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Abstract. Anomaly detection is a vital task for maintaining and
improving any dynamic system. In this paper, we address the prob-
lem of anomaly detection in time-evolving graphs, where graphs are a
natural representation for data in many types of applications. A key
challenge in this context is how to process large volumes of streaming
graphs. We propose a pre-processing step before running any further
analysis on the data, where we permute the rows and columns of the
adjacency matrix. This pre-processing step expedites graph mining tech-
niques such as anomaly detection, PageRank, or graph coloring. In this
paper, we focus on detecting anomalies in a sequence of graphs based on
rank correlations of the reordered nodes. The merits of our approach lie
in its simplicity and resilience to challenges such as unsupervised input,
large volumes and high velocities of data. We evaluate the scalability
and accuracy of our method on real graphs, where our method facil-
itates graph processing while producing more deterministic orderings.
We show that the proposed approach is capable of revealing anomalies
in a more efficient manner based on node rankings. Furthermore, our
method can produce visual representations of graphs that are useful for
graph compression.

1 Introduction

Dynamic graphs are becoming ubiquitous formats for representing relational
datasets such as social, collaboration, communication and computer networks.
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 162–178, 2016.
DOI: 10.1007/978-3-319-46227-1 11



Node Re-Ordering as a Means of Anomaly Detection 163

One of the vital tasks for gaining an insight into the behavioral patterns of such
datasets is anomaly detection. Anomaly detection in time-evolving graphs is the
task of finding timestamps that correspond to an unusual event in a sequence
of graphs [2]. For instance, a social network anomaly may correspond to the
merging or splitting of its communities. Anomaly detection plays an important
role in numerous applications, such as network intrusion detection, credit card
fraud [9] and discontinuity detection in social networks [3].

However, there are many challenges associated with event detection in
dynamic graphs. Networks such as Facebook or Twitter comprise billions of inter-
acting users where the structure of the network is constantly updated. Moreover,
there is often a lack of labels for normal and anomalous graph instances, which
requires learning to be unsupervised. Due to these challenges, graph anomaly
detection has attracted growing interest over time.

To address these challenges, many anomaly detection techniques use a pre-
processing phase where they extract structural features from graph representa-
tions. These features may include node centrality [14], ego-nets [3] and eigen-
values [10]. They then apply well-known similarity measures to compare graph
changes over a period of time. In this scenario, the graphs are converted into
feature sets and therefore they do not pose the complexities associated with the
inter-dependencies of nodes, in addition to causing a considerable decrease in
the time and space requirements for the anomaly detection scheme.

However, the process of generating structure-aware features for graphs can
be challenging in itself. For instance, the eigenvalues of a graph can be a suit-
able representation for its patterns of connectivity, but they have high storage
and time requirements. A common shortcoming between these approaches is the
need to perform matrix inversions, where the graphs are too sparse to be invert-
ible. Another property of graph summarization techniques should be their inter-
pretability. Revealing structural information such as communities, node roles or
maximum independent sets can be very useful in further analysis of graphs.

To address these issues we propose an approach for detecting graph anomalies
based on the ranking of the nodes. The novelty of our method lies in a scalable
pre-processing scheme that produces stable results. Our matrix re-ordering app-
roach efficiently assigns ranks to each node in the graph, where the resulting ranks
can be used directly as a basis for comparing consecutive graph snapshots. Our
re-ordering approach reduces the input dimension of a graph from O(n2) to O(n).
We can easily use a rank correlation coefficient as a similarity measure over pairs
of graphs. Another advantage of our approach is its capability to produce inter-
pretable results that identify large independent sets. The compact representation
of the graphs yields faster and simpler anomaly detection schemes.

