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Abstract. Subgoal discovery in reinforcement learning is an effective
way of partitioning a problem domain with large state space. Recent
research mainly focuses on automatic identification of such subgoals dur-
ing learning, making use of state transition information gathered during
exploration. Mostly based on the options framework, an identified sub-
goal leads the learning agent to an intermediate region which is known to
be useful on the way to goal. In this paper, we propose a novel automatic
subgoal discovery method which is based on analysis of predicted short-
cut history segments derived from experience, which are then used to gen-
erate useful options to speed up learning. Compared to similar existing
methods, it performs significantly better in terms of time complexity and
usefulness of the subgoals identified, without sacrificing solution quality.
The effectiveness of the method is empirically shown via experimenta-
tion on various benchmark problems compared to well known subgoal
identification methods.

Keywords: Abstraction in reinforcement learning + Subgoal discovery -
Options framework

1 Introduction

Subgoal discovery is a prominent way of coping with the scalability problem
in reinforcement learning (RL). A subgoal in the problem is a natural hint to
partition it into subproblems, so that the agent can focus on learning of smaller
tasks, giving rise to opportunities like the transfer of the learned behaviour into
a similar problem, and more importantly, increase in learning performance.

Subgoal discovery is almost always coupled with a temporal abstraction
mechanism, by which the identified state acts as an artificial target for the
problem partition that the agent is trying to solve. A widely accepted tem-
poral abstraction formalism is the options framework [23]. An option —which is
essentially an abstract action made up of consequent primitive actions through
states— defines how to guide the learning agent by making it follow a route to
a useful intermediate state, assuming it has the potential to improve learning
performance. However, the formalism does not deal with how to decide that an
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intermediate state is useful on the way to the ultimate goal. This requirement
can effectively be fulfilled by subgoal discovery techniques.

There are a number of different approaches that attack the subgoal discovery
problem in RL. Some of the methods are based on graph theory [8,15,19,24],
some use statistical methods [3,13,18,20], while others invoke data mining app-
roach [9,11].

Obviously, since the intrinsic focus of RL is on on-line performance, it is
quite reasonable to expect that the identification of subgoals should better be
confluent with the underlying learning procedure. While some methods natively
support this paradigm [6,18,19], some others may require additional setup.

In this paper, we propose a subgoal discovery method based on sequence
tree based episode history analysis. After each episode, the method first tries to
generate a number of successful shortcut policies for every visited state, construct
a tree of transitions from generated shortcut policies, and then analyze the tree
to extract subgoal states. The method works concurrently with the underlying
RL algorithm, and it performs no worse than existing similar methods in terms
of solution quality. On the other hand, the method uses less CPU time, and
does not depend on any external problem specific variables other than statistical
decision parameters. The time complexity of the algorithm is O((logy(n))?) on
the average, where n is the number of nodes in the generated tree and b is the
branching factor. The worst case scenario happens when the agent follows a path
through which it visits each state only once causing a tree with branching factor
of 1 (which is very unlikely to occur at the initial stages of learning), for which
the time complexity is O(n?).

The paper is organized as follows: A compact summary of the related lit-
erature is given in Sect. 2. Section 3 contains the proposed method for subgoal
discovery. Experimental evaluation of the proposed algorithm is given in Sect. 4,
together with descriptions of problem domains used, parameter settings and a
discussion of results. Section 5 includes concluding remarks and possible future
research directions.

2 Background

Reinforcement learning (RL) has proven itself to be an effective on-line learning
technique [22]. Basically, RL is about self improvements for decisions of a learning
agent using environmental feedback. One of the recent advances in RL tries to
diminish the diverse effects of increasing state space size, which is known to cause
dramatic slow-downs in learning speed. A candidate solution is to partition the
problem into manageable pieces and try to solve each first, then ensemble the
solutions to obtain the overall result. Lately, subgoal discovery methods have
taken attention for this purpose, and are usually coupled with options framework.

