dia-
gram. A mapping document can describe multiple external services by defining
mappings to one or more internal services offered by existing Android apps. Each
external service specified in the mapping document has a unique name. A map-
ping from an external to an internal service consists of an ordered sequence of
instructions. Based on the requirements D1 to D3 we have defined instructions
for the most common steps which need to be performed during a mapping. The
attributes of these instructions can be set to values provided with the request
or values created by other instructions, e.g., the result of a bidirectional Intent.
Additionally, constant values can be used.

Fig. 3. Metamodel of our DSL

In order to work with values provided in the request or by other instructions
(Requirement D4), we allow to define variables. Each variable is a Value. A
Value is a key-value object structure. The type attribute of a Value specifies the
type of the content attribute. For instance, if the type is String, the content
attribute is interpreted as a string. If the type is Object or Array, the content
attribute is not used, instead the Value has further Values as children. For
items of an array Value, consecutive ordinal indices are used as names of the
respective items. A variable starts with the $ sign followed by the name of
the variable. To access members of a variable, we use the operators commonly
known from Java. In particular, accessing a subproperty is done using the dot
operator and accessing a specified array item is done via an index enclosed by
square brackets. For instance, if a request from an external application contains
a property items with an array of strings, the variable reference for the first
item would be $request.items[0]. The $request variable always holds the
information being passed in the service request. In addition to serving as a data
structure for variables, a Value can also be used as an instruction to specify

Cross-Device Integration of Android Apps 179

complex objects inside a mapping. In this case, the described object is available
as a variable with the name specified in the name attribute.

The Intent instruction is used to create and send an Intent within the
Android system (see Requirement D1). The target attribute specifies whether
the Intent is directed towards an Activity, a Broadcast Receiver, or a Background
Service. If the target is an Activity, the presence of the attribute resultName
indicates whether a result Intent is expected. The result Intent is stored in a
variable with the name specified in the resultName attribute. The recipient is
either defined explicitly using the componentName attribute or implicitly using
the attributes action and category. The payload of an Intent can be specified
using the attributes data, type, and flag. Additional payload can be speci-
fied in a key-value-map called extras. A detailed description of these fields is
given in the documentation of the Intent data structure in [7]. Using the Intent
instruction, we are already able to specify simple mappings which only rely on
a single Intent and unidirectional communication.

The File instruction provides CRUD operations on files (see Requirement
D2). The affected file is specified by the attribute path. A reference to the
affected file is available as a variable with the name specified in the refName
attribute. The instruction can be used to create blank files and to create
or update existing files using static content or values provided by variables.
This content has to be specified using the content attribute. Furthermore, the
instruction can be used to delete files and to read the content of a file into a
variable.

CRUD operations on Content Providers (see Requirement D2) are realized
using the Provider and Query instruction. The former instruction is used for
create, update, and delete operations on Content Providers. The data items being
manipulated are specified as entries, e.g., an entry might specify the content
“555-1234” with the name “phonenumber”. Such an entry could be inserted into
a Content Provider, similar to adding a row to a table of a relational database,
where “555-1234” would be the value of the cell of the “phonenumber” column.
The URI of an inserted item is stored in a variable with the name specified in
refName attribute. The Query instruction is used to perform queries on Content
Providers. The result of the Query instruction is an array stored under a variable
with the name specified in the resultName attribute. A Projection specifies
which fields are retrieved. The type attribute of the Projection instruction
specifies the type of the retrieved data field. The content of the field is available
under the field’s name in the corresponding list item. If the alias attribute is
set, the field’s content is available under the alias. Selection criteria are specified
using the selection and args attribute. The result list sortation can be changed
using the order attribute.

The Response instruction addresses Requirement D3 and allows to specify a
Value being sent as a response to the requestor. Since it is a specialized form of
the Value instruction, it can be used to create complex types as well. We allow
only one Response instruction per mapping.

180 D. Wolters et al.

Based on our experience in developing adapter apps, the instructions which
are already part of our DSL allow to describe mappings for most services offered
by Android apps (see Sect. 6). However, there will be cases where the mapping
is more complex and current instructions do not suffice. To address this issue,
we provide means to add new instructions to our language. More information on
the extensibility of our DSL is given in the Sect. 5.

Interpretation. Figure 4 visualizes the interpretation of a mapping in terms
of a UML activity diagram. Upon receiving a request for a certain service, the
corresponding mapping is loaded and the instructions are executed in the order
they are listed in the mapping-document. Most instructions represent synchro-
nous actions and after they have been processed, we continue with the next
instruction. However, for asynchronous instructions like the Intent instruction,
the processing of the next instruction is postponed until the result has been
received and processed. Thereby, we can define mappings in sequential manner
even if asynchronous instructions are used (see Sect. 4.3).