We review some of the algorithms previously introduced in the domain of
graph anomaly detection in Sect. 2. We then define our notation and outline
the problem statement in Sect. 3. The details of the proposed method and its
properties are summarized in Sect. 4. The benchmark datasets in addition to
the baseline algorithms for comparison are discussed in Sect. 5. We then show
the results of anomaly detection and discuss the scalability and stability of our
algorithm in Sect. 6. Finally, we conclude the paper and present future directions
for research in Sect. 7.
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2 Related Work

One of the most valuable tasks in data analysis is to recognize what stands out
in a dataset. This type of analysis provides actionable information and improves
our knowledge of the underlying data generation scheme. Various approaches have
been developed for detection of such abnormalities [4], however many of these tech-
niques disregard relational datasets where data instances demonstrate complex
inter-dependencies. Due to the abundance and cross-disciplinary property of rela-
tional datasets, graph-based anomaly detection techniques have received growing
attention in social networks, web graphs, road map networks and so forth [3].

We review some of the dominant techniques for the detection of anomalies.
We focus on graphs that are plain where nodes and/or edges are not associated
with attributes and the nodes are consistently labeled over time.

2.1 Graph-Based Anomaly Detection

Several approaches to pattern mining in graphs stem from distance based tech-
niques, which utilize a distance measure in order to detect abnormal vs. normal
structures. An example of such an approach is the k-medians algorithm [8], which
employs graph edit distance as a measure of graph similarity. Other approaches
take advantage of graph kernels [15], where kernel-based algorithms are applied
to graphs. They compare graphs based on common sequences of nodes, or sub-
graphs. However, the computational complexity of these kernels can become
problematic when applied to large graphs.

Other graph similarity metrics use the intuition of information flow when
comparing graphs. The first step in these approaches is to compute the pairwise
node affinity matrices in each graph and then determine the distance between
these matrices. There are several approaches for determining node affinities in
a graph, such as Pagerank and various extensions of random walks [6]. Another
recent approach in this category is called Delta connectivity, which can be used
for the purpose of anomaly detection. This approach calculates the graph dis-
tance by comparing node affinities [16]. It measures the differences in the imme-
diate and second-hop neighborhoods of graphs. These approaches also suffer
from the curse of dimensionality in large graphs.

Moreover, there are approaches that try to extract properties such as graph
centric features before performing anomaly detection. These features can be com-
puted from the combination of two, three or more nodes, i.e., dyads, triads and
communities. They can also be extracted from the combination of all nodes in a
more general manner [1]. Many anomaly detection approaches [12] have utilized
graph centric features in their process of anomaly detection. Since the graph is
summarized as a vector of features, the problem of graph-based anomaly detec-
tion transforms to the well-known problem of spotting outliers in an n-dimensional
space. Therefore standard unsupervised anomaly detection schemes such as ellip-
soidal cluster based approaches can be employed [19]. A thorough survey of such
techniques can be found in [4]. It is worth noting that the extracted features cause
information loss that can affect the performance of the anomaly detection scheme.



Node Re-Ordering as a Means of Anomaly Detection 165

Another approach for graph mining is tensor decomposition. These tech-
niques represent the time-evolving graphs as a tensor that can be considered
as a multidimensional array, and perform tensor factorization. Tensor factoriza-
tion approximates the input graph, where the reconstruction error can highlight
anomalous events, subgraphs and/or vertices [20].

Although this field of research has received growing attention in recent years,
the problem of scalability and interpretability of results still remains. Graph-
centric features can reduce the dimensionality of the input graphs, but they
may not be able to provide visually interpretable results. On the other hand,
decomposition-based methods provide meaningful representations of graphs but
suffer from the curse of dimensionality. The trade-off between these two issues
has motivated us to find a compact representation of graphs that preserves the
structural properties of networks. This can help further analysis of the data
to become computationally efficient. Specifically for the task of anomaly detec-
tion, we provide experiments that demonstrate the efficiency and utility of our
approach.

3 Preliminaries and Problem Statement

We start by describing the basic notation and assumptions of our anomaly detec-
tion task. A graph G = (V,E) is defined as a set of nodes V and edges E ⊆ V ×V ,
where an edge e ∈ E denotes a relationship between its corresponding nodes
vi, vj . The degree di of a vertex vi is defined as the sum of the number of its
incoming (in-degree) and outgoing (out-degree) edges. A Maximum Independent
Set (MIS) is the largest subset of vertices VMIS ⊆ V such that there is no edge
between any pair of vertices in VMIS .

