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Abstract. Service providers typically collect user data for profiling
users in order to provide high-quality services, yet this brings up user
privacy concerns. One hand, service providers oftentimes need to analyze
multiple user data attributes that usually have different privacy concern
levels. On the other hand, users often pose different trusts towards differ-
ent service providers based on their reputation. However, it is unrealistic
to repeatedly ask users to specify privacy levels for each data attribute
towards each service provider. To solve this problem, we develop the first
lightweight and provably framework that not only guarantees differen-
tial privacy on both service provider and different data attributes but
also allows configurable utility functions based on service needs. Using
various large-scale real-world datasets, our solution helps to significantly
improve the utility up to 5 times with negligible computational overhead,
especially towards numerous low reputed service providers in practice.
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1 Introduction

The last few decades have witnessed a variety of personalized services to users,
such as intelligent assistant, targeted advertising and so on, which has become
key business drivers for many companies. As one can understand, such services
are based on user’s data and oftentimes require substantial user data in order
to provide high-quality services. However, consumer fears over privacy continue
to escalate due to the release of users’ private data. Based on Pew Research [1],
68 % consumers think that current laws are insufficient to protect their privacy
and demand tighter privacy laws; and 86 % of Internet users have taken proac-
tive steps to remove or mask their digital footprints. Responding to increasing
user privacy concerns, governments in US/EU are increasing regulations and
applying/enforcing existing regulations.

More importantly, in order to provide high quality services, service providers
usually profile users by analyzing multiple attributes of their private data. Recent
research has showed that various attributes of data are often associated with
different privacy concerns [13,24,26]. More importantly, Zhang et al. [26] revealed
that user’s perception of privacy concerns will dramatically decrease if providing
them fine-grained privacy controls for different attributes of data.
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Fig. 1. Data Perturbation with Multi-Level Privacy Controls under Untrusted Server

On the other hand, while traditionally users count on service providers to pro-
tect their data privacy, recent years have witnessed a variety of privacy breaches
through service providers when malicious attackers break into the cloud/server
and steal user data. Target, HomeDepot, and Anaheim health insurance com-
panies are among the largest hits. Huge number of sensitive user data is leaked
through servers. Additionally, the insiders of service providers are another source
of privacy threat. It would be ideal if users do not have to fully trust the service
providers to protect their data; and users can impose different privacy concerns
based on each service provider’s reputation according to recent research [15], i.e.,
trust Google more than aforementioned intruded service providers.

However, it is unrealistic to repeatedly ask ordinary users to specify privacy
levels for each attribute of data every time releasing to different service providers.
Therefore, it is critically desirable to develop technologies that not only allow
business intelligence but also preserve users’ privacy needs toward both different
data attributes and different service providers.

In this paper, we aim to develop the first lightweight and provably private
framework, under untrusted server settings, to automate users multi-level pri-
vacy controls for releasing the aggregates of attributes associated with their pri-
vate data to each service provider. As shown in Fig. 1, our adoption of untrusted
server setting, in which user data is perturbed and anonymized on their private
devices before releasing, enjoys a number of benefits as discussed in [23]. In the
meanwhile, these protections should be done to still provide different reasonable
utilities of perturbed data based on service needs. Our approach is developed to
provide a strong and provable privacy guarantee, differential privacy, which is
the current state-of-the-art paradigm for privacy-preserving data publishing.

Our contributions are summarized as follows:

– We formulate a novel Multi-Level User Privacy Perturbation (MultiUPP)
problem, which aims to release perturbed aggregates on user data attributes
that not only preserves both differential privacy towards a service provider
(overall privacy) and differential privacy on each data attribute (per-attribute
privacy), but also optimizes a specific utility function based on service needs.
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– We analyze the lower bound of overall privacy guarantee with optimal utility,
as well as the lower bounds of utility loss.

– We propose a novel Multi-Level Differential Privacy (MultiDP) mechanism
to understand the condition between utility loss and overall and per-attribute
privacy preservation. Using MultiDP mechanism, we develop a novel Differen-
tially Private Multi-Level User Privacy Perturbation (DP-MultiUPP) frame-
work which allows to plug in different utility objectives. We prove theoretical
guarantee on privacy, utility and time complexity.

– We conduct extensive experiments on various large-scale real-world datasets.
Our solution is shown to outperform the state-of-the-art approach up to 5
times with negligible computational overhead on both PC and Android smart-
phones. Particularly, the utility is significantly improved toward low reputed
service providers in practice.

