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Abstract. Maximal average margin classifiers (MAMCs) maximize the
average margin without constraints. Although training is fast, the gener-
alization abilities are usually inferior to support vector machines (SVMs).
To improve the generalization abilities of MAMCs, in this paper, we pro-
pose optimizing slopes and bias terms of separating hyperplanes after
the coefficient vectors of the hyperplanes are obtained. The bias term
is optimized so that the number of misclassifications is minimized. To
optimized the slope, we introduce a weight to the average of mapped
training data for one class and optimize the weight by cross-validation.
To improve the generalization ability further, we propose equally con-
strained MAMCs and show that they reduce to least squares SVMs.
Using two-class problems, we show that the generalization ability of the
unconstrained MAMCs are inferior to those of the constrained MAMCs
and SVMs.

1 Introduction

Since the introduction of support vector machines (SVMs) [1,2] various variants
have been developed to improve the generalization ability. Because SVMs do not
assume a specific data distribution, a priori knowledge on the data distribution
can improve the generalization ability. The Mahalanobis distance, instead of the
Euclidean distance is useful for this purpose. One approach reformulates SVMs
so that the margin is measured by the Mahalanobis distance [3-7], and another
approach uses Mahalanobis kernels, which calculate the kernel value according
to the Mahalanobis distance [8-13].

In SVMs, the minimum margin is maximized. But in AdaBoost [14], the
margin distribution, instead of the minimum margin, has been known to be
important in improving the generalization ability [15,16].

Several approaches have been proposed to control the margin distribution
in SVM-like classifiers [17-22]. In [18], a maximum average margin classifier
(MAMC) is proposed, in which instead of maximizing the minimum margin,
the margin mean for the training data is maximized without slack variables.
In [21,22], in addition to maximizing the margin mean, the margin variance is
minimized and the classifier is called large margin distribution machine (LDM).
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According to the computer experiments in [21], the generalization ability of
MAMC:s is inferior to SVMs and LDMs.

In this paper, we clarify why MAMCs perform poorly for some classifica-
tion problems and propose two methods to improve the generalization ability.
Because the MAMC does not include constraints associated with training data,
the determined bias term depends only on the difference between the numbers of
training data for the two classes. To solve this problem, after the weight vector
is obtained by the MAMC, we optimize the bias term so that the classification
error is minimized. Then to improve the generalization ability further, we intro-
duce a weight parameter to the average vector of one class and determine the
parameter value by cross-validation. This results in optimizing the slope of the
separating hyperplane. To improve the generalization ability further, we define
the equality-constrained MAMC (EMAMC), which is shown to be equivalent to
the least squares (LS) SVM. Using two-class problems, we show that the gener-
alization ability of the unconstrained MAMCs with the optimized bias term and
slopes are inferior to that of the EMAMC.

In Sect. 2, we explain the architecture of the MAMC and clarify the problems
of MAMC. Then, we propose bias term optimization and slope optimization and
develop the EMAMC. In Sect. 3, we compare the generalization abilities of the
MAMC with those of the proposed MAMC with optimized bias terms and slopes,
the EMAMC, and the SVM.

2 Maximum Average Margin Classifiers

2.1 Architecture

In the following we explain the maximum average margin classifiers (MAMCs)
according to [18].

We consider a classification problem with M training input-output pairs
{xi,y:} (i =1,..., M), where x; are m-dimensional training inputs and belong
to Class 1 or 2 and the associated labels are y; = 1 for Class 1 and —1 for Class 2.
We map the m-dimensional input vector x into the [-dimensional feature space
using the nonlinear vector function ¢(x). In the feature space, we determine the
decision function that separates Class 1 data from Class 2 data:

f(x) =wTe(x) +b=0, (1)

where w is the [-dimensional vector, T denotes the transpose of a vector (matrix),
and b is the bias term.
The margin of x;, §;, which is the distance from the hyperplane, is given by

3 = yi (w' o(xi) +b)/||wl. (2)

Under the assumption of

(2) becomes
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With b = 0, the MAMC, which maximizes the average margin, is defined by
M
. . _ . T .
maximize Q(w) = i ;yz w ' o(x;) (5)
Tw=1 (6)

Introducing the Lagrange multiplier A (> 0), we obtain the unconstrained
optimization problem:

subject to w

maximize Zyz w ' o(x) (W w—1). (7)

Taking the derivative of Q with respect to w, we obtain the optimal w:

1 M
= M Z i (i) (8)

In [18], A is determined using (6) and (8), but A can take on any positive value
because that does not change the decision boundary. Therefore, in the following
we set A = 1.