The maximum independent set problem is closely related to common graph
theoretical problems such as maximum common induced subgraphs, minimum
vertex covers, graph coloring, and maximum common edge subgraphs. Finding
MISs in a graph can be considered a sub-problem of indexing for shortest path
and distance queries, automated labeling of maps, information coding, and signal
transmission analysis [18].

Graphs are often represented by binary adjacency matrices, An×n, where
n = |V | denotes the number of nodes. An element of the adjacency matrix
aij = 1 if there is an edge from vi to vj . The simultaneous re-ordering of rows
and columns of the adjacency matrix is called matrix permutation.

We formulate the problem of anomaly detection as follows: Given a sequence
of graphs {G}1...m, where m is the number of input graphs, we want to determine
the time stamp(s), i ∈ {1...m}, when an event has occurred and changed the
structural properties of the graph Gi. We consider the following assumptions
about the input graphs:

– The vertices and edges in the graph are unweighted.
– There is no external vertex ordering.
– The input graphs are plain, i.e., no attributes are assigned to edges or vertices.
– The number of nodes remains the same throughout the graph sequence.
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– The labeling of nodes between graphs is consistent.

An important issue for the design of a scalable anomaly detection scheme is the
number of input features or dimensions that are required to be processed. If a
graph-based anomaly detection uses a raw adjacency matrix as input, then the
input dimensionality is O(n2), which is impractical for large graphs. In order
to address the issue of scalability, we need to find a compact representation for
each graph. We propose a pre-processing algorithm that extracts a rank feature
for each node that is associated with the maximum independent sets in each
graph. Therefore, instead of storing and processing an adjacency matrix of size
n × n, we reduce the input dimensionality and computational requirements for
our anomaly detector to n.

For each graph in the sequence {G1 = (V1, E1), G2 = (V2, E2), ..., Gm =
(Vm, Em)}, we determine the new matrix re-ordering vector {V1

′
, V2

′
, ..., Vm

′}.
We then compute the rank correlation coefficient between every two consequent
tuples, (Vi

′
, Vi+1

′
). We employ the Spearman rank correlation coefficient as

shown in Eq. 1 between two input rank vectors,
−→
V

′
i,

−→
V

′
i+1, where di = vi −vi+1:

ρ = 1 − 6
∑

di
2

n(n2 − 1)
(1)

The computational complexity of Eq. 1 is O(n), where n is the length of the input
vectors. The intuition behind our approach is to design a stable and scalable
algorithm for determining the significance of each node and revealing structural
information by manipulating the adjacency matrix An×n. We need to find a
matrix permutation that satisfies the following properties:

– Locality : Non-zero elements of the matrix should be in close vicinity in the
ordering after the permutation.

– Stability : The initial ordering of the rows and columns should have no effect
on the final outcome of the re-ordering.

– Scalability : The algorithm should have low computational complexity in order
to handle large scale graphs.

– Interpretability : The permuted matrix should reveal structural information
such as MISs about the graph.

4 Our Approach: Amplay

In order to achieve the above objectives, we propose an approach entitled Amplay
(Adjacency matrix permutation based on layers). In each iteration, Amplay sorts
vertices according to their total degree, and picks the vertex with the highest
degree. Ties are resolved according to the ordering in the previous iteration.
We then remove the vertex and its incidental edges, and recursively apply the
algorithm. The outline of the re-ordering approach is given in Algorithm 1.
In order to clarify the process of Amplay implementation, we have provided an
example of Amplay operation in Figs. 1a and 1b.
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(a) A partially reordered matrix at the beginning
of iteration 3 of Amplay. In this iteration, vx
will be placed at position nhead, and Ax will be
placed before position ntail.Ax are vertices that
are only incidental to vertices placed before/to
vx, which results in a zero area at the bottom
right corner, i.e., white squares. Elements at gray
squares can contain 0 or 1.