The rest of paper is organized as follows: Sect. 2 presents notations, prelimi-
naries and problem definition. Section 3 provides the lower bounds of utility loss
and overall privacy budget. Section 4 develops the DP-MultiUPP framework via
a novel Multi-Level Differential Privacy Mechanism. Experimental results and
related work are presented in Sects. 5 and 6. Finally, Sect. 7 concludes the whole
paper and discusses future work.

2 Preliminaries and Problem Definition

In this section, we first introduce notations and restate the definition and exist-
ing mechanism of differential privacy. Then, we define a novel Multi-Level User
Privacy Perturbation (MultiUPP) problem definition, along with its challenges.

2.1 Notations

Let I be the public set/universe of items of size |I| = n. A user’s raw private
data is denoted as a vector dr of dimension n. The ith entry in dr is either 1
or 0, meaning that item i does or does not belong to user’s private/raw history
data. Public attribute set is defined as A of size |A| = m, in which each item
is associated with a subset of attributes represented by a public item-attribute
matrix A of dimension n × m. The entry aij in A is the value that item i has
for attribute j. For the attributes in A, we define their private aggregate vectors
to be ar such that ar = AT dr. The published perturbed attribute histogram
is presented as a vector ap (details in utility objectives of problem definition in
Sect. 2.3).

This user’s multi-level privacy concern on different attributes is denoted as a
vector t = (t1, . . . , tm), in which the jth entry tj > 0 means the privacy budget
of attribute j. This user’s overall privacy concern towards the service provider
is defined as ε > 0. A smaller tj or ε means a higher privacy concern (a stronger
privacy guarantee) on attribute j or towards the service provider. (Note that all
tj and ε correspond to the privacy budget in differential privacy notion, defined
in the next subsection.) For reference, we list all notations in Table 1.
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Table 1. Notations

Symbol Description

I public item set/universe of size |I| = n

A public attribute set of size |A| = m

A public item-attribute matrix A ∈ {0, 1}n×m

dr user private item vector dr ∈ {0, 1}n

ar user private attribute aggregate vector ar ∈ R
∗m

(R∗: non-negative real numbers)

ap user perturbed attribute aggregate vector ap ∈ R
m

t user per-attribute privacy budget vector t ∈ R
+m

(R+: positive real
numbers)

ε user overall privacy budget towards service provider

2.2 Differential Privacy

Differential privacy [9] is a recent privacy model which provides strong privacy
guarantee. Informally, an algorithm A is differentially private if the output is
insensitive to any particular record in the dataset.

Definition 1 (ε-Differential Privacy). Let ε > 0 be a small constant. A ran-
domized function A is ε-differentially private if for all data sets D1 and D2

differing on at most one element, i.e., d(D1,D2) = 1, and all S ⊆ Range(A),

Pr[A(D1) ∈ S] ≤ exp(ε)Pr[A(D2) ∈ S] (1)

The probability is taken over the coin tosses of A.

The parameter ε > 0 is referred to as privacy budget, which allows us to
control the level of privacy. A smaller ε suggests more limit posed on the influence
of an individual item, which gives stronger privacy guarantee. Differential privacy
enjoys the following important composition property:

Lemma 1 (Composition Property [8]). If an algorithm A runs t ran-
domized algorithms A1,A2, . . . ,At, each of which is ti-differentially private,
and applies an arbitrary randomized algorithm φ to their results (A(D) =
φ(A1(D), . . . ,At(D))), then A is

∑
i ti-differentially private.

One of the most widely used mechanisms to achieve ε-differential privacy is
Laplace mechanism [9] (Theorem 1). Laplace mechanism adds random noises to
the numeric output of a query, in which the magnitude of noises follows Laplace
distribution with variance Δf

ε where Δf represents the global sensitivity of query
f (Definition 2).
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Definition 2 (Global Sensitivity [9]). For a query f : D → R
k, the global

sensitivity Δf of f is as follows:

Δf = max
d(D1,D2)=1

‖f(D1) − f(D2)‖1 (2)

for all D1,D2 differing in one element, i.e., d(D1,D2) = 1.

Theorem 1 (Laplace Mechanism [9]). For f : D → R
k, a randomized algo-

rithm Af = f(D) + Lapk(Δf
ε ) is ε-differentially private.