In calculating the decision function given by (1), we use kernels K (x,x’) =
cl)T(x) ¢(x) to avoid treating the variables in the feature space explicitly.

The resulting decision function f(x) with b = 0 is given by

Z vi K (%, %;). (9)

Among several kernels, radial basis function (RBF) kernels are widely used
and thus in the following study we use RBF kernels:

K(x,x') = exp(—ljx — x/||*/m), (10)
where m is the number of inputs for normalization and -y is to control a spread

of a radius.

2.2 Problems with MAMCs

The MAMC is derived without a bias term, i.e., b = 0. To include the bias term
we change (7) to

1
maximize = Zyz o(x;) +b) — §(W w +b). (11)

Here, we replace A with 1 and delete the constant term. Then, ) is maximized
when

1 M
= 37 2 v $xi), (12)
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1 M
b:M;yi. (13)

From (13), b is determined by the deference of the numbers of the data
belonging to Classes 1 and 2, not by the distributions of the data belonging
to the two classes. And if the numbers are the same, b = 0, irrespective of
x; (i =1,...,M). This occurs because the coefficient of b becomes zero in (11);
the value of b does not affect optimality of the solution.

This means that the constraints are lacking for determining the optimal value
of b. Similar to SVMs, the addition of inequality or equality constraints for the
training data may solve the problem, which will be discussed later.

2.3 Bias Term Optimization

In this section we propose two-stage training; in the first stage, we determine
the coefficient vector w by (12), and in the second stage, we optimize the value

of b by
M

minimize Eg = »_I(&) (14)

i=1

subject to  y; (W' @(x;) +b) > p—&

where ER is the number of misclassifications, p is a positive constant, &; (> 0)
is a slack variable, I(§;) = 0 for § = 0 and I(§) = 1 for & > 0. If there are
multiple b values that minimize (14), we break the tie by

M
minimize Eg=» &, (16)
i=1

where FEg is the sum of slack variables.
First we consider the case where the classification problem is separable in
the feature space. Suppose that

T : T
max =w o(x;) < lzrlninM W o(x;) <0 (17)

is satisfied, where training data belonging to Class 2 are correctly classified but
some of the training data belonging to Class 1 are misclassified. Because of the
first inequality in (17), by setting a proper value to b, all the training data are
correctly classified.
Let
J = arg; | max w' $(x;), i=arg; _m

1,..., M
yj=—1 y;=1

in w' p(x;). (18)
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Then, from (15), to make x; and x; be correctly classified with margin p,
wi(xi) +b=p, —(wW' @(x;)+b)=p (19)

must be satisfied. Thus,

1 1
b= (wT blx) +w $(x). p=(w blx)—w G(x).  (20)
The above equations are also valid when
0< max w ¢(x;) < min w' ¢(x;), (21)
vj=—1 =1

where some of the training data for Class 2 are misclassified.

It is clear that (20) satisfies Egr = Eg = 0 and that p is the maximum.

Now consider the inseparable case. Let the misclassified training data for
Class 1 be x;, (k=1,...,p) and

W' o(xi) S W d(xi,) < Swlg(x;,) <0. (22)
Likewise, let the misclassified training data for Class 2 be x;, (k=1,...,n) and
0<w!g(x;) <wolx,) < <w'o(x;,). (23)

Similar to the separable case, it is clear that the optimal b occurs at (20)
with ¢ = % (k € {1,...,p}) and j being given by

: T
= arg. ma; w X 24
ey L mAa b(x;) (24)
yj=—1,4=1,..., M

or with j = ji (k € {1,...,n}) and 7 being given by

i = arg;, max w! o(x;). (25)
wTl $(xj, )<w T ¢(x;)
yi=1,i=1,...,M

Let ER(i,7) and Es(i,7) denote that EFg and Eg are evaluated with b deter-
mined using x; and x; by (20), where ¢ = i; (k € {1,...,p}) and j is given by
(24) or j = ji (k € {1,...,n}) and 7 is given by (25). For each pair of ¢ and j,
we calculate Eg(i,j) and select the value of b that minimizes Eg(i,j). If there

are multiple pairs of i and j, we select the value of b that minimizes Fs(i, 7).