2.1 Reinforcement Learning

Generally, RL algorithms are constructed on top of a special form of decision
process model, called Markov decision process (MDP), which possesses Markov
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property, meaning that future states of the process depends solely on the current
state. With this restricted model, RL algorithms provide a convergence guarantee
to the optimal solution under certain conditions, if one exists.

Formally, MDP is a tuple (S, A, T, R), consisting of a finite set of states S, a
finite set of actions A, a transition function T': S x A x S — [0,1] where Vs € S,
Va €A, Y cgT (s,a,5') =1, and a reward function R: S x A — R. T(s,a,s’)
is the probability of being in state s’ if action a is performed in state s. R(s,a)
gives the immediate reward from the environment after taking action a in state
s. A policy 7 : Sx A — [0,1] is a mapping defining the probability of selecting an
action in a state. The aim is to find the optimal policy 7* which maximizes the
total expected reward received by the agent. If reward and transition functions
were known, the optimal policy could easily be found using classical dynamic
programming techniques. Otherwise, 7* can effectively be found by estimating
the wvalue function (i.e. function giving the value of being in a state on the
way to goal) incrementally. Incremental estimation approach makes use of the
average cumulative rewards over different trajectories obtained by following a
policy to calculate the value function and gives rise to the central idea of most
RL algorithms, called the temporal difference (TD) [21].

A famous TD algorithm using action-values (i.e. Q-values) instead of state-
values is named Q-Learning [25], and is widely respected due to its simplicity
and ease of use. The update rule for Q-Learning is

Q(s,a) — (1= )Q(s, @) + alr + 7 max Q(s', ') M)

where a € [0,1) is the learning rate and v € [0,1) is the discount factor.
Q-Learning has been shown to converge to the optimal action-value function
denoted by Q*, under standard stochastic approximation assumptions.

2.2 Options Framework and Macro-Q Learning

An implicit assumption for the MDP model is that an action lasts for a single
time step. However, there are acceptable rationales to relax this assumption.
An obvious one would be the convenience in the reuse of a behaviour pattern
(i.e. skill) in different situations within the problem space. This abstraction idea
took attention by various researchers, and a few different mainstream approaches
emerged [4,16,23].

A Semi-Markov Decision Process (SMDP) extends the MDP model with
transitions of stochastic time duration. An SMDP is a tuple (S, A, T, R, F'), where
S, A, T and R define an MDP, and F(t|s, a) is the probability that starting at
s, action a completes within time ¢. MDP is clearly a specialization of SMDP,
where a step function has a jump at 1. In the SMDP model, a policy is still a
mapping from states to actions, thus the Bellman equations [1] still hold for an
optimal policy [2].

As a prominent abstraction formalism based on the SMDP model, options
framework [23] devices a way to define and invoke timed actions via incorporation
of composite actions on top of an MDP model. It allows to create and use abstract
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actions (options) by using primitive actions, lasting for a finite number of discrete
time steps. Briefly, an option is defined by three components: (1) a set of states
that the option can be initiated at, called the initiation set, (2) option’s local
policy, and (3) a probability distribution induced by the termination condition.

A natural extension of Q-Learning to include options is Macro-Q Learn-
ing [14], where the value of each primitive action is again updated according to
regular Q-Learning (as given in the update rule 1), while the value of an option
is updated according to the following rule:

Q(st,01) — Q(s,01) + a0 x (7" x rrzc/sz(an,o’) — Q(st,01)

n—1

+rip1 +Yri42 .o+ Y Tt—i—n)

where s; is the starting state of the option o;, n is the number of steps taken
while the option is employed, sy, is the state that the option terminates at,
o' is the option from sy, that has the maximal value and 7,y; is the reward
received at time ¢ 4 7. The reward is discounted by the time it is received.