The Laplace distribution with parameter β, denoted Lap(β), has probabil-
ity density function 1

2β exp(− |z|
β ) and cumulative distribution function 1

2 (1 +

sgn(z)(1 − exp(− |z|
β ))).

2.3 MultiUPP Problem Definition

The goal of Multi-Level User Privacy Perturbation (MultiUPP) problem is
to publish an accurate histogram that summaries the distribution of data
attributes, which is sufficient to provide user high-quality services (e.g., per-
sonalized advertising, recommendation) in most cases [22]. In the meanwhile,
MultiUPP also preserves both overall privacy toward a specific service provider
and different privacy needs for different data attributes. More importantly, our
MultiUPP problem is considered as a general framework which can be coupled
with different utility objectives. Next, we specify the MultiUPP problem and its
associated privacy and utility objectives respectively.

Formal Definition: Given a user’s private item vector dr associated with pub-
lic universal item set I and a public item-attribute matrix A; and this user’s
attribute-based privacy budget vector t as well as his overall privacy budget ε
towards a service provider. MultiUPP outputs this user’s perturbed attribute
aggregates ap to satisfy the following privacy and utility objectives:

Privacy Objectives of MultiUPP: We consider two privacy objectives aiming
to defend against privacy leakage via public attribute information.

P1. Overall Differential Privacy Objective towards a service provider: satisfy
ε-differential privacy on published histogram on all attributes with the presence
or absence of an individual item in I. Each service provider is associated with
an overall privacy budget ε based on its reputation, i.e., a smaller ε for a lower
reputed service provider.

P2. Per-attribute Differential Privacy Objectives with Multiple Levels: satisfy
tj-differential privacy on published histogram on each attribute j with the pres-
ence or absence of an individual item in I. Each attribute j of data is associated
with a privacy budget tj based on each user’s privacy concern on this attribute.
For example, if a user considers location more private than price (attribute 1
and 2 of an item), this user will set t1 < t2.

Utility Objectives of MultiUPP: We consider publishing the histogram in
which the number of bins equals to the number of attributes and the count in each
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bin j is perturbed summation of attribute values w.r.t. items in user’s history.
The published histogram is denoted as ap as in Table 1. Following the convention
in [25,27], we measure the accuracy (or utility) of a perturbed histogram in terms
of the following two utility loss functions between raw and perturbed attribute
aggregates ar and ap (denoted as U):

U1. Expected Mean Absolute Error (MAE): UMAE = E
[

1
m‖ap − ar‖1

]

U2. Expected Mean Square Error (MSE): UMSE = E
[

1
m‖ap − ar‖22

]

In addition, we also consider the following third utility regarding per-
attribute utility with multi-level privacy controls, for measuring the utility loss
over the best utility on the aggregate of each attribute:

U3. Expected Mean Absolute Error Loss (MAEL): UMAEL = E
[

1
m

∑m
j=1

|ap
j −ar

j |
BUj

]
− 1, where BUj stands for the best expected utility of attribute j.

More specifically, BUj = Δfj

tj
indicating the expectation of optimal Laplace

noise Lap
(

Δfj

tj

)
for each query function fj : (Z+)n → R [12].

Remarks: According to user study results in [24], what users most prefer is to
control their different privacy concerns on limited number of relatively coarse-
grained data attributes. Thus, we assume that the number of attributes m is
bounded by a constant.

Challenges: (1) An item is usually associated with a number of attributes
while each attribute has a different privacy concern level. How can we perturb
the data to optimize the utility when satisfying all privacy guarantees? (2) When
ε <

∑
tj , the existing composition approach [8] is no longer feasible. In this case,

what are the lower bounds of optimal utilities? What is the lower bound of ε
with such optimal utilities? (3) When overall privacy budget ε is smaller than
the above lower bound, how can we optimize the utility loss?

3 Lower Bounds

In this section, we focus on the queries fj : (Z+)n → R in line with the aggregate
(counting) of each attribute in MultiUPP problem definition. We first discuss the
lower bound of overall privacy budget ε when optimal utilities are achieved, fol-
lowed by the detailed lower bounds of the utility loss functions (optimal utilities)
described in our problem.