2.4 Extension of MAMCs

Characteristics of Solutions. Rewriting (8) with A =1,

W = 7¢+ - %&)— (26)



34 S. Abe

where

1 M M

S e b= D o), (27)

i=1 i=1
yi=1 yi=—1

s

and ¢, and ¢_ are the averages of the mapped training data belonging to
Classes 1 and 2, respectively, and M and M_ are the numbers of training data
belonging to Classes 1 and 2, respectively.

If My = M_, w is the vector which is from ¢_/2 to ¢, /2. Therefore the
decision function is orthogonal to the vector. If M # M_, the decision function
is orthogonal to ¢, — (M_/My)¢_.

Slope Optimization. To control the decision function, we introduce a positive
hyperparameter C,, as follows:

M, - Cn M_ -
w = ﬁ(lﬁ - Tﬁbq (28)

where Cp, works to lengthen or shorten the length of vector ¢_ according to
whether Cy;, > 1 or 0 < Cy, < 1. Therefore, by changing the value of Cy,, the
slope of the decision function is changed.

Then the decision function becomes

1 C M
f) =57 z':%::11((&:&-) -7 izgjz_l K(x,%;) +b. (29)

We determine the value of Cy, by cross-validation.

In k-fold cross-validation, we divide the training data set into k£ almost-
equal-size subsets and train the classifier using the £ — 1 subsets and test the
trained classifier using the remaining subset. We iterate this procedure k times
for different combinations and calculate the classification error.

Calculation of the classification error for a given C\, value is as follows:

1. Calculate (29) with b = 0 using the k£ — 1 subsets.

Calculate the bias term using the method discussed in Sect. 2.3.

3. Calculate the classification error for the remaining subset using the decision
function generated in Steps 1 and 2.

o

Repeat the above procedure for the k different combinations and calculate
the classification error for the decision function.

For a given set of Cy, values, we calculate the classification errors and select
the value of C, with the minimum classification error.
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2.5 Equality-Constrained MAMCs

To improve the generalization ability of MAMCs further, we consider equality-
constrained MAMCs (EMAMCs) as follows:

M
o C 2
maximize Q(w,b) = —fw w —|— — E yi (W' o(x;)+0b) — 5 i:E 1 & (30)
subject to y; (W' p(x;) +b)=1—-& for i=1,..., M, (31)

where C, and C' are parameters to control the trade-off between the generaliza-
tion ability and the classification error for the training data, and &; are the slack
variables for x;.

We solve (30) and (31) in the empirical feature space [2] and define

o(x) = (K(x,%x1),..., K(x,xp))". (32)
Solving (31) for & and substituting it into (30), we obtain the unconstrained

optimization problem:

1
maximize Q(w,b) = _§W W+ —ZyZ w ' ¢(x;) +b)

Q

M
5§jl—yzw d(x;) + b))% (33)
If we delete the second term (the average margin) in the above equation, the opti-
mization problem result in the least squares (LS) SVM defined in the empirical
feature space [2].
Taking the partial derivative of (33) with respect to w and b and setting the
results to zero, we obtain the optimality conditions:

M c,
<1+CZ¢(Xi)¢ ))W—FCZ% xzb—(—i—C)Zyz o(xi:), (34)

i=1 i=1

M c M
C x)WH+CMb=|=2+C i 35
> ot w Q4%>§y (35)
The above optimality conditions can be solved for w and b by matrix inversion.
The coefficient (C,/M + C) can be deleted because it is a scaling factor and
does not change the decision boundary. Then, because C, is not included in the
left-hand sides of (34) and (35), the value of C, does not influence the location
of the decision boundary. This means that the second term in (33) can be safely
deleted.

In addition, if we delete the w' w term from (33), all the terms in the left-
hand sides of (34) and (35) include C, thus C' can be deleted; C' does not work
to control the trade-off. Therefore, the w ' w term is essential.
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Accordingly, dividing (34) and (35) by C and deleting the constant term
(Ca/C M + 1) from the right-hand sides of (34) and (35), we obtain

1 < .- S
(C + Z b(x;) ¢T(Xi)> w + Zyv P(x;) b= Z Yi p(xi), (36)

M M
S o)W Mb=>y;. (37)
i=1 =1

The above formulation is exactly the same as the LS SVM defined in the empir-
ical feature space. Therefore, the EMAMC results in the LS SVM.

3 Performance Evaluation

3.1 Experimental Conditions

We compared the proposed MAMC including the EMAMC (LS SVM) with the
plain MAMC and the L1 SVM using two-class data sets [23]. The L1 SVM we
used is as follows:

M M
.. 1
maximize Q(a) = Z =5 Z o0 Yy K (x4, %) (38)
i=1 i,j=1
M
subject to Zyl a; =0, 0<; <C for i=1,.., M, (39)
i=1

where «; are Lagrange multipliers associated with x; and C (> 0) is a mar-
gin parameter that controls the trade-off between the classification error of the
training data and the generalization ability.