Process Next
Instruction

Asynchronous?

yes

Wait for Result Process Result

Further
Instructions?

no
Load

Mapping no

Has a Response
been created?

yes

Send Response

no

yes

Fig. 4. Interpretation of a mapping visualized as a UML activity diagram

Since there might be additional instructions after a Response instruction,
e.g., instructions to remove temporarily created files or Content Provider items,
the response is sent after all instructions have been processed. Thereby, we can
add error messages to the response if those operations fail or discard the response
completely.

Concrete Syntax. To formulate instances of our language, we defined a con-
crete XML syntax. The mapping between the metamodel and the concrete XML
syntax is rather straightforward: Every class represents an XML element. Com-
positions describe parent-child relations. For instance, a <query> element can
have <projection> elements as children. If role names are specified, these are
used as element names instead of the name of the class, e.g., extras of an Intent
are specified using <extra> instead of <value>. Attributes of classes are spec-
ified as attributes of the XML element but there are two exceptions from this
rule: First, those attributes in the metamodel which are written in italics are
specified between the opening and closing tag of the corresponding XML ele-
ment, e.g., <value>foobar</value>. Second, attributes with an upper bound

Cross-Device Integration of Android Apps 181

greater than 1 are specified as children of the corresponding XML element. For
example, categories are specified as XML elements and not as attributes. If an
attribute is omitted, the default value specified in the metamodel is assumed.

4.3 Example

This subsection presents a concrete example for an external service, which allows
to pick a contact from a smartphone’s phone book. The corresponding map-
ping in shown in Listing 1. In Line 1, the name of the service is specified. To
select a contact from the phone book, a bidirectional Intent is sent with the
action ACTION PICK and a reference to the Content Provider storing the contacts
(Lines 2–3). Once the Intent has been sent, the phone book is being started on
the Android device and the user has to select a contact. The user’s selection
is returned as an Intent stored under the variable name $contact (Line 3) and
the data attribute contains an URI referencing a concrete contact in the phone
book’s Content Provider. Further contact information like the contact’s name
and phone number are retrieved by querying the Content Provider on the ref-
erenced item (Lines 4–7). Thereby, we resolve the local data references and are
able to build a response containing the selected contact information (Lines 8–11),
which is sent back to the requestor.

Listing 1. Mapping for a service to pick a contact from the user’s phone book

1 <service name="pickContact">

2 <intent target="Activity" action="ACTION_PICK"

3 data="content://contacts/data/phones" resultName="contact"/>

4 <query location="$contact.data" resultName="result">

5 <projection alias="name" name="display_name"/>

6 <projection alias="no" name="data1"/>

7 </query>

8 <response name="contact" type="object">

9 <value name="name">$result[0].name</value>

10 <value name="number">$result[0].no</value>

11 </response>

12 </service>

5 Implementation

We have built a framework implementing the approach described in the pre-
vious sections. Figure 5 gives an overview of our framework, which includes an
implementation of the mediator as a node.js web server as well as a generic
adapter app that can be specialized through mappings defined using our DSL. We
outsourced the provisioning of the platform-independent interface into separate
interface apps to enable different interfaces for the external services. Thereby,
we are able to reuse our adapter for different kinds of external service interfaces,
e.g., a RESTful interface or one using XML-RPC.

182 D. Wolters et al.

Interface and adapter apps use the Value data structure (see Fig. 3) as an
intermediate format to exchange requests and responses. Interface apps have to
perform a bidirectional transformation between the Value data structure and
the actual representation format. We implemented such a transformation for
JSON and XML and are confident that we can support other formats as well.

Currently, we have implemented an interface app providing a RESTful inter-
face via the mediator. The mediator uses push notifications or, if available, a
web socket connection to contact the device providing the service. Other inter-
face apps, e.g., one providing an XML-RPC interface, are possible but have not
yet been implemented. Also, services do not necessarily need be offered via the
mediator, interface apps could directly provide access to the service, e.g., over a
socket connection.

Fig. 5. Overview of our implementation

We implemented a generic adapter app that includes an interpreter for our
DSL. This app can be specialized by defining a mapping document using our
DSL and by requesting the necessary permissions to perform these mappings.
Specialized versions of this generic adapter app can be deployed on devices which
shall offer the services defined by the mapping document.

The generic adapter app allows to extend our DSL by introducing further
instructions. For this purpose, one must define a new instruction handler, which
is a Java class that interprets the XML code for a single instruction and has
access to the variable scope. Hence, it is possible to access existing variables
from an instruction handler and to make results available for other instructions
by defining them as variables.