3.1 Lower Bound of Overall Privacy Budget ε

We first understand the turning point when all utilities for each attribute aggre-
gate are optimized while both overall and per-attribute privacy guarantees are
satisfied. That is, we study a lower bound of ε on the public domain (item
set/universe I), as shown in the following Theorem 2:
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Theorem 2 (Lower Bound of ε). For a set of queries f1, . . . , fm in which
each fj : (Z+)n → R is associated with its global sensitivity Δfj and a privacy
budget tj > 0. If tj-differential privacy is satisfied for each query with optimal
utility, the overall privacy guarantee ε for all queries is lower bounded as follows:

ε ≥ max
d(D1,D2)=1

{ m∑

j=1

tj
Δfj

|fj(D1) − fj(D2)|
}

(3)

where d(D1,D2) = 1 stands for two neighboring datasets D1,D2.

Proof. According to the result by Hardt et al. [12], the optimal utility for an arbi-
trary query function f (Z+)n → R is Ω(Δf/ε), which can be obtained by Laplace
mechanism. Consider two arbitrary neighboring datasets D1,D2 (d(D1,D2) = 1)
and any s = (s1, . . . , sm) ∈ Range(AN ) when every jth element is obtained by
adding noise Lap(Δfj

tj
) to aggregate of attribute j, in which AN is the naive

randomized algorithm where each AN
j is Lap(Δfj

tj
)):

Pr[AN (D1) = s]
Pr[AN (D2) = s]

=
m∏

j=1

Pr[AN
j (D1)j = sj ]

Pr[AN
j (D2)j = sj ]

=
m∏

j=1

exp(−|fj(D1) − sj | tj

Δfj
)

exp(−|fj(D2) − sj | tj

Δfj
)

≥
m∏

j=1

exp
(

− tj
Δfj

|fj(D1) − fj(D2)|
)

= exp
( m∑

j=1

− tj
Δfj

|fj(D1) − fj(D2)|
)

Therefore, proof is complete.

3.2 Lower Bounds of Utility Loss

We next study the lower bounds of optimal utility loss when the privacy objec-
tives are satisfied. These lower bounds will also be used as baseline for experi-
mental evaluation in Sect. 5.

Theorem 3 (Lower Bounds of Utility Loss). If tj-differential privacy is
satisfied for each query and ε satisfies the lower bound in (3), the lower bounds
of utilities defined in Sect. 2.3 are as follows:

UMAE ≥ 1
m

m∑

j=1

Cj

tj
; UMSE ≥ 2

m

m∑

j=1

C2
j

t2j
; UMAEL ≥ 0

where Cj = max1≤i≤n{aij}.
Proof. As the optimal utility is obtained by Laplace mechanism in our case
[12], we prove the above lower bounds based on the properties of Laplace dis-
tribution. Let Xj be the random variable following distribution Lap(Δfj

tj
), we
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have E[|Xj |] = Δfj

tj
,Var[Xj ] = 2

(
Δfj

tj

)2

. Moreover, Δfj = Cj = max1≤i≤n{aij}
based on the definition of global sensitivity.

UMAE = E
[ 1
m

‖ap − ar‖1
]

≥ 1
m

m∑

j=1

E[|Xj |] =
1
m

m∑

j=1

Cj

tj

UMSE = E
[ 1
m

‖ap − ar‖22
]

≥ 1
m

m∑

j=1

Var[Xj ] =
2
m

m∑

j=1

C2
j

t2j

UMAEL(v) = E
[ 1
m

m∑

j=1

|ap
j − ar

j |
BUj

]
− 1 ≥ 1

m

m∑

j=1

E
[ |Xj |

Δfj

tj

]
− 1 = 0

4 DP-MultiUPP Framework

In this section, we develop a novel Differentially-Private Multi-Level User Pri-
vacy Perturbation (DP-MultiUPP) framework to optimize the utility, especially
when the condition (3) does not hold for ε. Specifically, we first introduce a novel
differential privacy mechanism, called Multi-Level Differential Privacy (Mul-
tiDP) Mechanism, for trading off the utility loss and privacy guarantees. We
then apply MultiDP mechanism to develop the DP-MultiUPP framework, with
the provable privacy and utility guarantees and linear time complexity.

4.1 Multi-level Differential Privacy Mechanism

In this subsection, we focus on the case that ε is smaller than the lower bound in
Theorem 2, i.e., the optimal utility cannot be achieved. In this case, we propose a
novel mechanism, called Multi-Level Differential Privacy (MultiDP) Mechanism,
to optimize the utility loss while preserving both per-attribute tj-DP and overall
ε-DP. In this mechanism, our goal is to find the condition for automating per-
attribute privacy budgets t′j (a reflection of the utility loss without violating
per-attribute tj-differential privacy) and overall ε-differential privacy guarantee.