(b) Amplay ordering for a sample graph. Each
row shows an ordering at the end of each itera-
tion. Rectangles outline sets Vi at the beginning
of each iteration.

Fig. 1. Examples of Amplay algorithm operation

Algorithm 1. Amplay Permutation
Input : Graph G = (V,E) and n = |V |
Output: Node re-ordering V → V′

1 nhead = 1; ntail = n + 1; i = 1; Vi = V ; Ei = E; Gi = (Vi, Ei);
2 while nhead < ntail do
3 Sort Vi according to the degrees of vertices resolving ties using previous

ordering;
4 vx ∈ Vi ← a vertex with the maximum total degree;
5 ex ⊆ Ei ← edges incidental to vx in Gi;
6 Ax ⊆ Vi ← vertices incidental only to vx in Gi;
7 ai = |Ax|;
8 Place vx in position nhead;
9 Place Ax in position ntail − ai, ..., ntail − 1;

10 (preserving ordering of vertices Ax from Gi);
11 Vi+1 = Vi\vx ∪ Ax, Ei+1 = Ei\ex(\ denotes set difference);
12 nhead = nhead + 1, ntail = ntail − a, i = i + 1;

One of the interesting properties of Amplay is its capability to reveal MISs asso-
ciated with each input graph. Figure 2 shows the permuted adjacency matrix of the
Enron email dataset where the MISs are denoted as S1, S2, .... The groupings of
nodes into the MISs indicates that Amplay can be used as a heuristic to determine
the MISs of a graph in various problem domains. A prominent feature of the matri-
ces produced by the Amplay method is a front line such that all non-zero matrix
elements are located above the line. Indeed, we can consider an adjacency matrix
as a grid with integer coordinates. Here the first coordinate spans rows from top to
bottom, the second coordinate spans columns from left to right. We define the front
line as follows: (1, n), (1, n−a1+1), (2, n−a1), (2, n−a1−a2+1), ..., (s, s), ..., (n−
a1 + 1, 1), (n, 1), where {ai} is the sequence produced by Algorithm 1 and s is the
number of iterations of the algorithm.
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Lemma 1. Every matrix element below the front line is zero.

Proof. The front line spans intersections of vertices from sets Ax with their
respective vx. By definition, Ax are vertices that are only incidental to vertices
placed before vx or to vx, which implies that matrix elements below and to the
right from the intersections of Ax and vx are zero.

As we explain below, the front line is important in visualization, because it
allows us to grasp (1) the degree distribution of the graph, and (2) the relative
size of the largest independent set revealed by Amplay. Note that the shape of
the front line is defined by the sequence {ai}, where ai is closely related to the
degree of the vertex placed at position i. As a consequence, the front line reflects
the degree distribution in a graph.

A key property of Amplay is multiple vertex sorting. Recall that at each iter-
ation, vertices are sorted according to the total degree of the remaining graph,
and ties are resolved using the ordering from the previous iteration. Such a sort-
ing has two consequences. First, the resulting index of each vertex depends not
only on the vertex degree, but also on a vertex connectivity pattern (e.g., the
number of connections to high-degree nodes). This pattern is reflected in the
positions of the vertex in subsequent sorting rounds. While many vertices can
have the same degree, the vertices tend to differ in their connectivity patterns.
As such, Amplay tends to produce a relatively deterministic ordering. This in
turn results in a relatively small variance in the behavior of subsequent graph
processing algorithms. Second, vertices that have a similar connectivity pat-
tern will have similar positions during sorting across subsequent iterations, and
thus have similar positions in the resulting Amplay ordering. This explains why
Amplay tends to produce matrices with a smooth visual appearance.

Lemma 2. Graph G = (V,E) contains an independent set with at least n−ntail

vertices, where ntail is the value from Amplay at the moment of termination.

Proof. At the end of each iteration of Amplay, vertices assigned to indices larger
than or equal to ntail are incidental only to vertices assigned to indices smaller
than nhead. At the point of termination nhead = ntail. Hence, vertices assigned
to indices larger than ntail are pairwise disjoint and form an independent set.