However, the options framework by itself does not guide or help the designer
to grasp some useful abstractions. Thus, automatic generation of those abstrac-
tions is another interesting research topic, which has its own variety. A widely
used approach is subgoal discovery, where the method seeks bottleneck states or
regions in the problem space to derive artificial subgoals to be used as terminat-
ing points of the options to be generated.

2.3 Automatic Subgoal Discovery

Automatic discovery of subgoals deals with the problem of identifying a set of
intermediate points or regions within an MDP, that are “subgoals” or “bottle-
necks”, naturally partitioning the problem in hand. Due to the vagueness of
the concept, a number of different approaches had been developed for subgoal
discovery in RL context.

Some of the methods transform the experience history to a transition graph
and analyze it to find most suitable bottleneck regions that partitions the prob-
lem [8,15,19,24]. Some other methods rely on state visitation statistics to find
frequently used states, based on the observation that frequently visited states
are more likely to be a bottleneck on the way to goal [3,7,13,18,20]. A yet dif-
ferent approach interprets the same matter as a clustering problem, trying to
find separate regions in state space using experiences and then identify access
points between regions as subgoals [9,11]. Although not explicitly subgoal-based,
a related family of methods focuses on the sequence analysis on episode histories,
under the assumption that the subgoals are signaled via reward peaks [6,12].

However, it is not straightforward to determine whether a state is a subgoal
or not. In the ideal case, one needs the complete transition function 7" in order to
make an accurate decision, which is practically not possible. Nevertheless, major-
ity of subgoal discovery methods rely on the assumption that an approximate
T can be gathered throughout the RL experience. A drawback of this approach
is that it may not be possible to decide that approximation of T is accurate
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enough to be used for subgoal discovery. Alternatively, few other methods use
a hybrid approach that brings together locally collected transition information
and a means to statistically test its sufficiency for subgoal discovery [17]. This
paper focuses on the latter category of subgoal discovery algorithms.

[17] defines an access state as a state that connects two or more connected
regions having few transitions in between. The key idea is that, a method search-
ing for an access state is allowed to possess only local statistics throughout the
experience, to classify a state as either a target state (an access state) or not.
Observations that are collected for a state by this way are then used in the
following decision rule:

1 Ao p(N)

n’i lIl ﬁ l ln()\vnfiss I;(iT)) (3)
p(1=q) p(1=q)

n In qa(1=p) " n a(1-p)

where n is the total number of observations for a state, n4 is the total number
of positive observations for a state, p is the probability of a positive observation
given a target state (an access state), ¢ is the probability of a positive observation
given a non-target state, Ay, is the cost of a false alarm, A.,;ss is the cost of a
miss, p(IN) is the prior probability of non-target states and p(7T') is the prior
probability of target states. If the inequality holds, then the state is classified
as an access state. This decision rule pinpoints the time step when the collected
observations are enough to make a decision about the label of a state. This two-
level mechanism enables the methods to avoid the time cost of traversing the
whole problem domain.

In the same study, three access state identification methods are proposed.
Relative Nowvelty (RN) is a frequency based subgoal identification method, based
on the intuition that an access state allows the agent to pass from a highly visited
region to a new region on the state space. Local Cuts (L-Cut) is a graph based
method that aims to find a good cut, partitioning the local interaction graph
into blocks with a low between-blocks transition probability. Local Betweenness
(LoBet) is also a graph based algorithm which employs a betweenness measure [5]
which is a centrality metric used in graph theory.

Discovered subgoals are of no use unless they are effectively used to diminish
the adverse effects of the large state space. Usually, options framework is used to
achieve this purpose. For each subgoal identified, an option towards that state
is generated. The initiation set for the option is formed by adding the states
observed before the subgoal in each trajectory.