As the determination of optimal privacy budgets t′j is dependent on public
domain, we consider the following MultiDP condition:

Definition 3 (MultiDP Condition). For a set of queries f1, . . . , fm in which
each fj : (Z+)n → R is associated with its global sensitivity Δfj. The set of
non-negative numbers t′1, . . . , t

′
m satisfies MultiDP condition if the following two

conditions hold:
0 ≤ t′j ≤ tj ,∀1 ≤ j ≤ m (4)

max
d(D1,D2)=1

{ m∑

j=1

t′j
Δfj

|fj(D1) − fj(D2)|
}

≤ ε (5)
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Algorithm 1. DP-MultiUPP Algorithm

Input : user private data dr, public item-attribute matrix A, per-attribute
privacy budgets tj , overall privacy budget ε

Output: perturbed attribute aggregates ap

1 ar ← ATdr;

2 Solve (6) with vTvr ≥ I using [18];
3 v ← reciprocal of each entry in vr;
4 foreach j = 1, . . . , m do
5 ap

j = ar
j + Lap(vj);

6 return ap;

Theorem 4 (MultiDP Mechanism). Given a set of non-negative numbers
t1, . . . , tm, and t′1, . . . , t

′
m satisfying MultiDP condition in Definition 3. For a

set of queries f1, . . . , fm in which each fj : (Z+)n → R is associated with its
global sensitivity Δfj, a randomized algorithm AMultiDP that adds independently

generated noise Lap
(

Δfj

t′
j

)
to each query fj enjoys tj-differential privacy for each

query fj and overall ε-differential privacy for all queries f1, . . . , fm.

Proof. First, it is trivial to prove that AMultiDP achieves tj-differential privacy
for each query since t′j ≤ tj always holds for each query j.

Next, we focus on the proof of overall differential privacy for all queries.
Let D1,D2 be any two neighboring datasets, i.e., d(D1,D2) = 1. For any s =
(s1, . . . , sm) ∈ Range(AMultiDP),

Pr[AMultiDP(D1) = s]
Pr[AMultiDP(D2) = s]

≥
m∏

j=1

exp
(

− t′j
Δfj

|fj(D1) − fj(D2)|
)

≥ exp(−ε)

The first step holds due to the independent Laplace noises on each attribute
aggregate and triangle inequality; and the last step holds from the MultiDP
condition in Definition 3.

The advantage of our proposed lower bound and multi-level mechanism, over
the composition approach in [8], is that we take into account the correlation
between queries. Therefore, our approach not only provides a much better ε
lower bound but also helps to dramatically reduce the utility loss.

4.2 DP-MultiUPP Framework

Applying our proposed MultiDP mechanism, DP-MultiUPP framework aims to
automate per-attribute privacy budgets t′1, . . . , t

′
m based on the overall privacy

levels/budgets ε towards the service provider.
The rest of this subsection consists of notion definition, detailed DP-

MultiUPP framework, and theoretical privacy, utility and time complexity
analysis.
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Notations. We define two notations:
(1) the noise standard deviation reciprocal vector vr = ( t′

1
Δf1

, . . . ,
t′
m

Δfm
),

where the jth entry is proportional to the reciprocal of standard deviation of
injected Laplace noise on attribute j; and the noise standard deviation vector
v = (Δf1

t′
1

, . . . , Δfm

t′
m

), where the jth entry is the reciprocal of corresponding jth

entry in vr, i.e., proportional to the standard deviation of injected Laplace noises.
The dimension of v,vr is given by the number of attributes m.

(2) the global sensitivity diagonal matrix GS = diag(Δf1, . . . ,Δfm), where
the jth entry is the global sensitivity of query fj (aggregate of attribute j).

DP-MultiUPP Algorithm. The goal is to achieve optimal noise magnitude
v. To do so, we first formulate the mathematical programming as follows:

minimize U(v)
subject to Avr ≤ ε1n,vr ≤ GS−1t,vr ≥ 0

(6)

where we optimize the utility function U defined in MultiUPP problem. Specifi-
cally, U takes noise standard deviation vector v as input, denoted as U(v). The
three constraints imposes the MultiDP condition, which is sufficient to guaran-
tee both tj-differential privacy and ε-differential privacy as shown in MultiDP
mechanism. As (6) is not convex in general with an implicit constraint vT vr = I,
we treat v,vr as two vector variables and add one more constraint vT vr ≥ I.
The tweaked formulation has convex property. Algorithm1 describes the DP-
MultiUPP algorithm.