In addition to revealing structural properties of the graph, Amplay proves
to be scalable. We describe the computational complexity of this re-ordering
approach in Lemma 3.

Lemma 3. The complexity of Amplay is O(
∑s

i=0 ni log ni) where ni = |Vi|
defined in Amplay, and s ≤ |V | is the number of iterations.

Proof. Each iteration of the algorithm operates on a subgraph with ni vertices,
and involves sorting (which can be performed in O(ni log ni) time), finding neigh-
bors of the chosen vertex vx (linear in ni), and removing incidental edges (linear
in ni). As such the overall complexity of one iteration is bounded by O(ni log ni)
and the total complexity is bounded by O(

∑s
i=0 ni log ni).
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Fig. 2. The Amplay re-ordered adjacency matrix of the Enron email dataset.

It is worth mentioning that in many real-world graphs, ni rapidly decreases,
which reduces the total running time. Moreover, we can improve the scalability of
Amplay further, by choosing k vertices with the largest total degrees, place them,
and advance the nhead pointer by k at each iteration (line 4 in Algorithm 1).
Furthermore, in line 6 of Algorithm 1, we can define Ax as a set of vertices inci-
dental only to the chosen k vertices. The front line is now defined as (k, n), (k, n−
a1 + 1), (2k, n − a1), (2k, n − a1 − a2 + 1), ..., (s.k, s.k), ..., (n − a1 + 1, k), (n, k),
and it is easy to verify that Lemmas 1 and 2 hold. If we increase k, we can
see that the prominent structural features of the graph are preserved. Moreover

the computational complexity of Amplay when k > 1 is O(
∑s

′

i=0 ni
′ × ri) where

ri = max(log ni
′
, k). Using k > 1 is beneficial because it reduces the number of

iterations s
′
, and sequence ni

′
decreases faster than ni.

5 Evaluation Methodology

In this section, we describe each dataset used in our experiments and elaborate
on the baseline algorithms for comparison.

5.1 Benchmark Datasets

For the purpose of anomaly detection, we have selected a representative sample
of sparse real-world datasets. The first real dataset is the Facebook wall posts
data collected from September 26th, 2006 to January 22nd, 2009 from users
in the New Orleans network [22]. The number of users is 90,269, however only
60,290 exhibited activity.
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Table 1. Benchmark description where
* denotes undirected graphs.

Dataset #Nodes #Time stamps

AS * 65,535 733
Facebook * 60,290 1,495
Enron 184 893
DBLP * 1,631,698 57

Table 2. Computational complexity for
baseline and proposed approaches.

Approach Embedding + Similarity complexity

Amplay O(
∑s

i=0 ni log ni) + O(|V |)
DeltaCon O(|E|) + O(|V |)
RP O(n2d) + O(|V |)

The next real dataset is the Autonomous Systems (AS) data [17]. The graphs
comprising the AS dataset represent snapshots of the backbone Internet routing
topology, where each node corresponds to a subnetwork in the Internet. The
edges represent the traffic flows exchanged between neighbors. The dataset is
collected daily from November 8, 1997 to January 2, 2000 with nodes being
added or deleted.

Another real dataset is the Enron email network that gathers the email com-
munications within the Enron corporation from January 1999 to January 2003
[7]. There are 36,692 nodes in this network, where each node corresponds to
an email address. We have used the nodes with a minimum activity level and
reduced the graph to 184 nodes.

The final real data is the DBLP1 dataset that consists of co-authorship infor-
mation in computer science. The number of nodes is 1,631,698 and the data is
gathered from 1954 to 2010. The description of these datasets is summarized in
Table 1. DBLP graphs are used to test the scalability of our approach.

5.2 Baseline Algorithm

For the purpose of comparison, we have used a recent approach for computing
graph similarity with applications in anomaly detection as our baseline. This
algorithm is called delta connectivity (DeltaCon) [16], where the node affinity
matrices for each graph are calculated using a belief propagation strategy shown
in Eq. 2. This approach considers first-hop and second-hop neighborhoods for
calculating the influence of the nodes on each other and has been proven to
converge.