One common way of generating the policy of an option to reach a subgoal is
the Ezxperience Replay (ER) mechanism [10]. ER reuses the past experiences of
the agent to find a policy to reach the identified subgoal by providing artificial
rewards rather than the actual reward yielded by the environment. A general
convention is to provide a positive reward upon reaching the subgoal state, and
a negative reward for any other transition.
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Algorithm 1. LOCAL_ROOTS

Afa p(N)

Amiss’ p(T)

1: 0, <0, oz' — 0

2: for each episode do

3: h < Interact with the environment > record episode history

Require: p, q,

4: if h ended with a peak reward then

5: ntavg < calculate average number of distinct transitions in h

6: T — CREATE_TREE(h)

7 CALCULATE_ROOTING_-FACTORS (T, ntauvg) > for each vertex
8: for s € Vr do

9: 0s <— 0s+ 1

10: if s is a local maximum on T then

11: of —of+1

12: end if

13: if the decision rule is satisfied then > use Decision Rule 3
14: Classify s as a subgoal

15: end if

16: end for

17: end if

18: end for

3 Local Roots Method for Subgoal Discovery

We define a subgoal as a state that serves as a junction point or a region of
the known shortcut paths from each state to the goal state, which is in fact
a likely bottleneck candidate. Following this intuitive definition, our approach
depends on the notion of a successful trajectory, that is, a trajectory ending with
a distinctive reward peak, which is usually the goal state of the problem domain.

Our method named Local Roots generates positive and negative observations
for visited states and feeds them to the Decision Rule 3. This is a common
pattern in local approaches in subgoal discovery, since the local information
gathered from the episode history can be highly dependent on the particular
way of state visitations, and thus, may give rise to noisy results without a high
level decision filter (especially false positives). Decision Rule 3 is calculated for
each visited state, aiming to distinguish the subgoals more accurately.

Local Roots method records the transition history for each episode
(Algorithm 1, line 3). Upon completion of an episode, it first checks whether
the last transition yields the maximum reward for that episode, or not. If so,
it calculates the average number of distinct transitions made through a state
(ntqvg) and creates a tree using shortcut paths derived using state equivalences,
to serve as a collection of the best “memorized” trajectories starting from every
visited state up to the goal state (Algorithm 1, line 6). Best trajectories are
calculated by traversing from a leaf of the tree to the root, iteratively updating
the transitions with the best values. The path from a vertex to the root in the
tree forms the shortest path from the corresponding state to the last state in the
episode. The tree generation procedure is given in Algorithm 2. The resulting
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Algorithm 2. CREATE TREE

Require: a successful episode trajectory h
Ensure: a tree T representing shortcut histories to goal from each state
: t «— length(h) — 2
¢ Vsipq < 0, best
: while ¢t > 0 do
if Vi, is undefined V (r¢41 + v * VSHl) > V;, then

1
2
3
4:
a3 Vep = rep1 + (7 * V5t+1)
6.
7
8

sepq < null

bests, « st41
end if
: t—t—1
9: end while
10: V — {si},E— 0
11: for each state s # s; do
12: V —VuU{s}
13: E — E U (s, bests)
14: end for
15: return (V, E)

tree is a collection of shortcut paths (i.e. free of loops) from every visited state
to the goal state, based on the local transition graph derived from experiences.

The core idea of the proposed method lies in a state metric, what we call
the rooting factor, due to the visual resemblance to a root structure of a tree in
the nature fringing underground. To clarify the idea, Fig. 1a illustrates a sample
grid world domain made up of three rooms with passageways between adjacent
rooms, and Fig. 1b is a tree generated for the problem by using an episode history.
The goal state is s7g which is located in the south-east corner of the room and
the agent starts from the north-west corner, namely sg. The agent can move to
any one of the four compass directions at each time step, except that after a
move attempt to the walls and the boundaries of the room, it stays still.