Formulation of Various Utilities for DP-MultiUPP Algorithm: Consider ran-
dom variables Xj ∼ Lap(Δfj

t′
j

) on each attribute j. We specify utility functions
U(v) for three utility objectives discussed in Sect. 2.3.

• UMAE: Expected Mean Absolute Error.

UMAE(v) ∝ E
[
‖ap − ar‖1

]
=

m∑

j=1

E[|Xj |] =
m∑

j=1

vj = ‖v‖1

• UMSE: Expected Mean Square Error.

UMSE(v) ∝ E
[
‖ap − ar‖22

]
=

m∑

j=1

Var[Xj ] ∝
m∑

j=1

v2
j = ‖v‖22

• UMAEL: Expected Mean Absolute Error Loss.

UMAEL(v) ∝ E
[ m∑

j=1

|ap
j − ar

j |
BUj

]
− 1 �

m∑

j=1

vj

BUj
= BUrvT − 1

where BUr = ( t1
Δf1

, . . . , tm

Δfm
) stands for the reciprocal of standard deviation of

injected noise with respect to each given privacy budget tj . That is, BUr
j = 1

BUj
.
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Theoretical Analysis. We provide privacy and utility analysis, as well as time
complexity analysis.

Privacy analysis: DP-MultiUPP framework enjoys tj-differential privacy
for each attribute aggregate and overall ε-differential privacy for all attribute
aggregates. The proof follows directly from the multi-level differential privacy
mechanism proposed in Sect. 4.1.

Utility analysis: DP-MultiUPP framework ensures the utilities upper bounded
by the following:

UMAE ≤ 1
m

m∑

j=1

Cj

t′j
; UMSE ≥ 2

m

m∑

j=1

C2
j

t′2j
; UMAEL ≥ tj

t′j
− 1

where t′j = tjε/maxd(D1,D2)=1

{∑m
j=1

tj

Δfj
|fj(D1) − fj(D2)|

}
when ε is smaller

than lower bound in (3). This is because the equal loss of each attribute leads
to feasible solution regardless of the selected utility function. In the experiment,
we treat this as baseline and show that the performance of our DP-MultiPP
framework is much better in practice. In addition, when overall privacy budget ε
is larger than lower bound in Theorem2, DP-MultiUPP automatically achieves
the lower bounds of utility losses in Theorem3.

Time complexity analysis: DP-MultiUPP framework has O(n) time com-
plexity. This is exactly obtained from the analysis in [18] since the number of
attributes is assumed to be bounded by a constant in this paper. Also, steps 3
and 4–5 both take O(m) time.

5 Experimental Evaluation

In this section, we evaluate the performance of our proposed DP-MultiUPP
framework. We conduct our experiments extensively on a variety of real-world
datasets. We first use different metrics to measure the performance of the utility
of all perturbed attribute aggregates as well as each attribute aggregate. Then,
we report the scalability of DP-MultiUPP framework on both personal computer
with 1.9 GHz CPU and 8 GB RAM, and Android Phone Galaxy S5.

5.1 Datasets, Settings, Metrics and Competitors

Datasets: We use three real world datasets.
MovieLens1: a movie rating dataset collected by the GroupLens Research

Project at the University of Minnesota through the website movielens.umn.edu
during the 7-month period from September 19th, 1997 through April 22nd, 1998.
The number of attributes is 19. We use the MovieLens-1M, with 1,000,209 ratings
from 6,040 users on 3,883 movies.

1 http://grouplens.org/datasets/movielens.

http://grouplens.org/datasets/movielens
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Yelp2: a business rating data provided by RecSys Challenge 2013, in which
Yelp reviews, businesses and users are collected at Phoenix, AZ metropolitan
area. The number of attributes is 21. We use all reviews in training dataset,
with 229,907 reviews from 43,873 users on 11,537 businesses.

MSNBC 3: an anonymous web dataset collected by the UCI Machine Learning
Repository through the msnbc.com domain during a 24-hour period on Septem-
ber 28, 1999. We consider types of websites as their attributes and the number of
attributes is 17. We use the whole dataset, with 4,698,794 reviews from 989,818
users on these 17 attributes of websites.