S = [sij ] = [I + η2D − ηA
′ −1

] (2)

After determining the node affinity matrices, they compare the consecutive
graphs by calculating the root Euclidean distance shown in Eq. 3, which varies
in the range [0, 1]. We empirically have chosen η = 0.1 in our experiments.

sim(S1, S2) =

√
√
√
√

n∑

i=1

j=n∑

j=1

(
√

S1,ij − √
S2,ij)2 (3)

The computational complexity of this algorithm is reported to be linear in the
number of edges of each graph, O(|E|).
1 http://dblp.uni-trier.de/xml/.

http://dblp.uni-trier.de/xml/
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Another baseline algorithm is an approach called Random Projection (RP)
that has shown to be effective in determining anomalous graphs in block-
structured networks [21]. The intuition behind RP comes from the Johnson
and Lindenstrauss lemma [11] as presented in Lemma 4. This lemma asserts
that a set of points in Euclidean space, P 1...n ∈ R

n×m, can be embedded into
a d-dimensional Euclidean space, P ′1...n ∈ Rn×d while preserving all pairwise
distances within a small factor ε with high probability.

Lemma 4. Given an integer n and ε > 0, let d be a positive integer such that
d ≥ d0 = O(ε−2 log n). For every set P of n points in R

m, there exists f : Rm →
R

d such that with probability 1 − n−β, β > 0, for all u, v ∈ P

(1 − ε)||u − v||2 ≤ ||f(u) − f(v)||2 ≤ (1 + ε)||u − v||2 (4)

One of the algorithms for generating a random projection matrix that has been
shown to preserve pairwise distances [11] is presented in Eq. 5:

rij =
√

3

⎧
⎪⎨

⎪⎩

+1 with probability 1/6
0 with probability 2/3
−1 with probability 1/6

(5)

6 Results and Discussion

In this section, we outline our experimental setup in five sections and report
the observed results. We first demonstrate the effectiveness of Amplay and rank
correlation in prioritizing nodes that can contribute the most to the structural
change in consecutive graphs. We then investigate the capability of our algo-
rithm in detecting anomalous graphs based on the produced similarity score.
Thereafter, we discuss the scalability of our approach empirically by changing
parameter k. We provide our empirical studies regarding the stability of the
Amplay algorithm on static graphs.

Experiment I: Gradual Change Detection. The effectiveness of Amplay
lies in its ability to reveal maximum independent sets. The nodes that comprise
each set can be considered the most influential nodes collected from every com-
munity in the graph. Figure 3 shows the gradual change in the graph structure
by removing the edge e3,10 connecting v3 and v10. e3,10 is the connecting bridge
between two of the present communities in the graph and its elimination may
lead to discontinuity in the entire graph structure. As can be seen, v3 is the node
that contributes the most to the dissimilarity between G1 and G2.

Experiment II: Anomaly Detection. We have applied the proposed app-
roach (with parameter k = 1) and the baseline algorithms on the benchmark
datasets, and compared their computed similarity score between consecutive
days. The implementations were run in Matlab using a machine with a 3 GHz
Processor and 8 GB RAM. Due to the computational complexity of the random
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(a) G1: Snapshot at t = 1 (b) G2: Snapshot at t = 2

Fig. 3. Example of gradual change in the structure of the graph and the importance
of each node in the overall similarity score.
Initial Node Ordering for G1, G2: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
Amplay and Rank Correlation Node Importance: 3, 5, 13, 15, 6, 7, 1, 2, 4, 8, 9, 10, 11,
12, 14, 16
DeltaCon Node Importance: 3, 10, 14, 16, 12, 13, 2, 5, 15, 4, 6, 7, 11, 1, 9, 8

projection approach, we only use this algorithm as a baseline for comparing
scalability.