Table 1 lists the numbers of inputs, training data, test data, and data set pairs
of two class problems. Each data set pair consists of the training data set and the
test data set. We trained classifiers using the training data set and evaluated the
performance using the test data set. Then we calculated the average accuracy and
the standard deviation for all the data set pairs. We determined the parameter
values by fivefold cross-validation. We selected the 7 value of the RBF kernels
from {0.01, 0.1, 0.5, 1, 5, 10, 15, 20, 50, 100, 200, 300, 400, 500, 600, 700}. For the
Chn, we selected from {0.05, 0.1, 0.2, ...,0.9,1.0,1.1111,. . ., 20}. For the EMAMC
and L1 SVM, we selected the  value from 0.01 to 200 and the C value, from
{0.1, 1, 10, 50, 100, 500, 1000, 2000}. We trained the L1 SVM using SMO-NM
[24], which fuses SMO (Sequential minimal optimization) and NM (Newton’s
method).
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Table 1. Benchmark data sets for two-class problems

Data Inputs | Train | Test | Sets
Banana 2 400 | 4,900 | 100
Breast cancer | 9 200 77 1100
Diabetes 8 468 300 | 100
Flare-solar 9 666 400 |100
German 20 700 300 |100
Heart 13 170 100 | 100
Image 18 1,300 | 1,010 | 20
Ringnorm 20 400 | 7,000 |100
Splice 60 1,000 | 2,175 | 20
Thyroid 5 140 75 100
Titanic 3 150 | 2,051 | 100
Twonorm 20 400 | 7,000 | 100
Waveform 21 400 | 4,600 | 100

3.2 Results

Table 2 shows the average accuracies and their standard deviations of the six
classifiers with RBF kernels. In the table, MAMC is given by (12) and (13)
and the « value is optimized by cross-validation. In MAMC,,, the bias term is
optimized as discussed in Sect. 2.3. In MAMC,, after « value is optimized with
Ch = 1, the (), value is optimized. We call this strategy line search in contrast
to grid search. In MAMC,, the v and Cy, values are optimized by grid search.

Among the six classifiers including the L1 SVM the best average accuracy is
shown in bold and the worst average accuracy is underlined. The “Average” row
shows the average accuracy of the 13 average accuracies and the two numerals in
the parentheses show the numbers of the best and worst accuracies in the order.
We performed Welch’s t test with the confidence intervals of 95 %. The “W/T/L”
row shows the results; W, T, and L denote the numbers that the MAMC,
shows statistically better than, the same as, and worse than the remaining five
classifiers, respectively.

From the “Average” row, the EMAMC performed best in the average accu-
racy and the L1 SVM the second best. The difference between MAMCy,s, and
MAMCyy is small. The MAMC is the worst. From the “W/T/L” row, the accu-
racies of the MAMCy and the MAMC,, are statistically comparable and the
accuracy of the MAMC, is slightly better than that of the MAMCy, but always
better than that of the MAMC. The accuracy of the MAMC,; is worse than
that of the EMAMC and L1 SVM.