Settings: We consider a fixed sum of per-attribute privacy budgets, i.e.,
∑

tj =
1, and randomly select a privacy budget tj for each attribute to satisfy this
summation. We test different overall privacy budget ε from 0.05 to 0.4. We run
each experiment 10 times and report the average result.

We test our proposed DP-MultiUPP framework by incorporating it with
different utility functions in Sect. 2.3, denoted as DP-MultiUPP (MAE), DP-
MultiUPP (MSE) and DP-MultiUPP (MAEL).

Metrics: We measure the performance of our DP-MultiUPP framework on util-
ities of both all attribute aggregates and each attribute aggregate, referred to as
Overall Utilities and Per-attribute Utilities.

Overall Utilities. We use the expected Mean Absolute Error (MAE) and the
expected Mean Square Error (MSE) in Sect. 2.3.

Per-attribute Utilities. We first use expected the Mean Absolute Error
Loss (MAEL) in Sect. 2.3. In addition, we also consider another metric, KL-
Divergence on injected per-attribute noise variance over optimal per-attribute
noise variance, to measure the difference between the variance of injected Laplace
noise using the optimized t′j and that using a given tj . Specifically, it can be writ-

ten as DKL =
∑m

j=1
(Δfj/tj)

2
∑

j(Δfj/tj)2
log

( (Δfj/tj)2
∑

j(Δfj/tj)2

(Δfj/t′
j
)2

∑
j(Δfj/t′

j
)2

)
.

Competitors: We consider a baseline algorithm based on the state-of-the-art
composition algorithm in Lemma 1 and our proposed lower bound of ε in The-
orem 2. In detail, this baseline algorithm first scans all items and determines
if the overall privacy budget ε is smaller than its lower bound given by per-
attribute privacy budgets tj . In this case, the utility obtained by this base-
line approach is exactly the lower bound of utility loss in Sect. 3.2. If not,
we simply inject Lap(Δfj

tj
) noises to the aggregate of each attribute j. Other-

wise, we adjust each per-attribute privacy budget tj to t′j = tj/r where ratio

r = maxd(D1,D2)=1

{∑m
j=1

tj

Δfj
|fj(D1) − fj(D2)|

}
/ε. Then, we inject Lap(Δfj

t′
j

)
into each attribute aggregate and it is not hard to see that this also satisfies
overall ε-differential privacy.

2 https://www.kaggle.com/c/yelp-recsys-2013/data.
3 https://archive.ics.uci.edu/ml/datasets/MSNBC.com+Anonymous+Web+Data.

https://www.kaggle.com/c/yelp-recsys-2013/data
https://archive.ics.uci.edu/ml/datasets/MSNBC.com+Anonymous+Web+Data
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Fig. 2. Overall Utility Results (Left to Right: MovieLens, Yelp, MSNBC)

5.2 Utility Results

Overall Utility Results: Figure 2 reports the performance of DP-MultiUPP
on overall utility results. As one can see, DP-MultiUPP consistently outper-
forms baseline algorithm regardless of its associated utility function. When ε is
small (ε = 0.05), DP-MultiUPP improves the performance up to 5 times out
of the baseline approach. When ε is larger than the lower bound in Theorem2,
DP-MultiUPP continuously returns the optimal utility automatically due to its
optimized utility objective.

Fig. 3. Per-attribute Utility Results (Left to Right: MovieLens, Yelp, MSNBC)



Differentially Private User Data Perturbation 125

Fig. 4. Running Time of DP-MultiUPP (Left to Right: MovieLens, Yelp, MSNBC)

It is interesting to see that DP-MultiUPP with MSE utility function most of
the time has best performance, especially in MSNBC dataset. This is because
the variance of the injected noises can better capture all these utility losses. This
provides us with an insight regarding how to select a better utility function.

More importantly, the smaller the overall privacy budget ε (w.r.t. lower
reputed services) is, the bigger advantage DP-MultiUPP has over the baseline
algorithm. This makes DP-MultiUPP very practically useful since users need
stronger privacy guarantee especially for numerous low reputed service providers.