Our proposed method and DeltaCon generate scores in the range [0, 1]. Fig-
ures 4, 5 and 6 demonstrate the graph similarity scores for the Autonomous
Systems, Facebook and Enron datasets respectively. As can be seen, the trend
of similarity scores is the same for DeltaCon and our proposed method.

Experiment III: Computational Scalability. The reported results for anom-
aly detection were achieved by setting parameter k = 1, where k was defined
at the end of Sect. 4 as the number of vertices that are processed and removed
from the graph in a single iteration. We decided to increase k and investigate the
performance of our anomaly detection scheme. It is worth recalling that we are
using only a subset of nodes for the purpose of anomaly detection. We consider
the top l elements in the rank vectors where l = nhead after the termination of
Amplay.

Increasing parameter k leads to an exponential decrease in computation time.
This observation can be explained by the sparsity of real-world graphs, i.e.,
the small proportion of fully-connected cliques. Since k is the number of ver-
tices that are processed and removed from the graph within a single iteration,
increasing k leads to a more rapid graph reduction. However, at some value of
k, all highly connected vertices are processed within a single iteration, and the
remaining graph contains only vertices with low degrees. Therefore, subsequent
increases of k do not lead to a significant performance improvement. Figure 7
demonstrates the effect of parameter k on the processing time of Amplay for
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Fig. 4. Comparison of graph similarity scores based on the correlation score of
the Amplay-permuted adjacency matrix and DeltaCon on the Autonomous Systems
dataset.

Fig. 5. Comparison of graph similarity scores based on the correlation score of the
Amplay-permuted adjacency matrix and DeltaCon on the Facebook dataset.

Fig. 6. Comparison of graph similarity scores based on the correlation score of the
Amplay-permuted adjacency matrix and DeltaCon on the Enron dataset.
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the Enron dataset. Although the parameter k is increased to 100, we can still
observe the maximum independent sets S1, S2, ..., Sn as demonstrated in Fig. 2.
Another attractive property of our scheme is the compact representation of the
graph produced by Amplay. This compact representation scales linearly in the
number of input nodes n. The real-world graphs are mainly comprised of sets
of dense cores and sparse periphery nodes. Therefore, the number of nodes to
consider for graph similarity computation is only a fraction of the total number
of nodes in a graph. Amplay discards the peripheral nodes that are connected
to only a few vertices from the core. The influential nodes usually appear as
V

′
1 , V

′
2 , ..., V

′
nhead

, where nhead � n. The upper bound of n denotes the worst
case scenario where the input graph is fully-connected. Table 3 demonstrates the
computation time and number of considered nodes in calculating graph sim-
ilarity. The upper bounds for time complexity of the embedding approaches
is demonstrated in Table 2. As can be seen, our proposed method and Delta-
Con outperform random projection, and both are scalable when the adjacency
matrices are sparse. The advantage of our approach lies in its ability to generate
an interpretable result where structural features of a graph, such as MISs, are
revealed as shown in Fig. 2.

Fig. 7. Amplay computation time as the parameter k is increased in the Enron dataset
where k is the number of vertices that are processed and removed from the graph in a
single iteration.

Table 3. Computation time of Amplay on different datasets.

Dataset Amplay time DeltaCon time #Nodes to consider

AS 0.196 ± 0.005 0.087 ± 3.616e-04 1,913

Facebook 0.0538 ± 0.003 0.072 ± 4.482e-04 1,316

Enron 0.0009 ± 0.0008 0.003 ± 8.286e-07 41

DBLP 29.707 ± 6.268e+03 1.7174 ± 0.1998 38,903
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Experiment IV: Amplay Stability. We compare Amplay with other ordering
methods, namely random, RCM [5], and SlashBurn [13]. Random permutation
serves as a naive baseline; RCM is a classical bandwidth reduction algorithm [5];
and SlashBurn is a recent method that is shown to produce adjacency matrices
with localized non-zero elements. This method is shown to be one of the best
state-of-the-art methods [13].