In Sect. 2.2, we clarified that the bias term is not optimized by the original
MAMC formulation. This is exemplified by the experiments. By optimizing the
bias term as proposed in Sect. 2.3, the accuracy is improved drastically. The effect
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Table 2. Accuracy comparison for the two-class problems
Data MAMCLs [ MAMChse MAMC, MAMC EMAMC |L1 SVM
Banana  88.46+0.85 [88.49+0.86 [88.51£0.73 {59.694+9.17 |89.13+0.63 |89.17+0.72
B. cancer (74.144+4.33 74.00%4.43 |74.27+4.36|71.19+4.53 |73.57+4.55 73.03+£4.51
Diabetes 73.03+2.26 [72.19+2.49 |72.66£2.32 |65.224+2.15 |76.67+1.76/76.29+1.73
Flare-solar|66.10+2.00 [65.64+2.05 [66.35+2.03 {59.484+5.83 |66.25+2.00 66.99+2.12
German  |75.531+2.18 |75.93+£2.21 [69.51+2.28 70.184+1.95 |76.27+2.04|75.95+2.24
Heart 81.00+£3.58 |80.99+3.24 {81.3243.38 58.87+8.84 |82.70+3.70 82.8243.37
Image 93.594+1.22 94.1141.24 [92.90£1.12 |56.814+1.10 |96.974+0.74 97.16+£0.41
Ringnorm (98.2740.27/98.254+0.30 [98.27+0.25|70.26+21.99|98.04+0.43 98.1440.35
Splice 84.43+1.11 |85.17£0.88 |84.084+0.99 54.57+8.76 |89.07+0.59/88.894+0.91
Thyroid (95.154+2.24 95.414£2.30 (95.11+£2.17 70.254+4.36 95.43+2.35|95.35+£2.44
Titanic 77.684+0.84 |77.70+1.03|77.64£0.84 |67.694+0.30 |77.69£0.82 |77.39+0.74
Twonorm 97.284+0.31 [97.21+0.40 |97.35+£0.27 |{79.254+16.20(97.41+0.23/97.38+0.26
Waveform [88.93+1.53 (89.234+1.29 |88.84+1.64 [67.07+0.19 [90.2040.50/89.76+0.66
Average |84.12 (1/0) |84.18 (2/0) [83.60 (2/1) |65.43 (0/11)85.34 (6/0) |85.26 (4/0)
W/T/L | — 1/11/1 1/12/0 13/0/0 1/4/8 2/3/8

of slope optimization to the accuracy is small. However, by the bias term and
slope optimization, the generalization ability is still below that of EMAMC or
L1 SVM. This indicates that the equality or inequality constraints are essential
in realizing the high generalization ability.

We measured the average CPU time per data set including time for model
selection by fivefold cross-validation, training a classifier, and classifying the
test data by the trained classifier. We used a personal computer with 3.4 GHz
CPU and 16 GB memory. Table 3 shows the results. From the table the MAMC
is the fastest and the MAMC,s and MAMC, are comparable to the MAMC.
Comparing the MAMCy,s and the MAMCy,, the MAMC),s, requires more time
because of the grid search. Because the classification performance is comparable,
line search seems to be sufficient. The EMAMC, L1 SVM and MAMC, are in
the slowest group.

3.3 Discussions

The advantage of the MAMC is its simplicity: The coefficient vector of the
decision hyperplane is calculated by addition or subtraction of kernel values.
The inferior generalization ability of the original MAMC is mitigated by bias
and slope optimization, but the improvement is still not sufficient compared
to the EMAMC and L1 SVM. Therefore, the introduction of the equality or
inequality constraints are essential. But it leads to the LS SVM or L1 SVM and
the simplicity of the MAMC is completely lost.
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Table 3. Training time comparison for the two-class problems (in seconds)

Data MAMCys | MAMCypse | MAMCy, | MAMC | EMAMC | L1 SVM
Banana 1.10 9.74 0.59 0.59 22.40 4.92
B. cancer |0.31 2.77 0.13 0.14 2.95 7.08
Diabetes |1.51 14.39 0.78 0.73 35.86 22.96
Flare-solar | 3.24 29.89 1.61 1.51 111.43 218.67
German 4.42 40.03 2.07 2.04 148.65 776.53
Heart 0.24 2.13 0.12 0.11 2.05 1.75
Image 15.04 144.43 7.62 7.18 2290.87 | 56.7
Ringnorm | 1.60 12.91 0.99 0.96 23.27 12.57
Splice 13.34 126.51 7.16 6.87 887.16 30.71
Thyroid 0.15 1.35 0.07 0.07 1.16 0.33
Titanic 0.17 1.31 0.09 0.09 1.32 21.25
Twonorm | 1.67 12.92 0.99 0.92 22.51 10.46
Waveform | 1.51 12.84 0.88 0.88 22.44 35.61
B/W 0/0 0/1 5/0 12/0 0/7 0/5

4 Conclusions

We discussed two ways to improve the generalization ability of the maximum
average margin classifier (MAMC). One is to optimize the bias term after cal-
culating the weight vector, and the other is to optimize the slope of the decision
function by introducing the weight parameter to the average vector of one class.
The parameter value is determined by cross validation. To improve the gen-
eralization ability further, we introduced the EMAMC, which is the equality
constrained MAMC, but this is shown to be equivalent to the LS SVM defined
in the empirical feature space.

According to the experiments for two-class problems, we show that the gener-
alization ability is improved by the bias term and slope optimization. However,
the obtained generalization ability is inferior to the EMAMC and L1 SVM.
Therefore, the unconstrained MAMC is not so powerful as the EMAMC and L1
SVM.
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