Per-attribute Utility Results: Figure 3 reports the performance of DP-
MultiUPP on per-attribute utility results. Figure 3(a) shows DP-MultiUPP
(MAEL) again improves the utility up to twice than using the baseline algo-
rithm. As one can see in Fig. 3(b), the KL-Divergence on injected per-attribute
noise variance over optimal per-attribute noise variance remains small in all
datasets. This is because the optimization of (6) evenly increases privacy levels
for each attribute while preserving the overall privacy level. Thus, user’s pre-
ferred privacy levels for each attribute are very well maintained.

Scalability: Figure 4 reports the averaged running time of all algorithms on
different datasets on both personal computer and Android Phone Galaxy S5.
As one can see, our DP-MultiUPP framework takes at most 0.5 s and 1 s on
PC and Android smartphone respectively and the running time almost remains
invariant with different overall privacy budgets. Overall, thanks to the linear
time complexity, DP-MultiUPP is very scalable on different client devices.

5.3 Case Study: Personalized Recommendation

We conduct an additional case study of personalized recommendation using
perturbed data obtained by our approach on MovieLens dataset, through



126 Y. Shen et al.

collaborative filtering (SGD algorithm) in GraphLab4. In this case, we first san-
itize perturbed data dp based on the perturbed attribute aggregates using the
following mathematical programming: min 1

2‖AT dp − ap‖2 s.t. dp ∈ {0, 1}n.
Using ε = 0.1, the MAE loss between the recommendation results using user
private/raw and perturbed data against ground truth is shown only up to 8 %.

6 Related Work

Privacy Protection under Untrusted Server Settings: A traditional class of
approaches preserve privacy based on cryptography under untrusted server set-
ting [2,5,19]. Another orthogonal class of privacy protection approaches is based
on injecting noises. Polat et al. [20] developed randomized mechanisms to perturb
the data before releasing to untrusted service providers. However, their method
does not have provable privacy guarantees and was later identified to suffer from
inference attacks. A recent work by Shen et al. [23] introduced a differential
private data perturbation method on user’s client. Although this approach has
formal privacy and utility guarantee, it can only take one privacy budget and
treat every type of data with the same privacy concern.

Differential Privacy: Differential privacy [7,9] has become the de facto standard
for privacy preserving data analytics. Dwork et al. [9] established the guideline to
guarantee differential privacy for individual aggregate queries by calibrating the
Laplace noise to each query regarding the global sensitivity. Various works have
adopted this definition for publishing histograms [25], search logs [14], mining
data streams [6], and record linkage [4]. Later on, a noise mitigation mechanism
was proposed by Machanavajjhala et al. [17].

Histogram Release via Differential Privacy: The most basic approach is to add
noises of full contingency table of the whole dataset that suffers from exponen-
tial computational and space complexity. An improvement of this basic approach
was proposed by Dwork et al. [9] to add independently generated Laplace noise
to each k-way marginal table. Later on, Barak et al. [3] proposed the approach to
add noises in the Fourier domain and improve the expected squared error by 2k.
Li et al. [16] proposed the matrix mechanism for counting queries. However, it
still suffers from high computational complexity. In addition to these approaches,
there exist many other approaches such as [10,11,21]. Unfortunately, none of
these approaches provides an option for multi-level privacy concern configura-
tion.

Multi-level Differential Privacy Preservation: The state-of-the-art method is the
composition approach in [9] which preserves both per-attribute and overall differ-
ential privacy. However, it does not analyze when the achievement of all privacy
guarantees is feasible, and does not provide a utility optimization mechanism
when it is infeasible to achieve all privacy guarantees.

4 http://select.cs.cmu.edu/code/graphlab/pmf.html.

http://select.cs.cmu.edu/code/graphlab/pmf.html
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7 Conclusion and Future Work

In this paper, we develop the first lightweight framework via differential privacy
to automate multi-level privacy controls for releasing different attributes of data
to service providers of different reputations. We theoretically analyze privacy,
utility and time complexity. The experimental results show that our approach
outperforms state-of-the-art approach up to 5 times with high scalability on both
personal computer and smartphone. Particularly, our framework shows signifi-
cant advantage for stronger privacy guarantee towards numerous low reputed
service providers, making it very practically useful.

In the future work, we intend to extend our approach into more practi-
cal scenarios: (1) we will conduct more thorough experiments on personalized
recommendation case study; (2) when the correlation among user private data
attributes and the correlation among public attributes are similar, we will define
a new privacy notion and mechanism to tackle the decreased privacy guarantees;
(3) we will design a streaming mulit-level privacy preserving data publishing
approach to tackle continuously generated user private data.
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