6 Feasibility Study and Limitations

Based on our implementation, we tested the feasibility of integrating apps run-
ning on Android devices into applications running on other devices. For this
purpose, we identified relevant services offered by current Android apps and
converted them to external services by specifying mappings using our DSL. In
addition, we implemented a demo web application that allows to invoke all of
the defined external services from another device3.
3 A demo video can be found at http://xdai.dwolt.de.

http://xdai.dwolt.de

Cross-Device Integration of Android Apps 183

We mainly focused on services offered by Activities, since we are interested
in services which contain user interaction on the Android device. As mentioned
in Sect. 2, Activity-based services are accessed by sending and receiving Intents.
The Android documentation lists over 20 Common Intents4, which are supported
by Activities of various apps, and we were able to define mappings for all of these
Common Intents. An example is the mapping discussed in Sect. 4.3.

With regard to services accessible through Common Intents, there are lim-
itations we need to mention: If the input data items for a service are already
stored on the device providing the service, we need to know the URIs referenc-
ing these data items. There are two options to handle those situations: (i) the
requestor has to know the appropriate URIs from previous requests, e.g., from
insert actions, and has to include them in the request, or (ii) the user has to
choose the data item before the respective service can be used. This can be real-
ized by orchestrating multiple Intents, e.g., the URI that was returned as the
result of a pick Intent can be used as an input for a second Intent.

Intents can include objects of self-defined data types as payload. Even though
our approach supports the definition complex key-value object structures with
the Value instruction, we do not support the usage of self-defined data types.
However, this is not a problem regarding the before mentioned Common Intents
as none of them require any self-defined data types. Additionally, most Intents do
not use any other data types than those supported by our language, since using
custom data types often results in a tight coupling between the requesting and
providing app as both have to know this data type. Nevertheless, to support such
scenarios, our language can simply be extended by specifying a new instruction
to construct objects of the respective data type (see Sect. 5).

In addition to defining mappings for Activity services, we also defined map-
pings for services offered by Content Providers and Broadcast Receivers. In par-
ticular, we defined external services to query the phone book and the calendar
without user interaction on the Android device, e.g., to enable the browsing of
the phone book on another device. Furthermore, we created a service to control
the media playback on Android devices.

Our language allows to define mappings aggregating multiple internal services
offered by apps on the same Android device into a single external service. As an
example for such an aggregation, we defined a service that utilizes the camera
app to take a picture, which is then passed to a second app, where the user can
crop this picture before it is sent back to the requestor. All mappings created
during our feasibility study can be used out-of-the-box with our implementation.
Furthermore, they show that the current instructions suffice to define external
services based on the most common services offered by Android apps.

7 Related Work

Languages to deal with interface mismatches are presented in [4,5] and
Autili et al. developed an approach to synthesize mediators for heterogeneous
4 http://developer.android.com/guide/components/intents-common.html.

http://developer.android.com/guide/components/intents-common.html

184 D. Wolters et al.

networked systems [2]. All of these approaches assume that the existence of an
external interface on the providing side, which is not the case in our scenario. For
the same reason, the approach presented in [12] is not applicable, since it uses
adapters on the requestor’s side. Nonetheless, this can be beneficial to integrate
external services created with our approach.

Conductor [8] is framework to enable cross-device integration between
Android apps running on different devices. In contrast to our approach, Conduc-
tor is an invasive framework requiring that both providing and requesting app
use this framework. For the Android platform, Iyer et al. [10] build the counter
part for our approach. If an existing Android app is loosely coupled to services
of other Android apps, their approach allows to substitute these services with
web services like external services created using our approach. Thus, combin-
ing these two approaches enables cross-device interaction between two Android
apps without having to alter any of them. Lee et al. [11] developed an approach
to wrap Android activities into OSGi bundles. Thereby, they enable that these
activities are composed along with other services by an extended BPEL engine.
With our approach, any kind of Android component can directly be exposed as
a SOAP-based web service and be composed by standard BPEL engines.

Non-intrusive approaches exist that enable the cross-device usage of single
web applications [6] and for mashups which combine multiple web applications
[9]. Those approaches leverage the fact that web applications can be channeled
through a proxy and that the user interface is interpreted by a browser. Both is
not the case for Android apps.

The feasibility of providing web services on mobile devices is analyzed in
[1,13], but none of these approaches mention the reuse of existing applications,
and thereby, offer their services beyond the device boundaries. Web Intents [3]
was an approach trying to expand the idea of Android Intents to a mechanism
to integrate any kind of application. It would have been logical to transform
Android Intents to Web Intents, but the development has been ceased. Therefore,
we decided to abstract completely from Intents and support the usage of wide-
spread technologies for the external interface.