The grid world and the tree instance given in Fig. 1 are colored according to
the rooting factor values of states scaled from black to white, where brighter color
means a higher value. Note that the states in the doorways have high rooting
factor values. In the case of state s,g located at level 9, the rooting factor metric
focuses on the sub-tree having state s43 as the root. To calculate the rooting
factor of state ss5, one should first find the widest level for the sub-tree rooted
by state s4g, which is the level possessing the first peak in sub-tree width. In
this sub-tree, the widths of each level are 1, 3, 5, 5, 5, 5, 3 consecutively, and
the first peak value in terms of width is 5. The method considers level 11 as the
widest level and ignores the second peak with value 5 starting in level 17 since
level 11 has the first peak. This way, even if there is a wider level below, it is not
taken into account for state s45. Thus, each bottleneck state in the tree possesses
its relative sub-tree, as is the case for another subgoal s32 in level 15 where the
widest level of its relative sub-tree is level 17.

Upon identification of the widest level for state s43, one can think of an
imaginary triangle (i.e. the dotted triangle in Fig. 1b) where the vertices in the
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(b)

Fig.1. (a) A sample grid world with two consecutive subgoals, colored according to
rooting factor values of the states. Shaded cells represent walls. (b) The generated tree,
using the same coloring scheme. Actions are noted on the edges. The numbers at the
bottom are corresponding levels of the tree.

widest level compose its base, and its topmost corner is s4g (w.r.t. a portrait
orientation of the tree, where root is at the top). The shape of this triangle is an
indication of the “importance” of state s4g in the tree. A wider triangle suggests
that, for relatively more states, the agent should pass through state s4g in order
to reach the root state (i.e. goal). The height of the triangle, on the other hand,
pinpoints a state which is the “first” junction point of the merging paths. That
is why, the rooting factor of state s,g is higher than its parent’s, state ssi.

As a mathematical interpretation of the above characteristics, the rooting
factor of s can be defined as follows:

(nwidest)ntavg

re =
dwidest - ds

(4)

where dy is the depth of s in the tree, nty.4 is the average number of distinct
transitions of states in the tree, N;des: 1S the number of vertices in the widest
level and dy;qest is the depth of the states in that level. In order to strengthen
the effect of possible connections that a vertex can have, number of vertices in
the widest level is powered by the average number of distinct transitions (ntq.g).

After the tree is constructed by using Algorithm 2, the rooting factor cal-
culation takes place for every vertex (Algorithm 1, line 7). Algorithm 3 is
employed for this purpose, where a tree traversal (via breadth first search,
BFS) is employed first, to find the depth of each vertex in the tree. An addi-
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Algorithm 3. CALCULATE_ROOTING_FACTORS

Require: a successful history tree T', ntaug
calculate the depth of each state in T’ > use BFS
dmaz — maxscvy (depth(s)) > find maximum depth
for every s € Vr do
ni(s) < number of nodes at depth i > depth(s) in the subtree rooted at s
end for
for each state s in Vr do > rooting factor calculation for every vertex
ds < depth(s)
7 — ds, Nuwidest < 1, dwidest — ds
9: while i < dmaz and n;(s) > Nuwidest do
10: if n;(8) > Nuwidest then
11: Nuwidest < Ni(8)
12: dwidest —1
13: end if
14: t— 1+ 1
15: end while
16: rs «— calculate the rooting factor of s using Eq. 4
17: end for

tional traversal is run afterwards, from the level with the deepest state(s) to the
root, to find the number of vertices below each vertex classified by their depths
(Algorithm 3, lines 3-7). Using this information, the rooting factor of each state
can be calculated by traversing from the state under consideration to the deeper
levels.

Having calculated the rooting factor values for every visited state, each state
is checked whether it is a local maximum or not, in terms of rooting factors,
among its children and parent in the tree. The state gets a positive observation
if that is the case, or a negative observation otherwise. The root of the entire
tree does not get a positive observation since it is a possible goal state and is
obviously not a subgoal. The observations made for each state are fed to the
Decision Rule 3 for a further classification.