We use a representative sample of sparse real-world graphs of different sizes
for quantitative evaluation (Table 4) where all graphs were downloaded from
the Stanford Large Network Collection2. The table shows graph names as they
appear in the Collection, however in the paper we use simplified names (e.g.,
gnutella instead of p2p-Gnutella08).

We first load each graph as an adjacency matrix S and produce N +1 random
permutations of the graph vertices RNDi(S), i = 0, 1, ..., N . We then take each
random permutation as input and either leave it as it is (method Random), or
apply RCM, SlashBurn or Amplay permutation -respectively, RCM(RNDi(S)),
SlashBurn(RNDi(S)) and Amplay(RNDi(S)).

We then evaluate ordering stability by selecting one of the random permuta-
tions as a reference (e.g., iref = 0), and comparing the vertex ordering between
each of the other permutations and the reference (e.g., compare RND0(S) with
RNDj(S)). In this section, we use both Amplay and SlashBurn with k = 1.
That is, we evaluate the basic forms of these algorithms, as opposed to more
coarse scalable versions.

Table 4. Real-world graphs used in our stability analysis. * mark undirected graphs.

Dataset Vertices Edges Dataset* Vertices Edges

Wiki-Vote 7115 103689 ca-HepTh* 9877 51971

p2p-Gnutella08 6301 20777 oregon1* 10670 22002

soc-epinions1 75879 508837 loc-Gowalla* 196591 1900654

Email-EuAll 265214 420045 flickr* 105936 2300660

We compare two vertex orderings using the Kendall correlation coefficient.
This coefficient takes values in [−1, 1], where 1 is reached in the case of equiva-
lence of the orderings. If the two orderings are independent, one would expect the
coefficient to be approximately 0. Intuitively, vertices with higher degrees tend to
have a higher impact on matrix operations and visual appearance. Therefore, we
also separately look at ordering stability for higher degree vertices only. Specif-
ically, we compute the Kendall correlation while ignoring a certain proportion
(0, 80, 90, 95%) of vertices with low degrees. Here 0% means that we compare
orderings for all graph vertices. On the other hand, 95% means that we only con-
sider the ordering of the top 5% of vertices with the highest degrees. We present
our results in Fig. 8 and Table 5 (permutations with k = 1 were slow for large
2 snap.stanford.edu/data.

http://snap.stanford.edu/data
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Table 5. Stability measured with Kendall Tau at 90% for large graphs. The table
shows the means for three comparisons.

Dataset Random RCM SlashBurn Amplay

Email-Eu < 0.01 0.02 0.11 0.46

gowalla < 0.01 0.41 0.78 0.89

flicker < 0.01 0.27 0.05 0.99

Fig. 8. Amplay stability in comparison to the rival approaches, SlashBurn [13], RCM
[5] and Random ordering, as we vary the percentage of ignored low-degree vertices.

graphs, therefore we have fewer runs for large graphs). Overall, Amplay outper-
forms the other methods by a large margin (p < 0.01, Wilcoxon signed rank test).
In other words, Amplay tends to be less dependent on the input ordering.

7 Conclusion and Future Work

In this paper, we presented an unsupervised approach for detecting anomalous
graphs in time-evolving networks. We created a compact yet structure-aware
feature set for each graph using a matrix permutation technique called Amplay.
The resulting feature set included the rank of each node in a graph and this rank
ordering was used by rank correlation for comparing a pair of graphs. This simple
yet effective approach overcomes the issues of scalability when handling large-
scale graphs. We showed the low time complexity and structure-aware property
of our re-ordering approach both empirically and theoretically. Moreover, we
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designed experiments for the purpose of anomaly detection in four real datasets,
where our approach was compared against an effective graph similarity method
and proved to be successful in highlighting abnormal events. In future work, we
will explore the possibilities of reducing the dimensionality of the graph even fur-
ther by using a random projection approach. Since we reduce the dimensionality
from O(n2) to O(n), we can consider the rank vectors of each graph as a data
stream. Thereafter, we will investigate a window-based approach for determining
anomalous graphs given a history of past normal instances.
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