Paulheim [15] developed an approach for UI level integration, but only for
applications running on the same device. We also enable cross-device UI level
integration since we allow to define external service for Activity-based services,
which involve user interaction on the Android device providing the service.

8 Conclusion and Future Work

In this paper, we present an approach to enable the integration of services offered
by existing Android apps into applications running on other devices/platforms.
Our approach is non-intrusive with regard to existing apps, since we use adapter
apps to map the existing Android-specific interfaces to platform-independent
service interfaces. We introduced a DSL to specify such mappings and described
an architecture supporting the cross-device integration of existing Android apps.
We implemented a framework demonstrating the feasibility of our approach.

Cross-Device Integration of Android Apps 185

Along with our framework we already created mappings for various common
services offered by standard Android apps.

As part of this paper, we analyzed which current Android services are sup-
ported by our approach. In the future, we want to analyze the impact on the
user’s performance by comparing cross-device interactions using our automated
approach vs. manually coordinated cross-device interactions in a user study.
Additionally, we are exploring how we can extend the ideas presented in this
paper to cover further platforms like iOS or Windows.

References

1. AlShahwan, F., Moessner, K.: Providing SOAP web services and RESTful web
services from mobile hosts. In: ICIW 2010, pp. 174–179. IEEE (2010)

2. Autili, M., Inverardi, P., Mignosi, F., Spalazzese, R., Tivoli, M.: Automated synthe-
sis of application-layer connectors from automata-based specifications. In: Dediu,
A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol.
8977, pp. 3–24. Springer, Heidelberg (2015)

3. Billock, G., Hawkins, J., Kinlan, P.: Web Intents (2013). http://www.w3.org/TR/
web-intents/

4. Cavallaro, L., Di Nitto, E.: An approach to adapt service requests to actual service
interfaces. In: SEAMS 2008, pp. 129–136. ACM (2008)

5. Dumas, M., Spork, M., Wang, K.: Adapt or perish: algebra and visual notation
for service interface adaptation. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.)
BPM 2006. LNCS, vol. 4102, pp. 65–80. Springer, Heidelberg (2006)

6. Ghiani, G., Paternò, F., Santoro, C.: Push and pull of web user interfaces in multi-
device environments. In: AVI 2012, pp. 10–17. ACM (2012)

7. Google Inc.: Android Developers (2016). http://developer.android.com/
8. Hamilton, P., Wigdor, D.: Conductor: enabling and understanding cross-device

interaction. In: CHI 2014, pp. 2773–2782. ACM (2014)
9. Husmann, M., Nebeling, M., Pongelli, S., Norrie, M.C.: MultiMasher: providing

architectural support and visual tools for multi-device mashups. In: Benatallah,
B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014,
Part II. LNCS, vol. 8787, pp. 199–214. Springer, Heidelberg (2014)

10. Iyer, A., Roopa, T.: Extending android application programming framework for
seamless cloud integration. In: MS 2012, pp. 96–104. IEEE (2012)

11. Lee, J., Lee, S.J., Wang, P.F.: A framework for composing SOAP, non-SOAP and
non-Web services. IEEE Trans. Serv. Comput. 8(2), 240–250 (2015)

12. Lin, B., Gu, N., Li, Q.: A requester-based mediation framework for dynamic invo-
cation of web services. In: SCC 2006, pp. 445–454. IEEE (2006)

13. Mohamed, K., Wijesekera, D.: A lightweight framework for web services imple-
mentations on mobile devices. In: MS 2012, pp. 64–71. IEEE (2012)

14. Papazoglou, M.P., van den Heuvel, W.J.: Service oriented architectures:
approaches, technologies and research issues. VLDB J. 16(3), 389–415 (2007)

15. Paulheim, H.: Ontology-Based System Integration. Springer, Heidelberg (2011)
16. Santosa, S., Wigdor, D.: A field study of multi-device workflows in distributed

workspaces. In: UbiComp 2013, pp. 63–72. ACM (2013)
17. Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Pers. Com-

mun. 8(4), 10–17 (2001)

http://www.w3.org/TR/web-intents/
http://www.w3.org/TR/web-intents/
http://developer.android.com/

	Cross-Device Integration of Android Apps
	1 Introduction
	2 Fundamentals of the Android Platform
	3 Cross-Device Integration of Android Apps
	3.1 Requirements
	3.2 Overview of Our Approach

	4 A DSL to Specify Adapter Apps
	4.1 Requirements for a DSL to Specify Adapter Apps
	4.2 Language Definition
	4.3 Example

	5 Implementation
	6 Feasibility Study and Limitations
	7 Related Work
	8 Conclusion and Future Work
	References