The most time consuming portion of the Local Roots algorithm is the part
where the rooting factor value is calculated for each state which has O(n?)
worst time complexity. However, the worst case happens when the tree is linear
(although it is usually unlikely at the initial states of learning due to the explo-
ration component, the agent might execute a policy that visits each state only
once) and the branch factor (b) is 1, which means, by our definition, there is no
new subgoal to identify. Thus, the worst case can be avoided by a heuristic check
on the shape of the generated tree. On the other hand, the algorithm performs
O((log,(n))?) on the average, where n is the number of nodes in the tree. Since
the algorithm makes use of local episode trajectories, the number of nodes in the
tree (n) does not directly relate to the number of states in the whole domain.
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4 Experiments

We tested the algorithms on four grid world navigation domains (Fig. 2), three of
the which are well known benchmark problems in the related literature. State and
action set sizes of problems and corresponding references are given in Table 1. A
new 3 rooms grid world problem (Fig. 2b) is designed to investigate the subgoal
identification behaviour of the methods in a 3-way junction situation. Local
Roots, just like the other similar methods, transforms the problem to a transition
graph. Thus, the method is essentially independent of domain specific structure.
Our motivation for experimenting on grid world domains is to better visualize
the bottleneck idea for the reader.

I — — R G
@
Euu S —
| I i G, I G| I I § Y B
(a) 2 rooms (b) 3 rooms (¢) 6 rooms (d) Taxi

Fig. 2. Problem domains

In 2, 3 and 6 rooms problems, the agent can perform four movement actions,
which are north, east, south and west. The environment is non-deterministic,
since the agent moves to the intended direction with probability of 0.9 and moves
randomly in any of the movement directions with 0.1 probability. The reward
for reaching the goal state G is 1.0 while the reward for any other transition is 0.
In the 2 and 3 rooms problems, the agent starts from any cell in the left room(s)
while it starts from any cell in the upper left room in the 6 rooms domain.

The last problem is the famous Taxi domain (Fig.2d, [4]), in which a taxi
tries to pick a passenger from its location and transfer it to a destination location
in a 5 x 5 grid world with designated locations. The taxi agent can perform 6
actions: movement actions north, east, south, west; a pickup action to get the
passenger, and a putdown action to drop the passenger. The passenger is initially
located in 4 different cells marked as R, Y, G and B, and the destination of the
passenger is one of these four designated cells. The actions are noisy, leading the
agent to its intended direction with probability of 0.8 and randomly moving it
to the left or the right of the intended direction with probability of 0.1 each. The
agent is punished for wrong pickups and putdowns with —10 and it is rewarded
with +20 when it puts down its passenger in the desired location. Any other
transition is given the reward of —1.

4.1 Settings

We compared Local Roots method (LoRoots) with RN, LoBet and L-Cut, since
they use the same decision rule and can be employed on-line. The decision rule
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Table 1. Problem sizes and parameter values used

Problem | Size Parameters used Ref.
|S| | |A] | Method |p q te  |ten k|ln
2 rooms | 201 |4 RN 0.06 |0.01 20 |27 [19}

L-Cut 0.3 |0.01 |0.05
LoBet 0.7 0.07 |- - - |-
LoRoots | 0.6 0.06 |- - - |-
3 rooms 106 /4 | RN 0.05 |0.01 |- 20 (2|7 |-
L-Cut 0.1 |0.01 |0.05 - - |-
LoBet |0.6 |0.06 |- - - -
LoRoots | 0.6 0.06 |- - - |-
6 rooms 6054 |RN 0.5 |0.008 |- 2.0 2|7 |[15]
L-Cut 0.2 |0.01 |0.05 - - |-
LoBet 0.5 0.05
LoRoots | 0.75 |0.05 |- - - |-
Taxi 5006 | RN 0.712]0.01 .
L-Cut 0.04 |0.002|0.05 | - - |-
LoBet |0.3 ]0.03
LoRoots | 0.24 |0.03 |- - - |-

[
[\l
=)
[\V]
N

(4]

parameters were optimized separately for each method and problem so that they
find subgoals in the early stages of learning and they eliminate noise properly.
The cost ratio (Afq/Amiss) and the prior ratio (p(IN)/p(T)) parameters of Deci-
sion Rule 3 were set to 100 for all experiments. The visitation counts used by
RN were reset at the end of each episode. The remaining parameters used by the
subgoal identification methods are given in Table 1. Unfortunately, there is no
practical way to find the correct values other than a number of trial-and-error
experimentation sessions. Specifically, a heuristic we used to set p and ¢ values
is, to examine the outputs of the used subgoal discovery methods and calibrate
them according to the subgoals that we manually identified. Other parameters
are mostly inherited from [17] where a further analysis can be found.

When a subgoal is found, the agent generates an option to reach that sub-
goal. The initiation set of the new option contained the states before the first
occurrence of the subgoal in each previous episode. Option lag (I,), the number
of time steps to look for states to add the initiation set, was 10. Termination
probability for each state in the initiation set was set to 0.0, while 1.0 was used
for the subgoal. The policy of the option was formed through ER by giving 100
reward upon reaching the subgoal, —10 punishment for leaving the initiation
set and —1 punishment for any other transition. For the policy learning part of
ER, a = 0.125 and v = 0.9 were used as the learning parameters. The replay is
repeated 10 times for fast convergence.
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The agent incorporated Macro-Q learning algorithm, where Q values of an
option were updated according to Macro-Q learning while Q values of primitive
actions were updated according to regular Q learning. e-greedy was used as
option selection strategy, with e = 0.1, and o = 0.05 and v = 0.9 were set as
learning parameters. The same 7 value is used in Algorithm 2. All of the results
are averaged over 200 experiments.

4.2 Results and Discussion

Average number of steps to reach the goal state are compared among methods,
and the results are sketched in Fig. 3. Plots are smoothed for visual clarity. All of
the subgoal identification methods, including Local Roots, improve the learning
speed of the agent by leading it to the goal state earlier and our proposed method
matches the performance of the other methods. In general, subgoals discovered
by Local Roots seem to be as useful as the ones found by L-Cut, LoBet and RN.
We can conclude that the solution quality of Local Roots method is not worse
than others on the average.

LoBet algorithm has O(n - m) and O(n - m + n? - logn) time complexities
on unweighted and weighted graphs respectively, while L-Cut algorithm requires
O(n?) time when the local interaction graph has n vertices and m edges. On the
other hand, RN algorithm is O(1). The time complexity of our proposed method,
Local Roots, depends on the maximum depth of a state in the tree it creates.

3000 T T T T T 1400

Q Q —
RN + MacroQ RN + MacroQ
2500 L-Cut + MacroQ —— 1200 |- L-Cut + MacroQ ——
\ LoBet + MacroQ =~ ——+- LoBet + MacroQ ===

LoRoots + MacroQ —— 1000 LoRoots + MacroQ —— |
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L L T T L L I T
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9000
Q Q——
8000 RN + MacroQ 300 RN + MacroQ b
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7000 LoBet + MacroQ == | 250 | LoBet + MacroQ ==+ |
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g‘ oo :"I 200
% 5000 k]
k] s
o 4000 O o b
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episode episode
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Fig. 3. Average number of steps to goal for each problem
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It requires O((logy(n))?) time where b is the average branching factor and n is
the number of vertices in the tree.

CPU time measurements, indicating the CPU times used by each subgoal
discovery method excluding the underlying Macro-Q algorithm, are given in
Table 2. The results shows that both LoBet and L-Cut require much more time
than Local Roots because of their higher time complexities. The only exception
is LoBet for Taxi problem, whose time consumption seems to be nearly the same
as in Local Roots. On the other hand, although RN is O(1), its time complexity is
in fact associated with the number of steps taken, since it is invoked at every time
step, unlike the other methods waiting for the episode end. Longer episodes in
the earlier stages of an experiment causes RN to generally take more time than
Local Roots. Table2 implies that Local Roots algorithm shows a significant
advantage in terms of CPU time compared to other methods.

Table 2. Average CPU time overhead per episode (msec)

Problem | RN | L-Cut | LoBet | LoRoots
2 rooms | 0.63 5.18|0.65 |0.45
3rooms | 0.33| 1.78/0.32 0.24
6 rooms | 11.00|289.30 | 7.10 |4.08
Taxi 0.85| 1.68/0.79 |0.81

Figure 6 shows the subgoals discovered by all four methods for 2 rooms
problem, marked with brighter color showing high frequency of identification.
L-Cut, LoBet and RN finds more than one subgoals including the doorway
and states one step near to it. On the other hand, our proposed method finds
only the state before the doorway as it is the first merging point of the short-
est paths of the states in the left room to the goal state in the right room.
This characteristic causes Local Roots to find less number of subgoals than the
other algorithms, especially in 2, 3 and 6 rooms domains. However, as seen
Fig. 4, effectiveness of subgoals discovered are usually higher in Local Roots
method compared to the others. We define the effectiveness of a subgoal as
the (100 X Nsteps(option) /nsteps(episode))/nsubgoals7 where Nsteps(option) is the total
number steps passed within option sequences, ng¢eps(episode) 15 the total num-
ber of steps taken during the episode, and nsubgoals is the number of subgoals
identified at the end of an episode. Subgoal effectiveness can be interpreted as
the ability of a subgoal to trigger a useful option. Contribution of some of the
additional subgoals found by the other three methods are not as significant as
that are found by Local Roots in general.

Finally, average memory usage of Local Roots does not exceed the graph
based methods (i.e. LoBet and L-Cut) in general, since it uses a tree instead of a
graph, having less number of edges than the graphs used by the other methods. It
is worth noting that, memory usage metrics also include ER repositories (Fig. 5).
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Fig. 6. Subgoals found in 2 rooms domain by (a) L-Cut (b) LoBet (¢) RN (d) Local
Roots.

In addition to the parameters of the Decision Rule 3, L-Cut requires one and
RN requires four more parameters while LoBet and Local Roots require none.
These extra parameters determine the quality of the subgoals found by L-Cut
and RN and make them dependent on the structure of the domain. In that
sense, Local Roots, like LoBet, is less dependent on the problem characteristics
compared to L-Cut and RN. Moreover, as seen in Fig. 4, Local Roots outperforms
LoBet in terms of subgoal quality.

5 Conclusion

In this paper, we propose a tree based automatic subgoal discovery method called
Local Roots that helps the learning agent to identify important states on the
way to the goal state in the early stages of learning. Local Roots method can be
employed upon reward peaks, which are usually goal states. Using the options
framework, the learning agent can devise abstractions to reach the identified
subgoals. The method utilizes a tree based metric to locally identify the junction
points of the shortcuts directed from each visited state towards the goal state.
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In terms of learning speed, Local Roots outperforms the regular Q-Learning
for all problem domains experimented. It also keeps up with the performance
of the other local methods on the average, showing that subgoals identified by
Local Roots are no worse than the ones found by other algorithms.

Compared to other graph based methods tested, Local Roots has lower time
complexity. On the other hand, when average CPU times per episode are com-
pared, Local Roots outperforms all other methods on the average, including
Relative Novelty which has the lowest theoretical time complexity, but should
be invoked at every time step. Local Roots is also shown to identify less num-
ber of subgoals with higher effectiveness in general. Moreover, it requires no
additional parameters unlike Relative Novely and Local Cuts.

A possible future research direction is to find an alternative way of discrimi-
nating noise from local subgoal information with less domain specific parameters.
Also, automatic detection of these parameters can be an important improvement
for all the online methods presented here.
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